Ejercicios para auto evaluación Variables continuas y Teorema de Límite Central

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Ejercicios para auto evaluación Variables continuas y Teorema de Límite Central"

Transcripción

1 Ejercicios para auto evaluación Variables continuas y Teorema de Límite Central Enero Sea f(u) = ce u, u R. Determine el valor de c para que f sea una función de densidad de probabilidad y calcule la función de distribución asociada, el valor esperado y la varianza. 2. La vida útil, en días, para frascos de cierta medicina es una variable aleatoria con función de densidad { : x > 00 f(x) = x 3 0 : en otro caso. Encuentre la probabilidad de que un frasco de esta medicina tenga una vida útil de a) al menos un año. b) cualquier duración entre uno y dos años. Determine la vida útil esperada, en años, de un frasco de esta medicina. 3. El número total de horas, medidas en unidades de 00 horas, que una familia utiliza en la conexión con Internet en un período de un mes es una variable aletoria continua X que tiene la función de densidad f(x) = x : 0 < x < 2 x : x < 2 0 : en otro caso Encuentre la probabilidad de que, en un período de un mes, una familia utilice la conexión al menos 20 horas. Calcule la tasa de uso diario de conexión por familia. 4. El tiempo de vida de ciertos transistores tiene una distribución exponencial, con parámetro θ =,2 0 8 seg. Si utilizamos 4 de estos transistores, Cuál es la probabilidad de que, luego de un año, al menos la mitad de ellos sigan funcionando?. Si en vez de 4 utilizamos 4000, proponga un método para estimar la misma probabilidad.

2 5. Un juego se llama justo cuando la esperanza de la ganancia de los participantes es cero. La flecha lanzada por un arquero experto caerá a una distancia de R pies del centro de un blanco. Se paga 5$ como entrada para participar en un juego cuyas reglas son las siguientes: Si R < 0,2 pies, el participante recibe 50$. Si 0,2 R < 0,5 pies, el participante recibe 0$. Si 0,5 R < pies, el participante no recibe ningún pago y, finalmente, si R pies, el participante debe pagar x dólares a la casa (adicionales a los cancelados a la entrada). Si R tiene densidad f(r) = re 2 r2, r > 0. Cuánto debe valer x para que el juego sea justo?. 6. A través de una encuesta se quiere estimar la fracción p de adultos de la población que se interesaría en un nuevo producto. Se interroga a n personas de la población, y se estima p como p = X/n, siendo X el número de personas encuestadas que manifiestan interés en el producto. Utilizando el Teorema del Límite Central, y suponiendo que el verdadero valor de p es 0.35, encuentre, aproximadamente, el menor valor de n para el cual p y p difieren en menos de 0.02, con probabilidad mayor que 0.9. Cómo resolvería el problema en el caso (realista) en que p es desconocido? 7. Escriba condiciones acerca de las v.a. X e Y de manera que las siguientes afirmaciones sean ciertas: V ar(x + Y ) = 2V ar(x) E(X + Y ) = 3E(X) 8. Si las variables aleatorias X e Y cumplen σ 2 X = Var X = y σ2 Y = Var Y = 2, (a) Cuanto debe valer ρ X,Y para tener Var(X + Y) = 5? (b) Pruebe que Var(X + Y) no puede ser igual a 6. (c) Cuál es el rango de valores posibles para Var(X + Y)? 9. Demuestre que si X N(0, ) entonces Y = σx + m N(m, σ 2 ) y si Y N(m, σ 2 ) entonces X = Y m σ N(0, ). 0. Sea X es una v.a. con distribución Gamma de parámetros n y λ, n y λ > 0. Es decir, X tiene función de densidad f(x) = siendo Γ la función gamma definida por Γ(n) = λn Γ(n) xn e λx, x > 0, Demuestre que E(X) = n λ y V ar(x) = n λ u n e u du.

3 . Dé tres diferencia entre variables aleatorias discretas y continuas. 2. Un dado es lanzado veces. Use el teorema del límite central para hallar los valores de a y b tal que P (900 < S < 2200) b donde S es el número total de seis lanzados. a 2π e 2 x2 dx, 3. Tomamos 00 números al azar (uniformemente) en el intervalo (0,2). (a) Utilize la desigualdad de Chebyshev para estimar la probabilidad de que el promedio X de estos números se encuentre entre 0.9 y.. (b) Utilize el Teorema del Límite Central para aproximar la misma probabilidad de la parte (a). Según la aproximación que nos dá el T.L.C., Cuánto debe ser ɛ para que X se encuentre en el intervalo ( ɛ, + ɛ) con probabilidad En un instante cualquiera, la relación Señal a Ruido, Z, en uno de los receptores de un sistema de comunicaciones, puede modelarse (aproximadamente) como una variable aleatoria con densidad doble exponencial: f Z (z) = a exp( a z b ), z (, ), siendo a y b parámetros sobre los 2 cuales, el diseñador del sistema tiene cierto control. Si b = 00, hallar el mínimo valor del parámetro a para que la relación S/R caiga por debajo de 50 menos del 5 % del tiempo. 5. Dos máquinas son utilizadas en el proceso de producción de ciertas piezas para motores. Llamemos D al diámetro de las piezas producidas. Cuando se utiliza la máquina I, D puede considerarse una variable aleatoria normal, con media µ = 0,0 cm y desviación standard σ = 0,08 cm, mientras que, al usar la máquina II, D es normal con parámetros µ 2 = 9,9 cm y σ 2 = 0,033. Las piezas producidas deben ser completamente desechadas cuando su diámetro resulta inferior a 9.8 cm. Cuál de las dos máquinas es preferible en el sentido de producir un menor % de piezas que deban ser desechadas? 6. Si la variable aleatoria X tiene función de distribución continua y estrictamente creciente F, demuestre que (a) Y = F (X) es una variable Unif (0, ), y (b) Si Y Unif (0,), entonces Z = F (Y ) tiene función de distribución acumulativa F. 7. Una partícula se mueve, en la dirección del eje x, con velocidad V, que se distribuye N(0, ). Hallar la densidad de probabilidad correspondiente a su energía cinética, E c = 2 m V 2. 3

4 8. En condiciones de descuido severo y humedad excesiva, sobre la superficie de un CD, de radio ρ cms, aparece una mancha producida por un hongo. La mancha daña el contenido del CD, si su distancia R al centro del CD cumple ρ < R < ρ 2, siendo ρ y ρ 2 radios comprendidos entre 0 y ρ, que definen la región sobre la cual se guarda información. Suponga, por simplicidad, que el disco no tiene un agujerito en el centro. Si la mancha aparece al azar (con distribución uniforme) sobre la superficie del disco, (a) Hallar la probabilidad de que la información en el mismo resulte dañada. (b) Hallar la densidad de probabilidad de la coordenada X del punto sobre el disco donde aparece la mancha (tome el centro del disco como origen en su sistema de coordenadas). (c) Hallar la densidad condicional f(y x) para la coordenada Y cuando se conoce la coordenada X del punto donde aparece la mancha. 9. Demuestre que, el par (X, Y ) tiene distribución uniforme sobre el rectángulo (a, b) (c, d) si, y solo si, las variables X e Y son independientes, X Unif (a, b) y Y Unif (c, d). 20. En condiciones ideales, la temperatura T, presión S y volumen V, de un gas, están relacionados mediante T = α S V, siendo α una constante de proporcionalidad. Si S y V son variables aleatorias con densidad conjunta: { si s, v f(s, v) = s 2 v 2 0 en otro caso Determinar la densidad de la variable T. 2. Los tiempos de vida, X,..., X n de n circuitos integrados que forman parte de un módulo, son variables aleatorias independientes con distribución exponencial de parámetro λ =,2 0 2 seg. Hallar la distribución de la variable correspondiente al tiempo en que, por vez primera, se daña uno de los circuitos. 22. Sean X, Y v.a. independientes con distribuciones Gamma(s, λ) y Gamma(t, λ) respectivamente. Use la fórmula de convolución para encontrar la distribución de Z = X + Y. 23. Sean X, Y v.a.i.i.d con distribución exponencial de parámetro. Cómo se distribuye X/(X + Y )?. 24. Suponga que X, Y son independientes y obtenga las siguientes fórmulas: f X+Y (z) = f X (u)f Y (z u)du f XY (u) = f X (x)f Y (u/x) x dx 4

5 f X/Y (v) = f X (vy)f Y (y) y dy 25. Demuestre que si X, Y son exponenciales independientes con parámetros µ, λ respectivamente, entonces la distribución del mínimo es también exponencial. Determine su parámetro. 26. Sean X,... X n v.a.i.i.d con función de densidad común f(x). Sean U, V el mínimo y el máximo de la muestra. Pruebe que la densidad conjunta de (U, V ) es n(n )f(u)f(v)(f (v) F (u)) n 2, y calcule las marginales (aquí F = f) para u < v 27. Cada uno de los 5 focos de una sala de terminales tienen tiempo de vida exponencial, con esperanza de vida de 80 días. Hallar la probabilidad de que al cabo de 8 meses a partir de su instalación, al menos 3 de los focos sigan funcionando. 28. Considere el punto aleatorio (X, Y ) con distribución normal bivariada y coordenadas independientes. Sea (R, Θ) las coordenadas polares del punto aleatorio. Identifique la distribución marginal de R 2 y Θ. 29. Si (X, Y ) tienen densidad conjunta { e y para 0 < x < y < f(x, y) = 0 si no. Encuentre E[X Y = y] y E[Y X = x]. 30. Sean X, Y v.a. independientes con distribución gamma de parámetros (n, β) y (m, β) respectivamente. Considere las variables U = X + Y V = X X + Y Demuestre que U, V son independientes y calcule sus distribuciones. Deduzca la curiosa identidad válida para este caso [ ] X E = X + Y E[X] E[X] + E[Y ] 3. Sea (X, Y ) un vector aleatorio con distribución Normal Bivariado: f(x, y) = 2π ( ρ 2 ) exp( 2( ρ 2 ) (x2 2ρxy + y 2 )) para x, y R donde ρ. Verifique que: 5

6 a) X se distribuye N(0,). b) X dado Y = y se distribuye N(ρy, ρ 2 ). c) E(X Y = y) = ρy. d) X, Y son independientes si y sólo si son incorrelacionadas. e) Si X, Y independientes entonces X/Y tiene distribución Cauchy, es decir, su densidad es π(+x 2 ). 32. Se toma un punto (X, Y ) al azar en el triángulo de vértices (0, 0), (0, 2) y (, ). Probar que E(Y X = x) no depende de x. Son X e Y independientes?. 33. Debido a la variabilidad en el proceso de producción, la tasa de vida Γ, de los amplificadores producidos por una fábrica tiene distribución N(µ, σ 2 ) con µ =, seg /2 y σ 2 =, 0 6 seg. A su vez, el tiempo de vida T, de un amplificador con tasa de vida Γ, tiene distribución exponencial de parámetro λ = Γ 2 seg. Hallar el tiempo de vida promedio (en meses) de los amplificadores producidos por esta fábrica. 34. La variable aleatoria X tiene f.d.a. F (x) = x r, 0 x, siendo r un número natural. Dado X = x, la variable Y tiene una distribución Bin(n, x). (a) Hallar E(Y ). (b) Hallar la f.d.p. de Y. Para esto puede necesitar la integral conocida como función β: Si i y j son números naturales, se tiene 0 x i ( x) j dx = i! j! (i + j + )!. 35. El número de llamadas que llegan a la central telefónica de Sartenejas en un minuto, es, en promedio, 0 2. La central puede manejar un máximo de 0 3 llamadas, colapsando si recibe mas de este número de llamadas en un minuto. Usar la desigualdad de Chebyshev para estimar la probabilidad de que la central colapse en un minuto dado. 36. En la fábrica del problema anterior, supóngase que los amplificadores con Γ < 7,5 0 3 seg /2 son rechazados por control de calidad. (a) Use la desigualdad de Chebyshev para estimar el % de amplificadores rechazados. (b) Calcule la misma probabilidad de la parte (a) usando la tabla de la distribución normal. Explique la discrepancia de los resultados. 6

CO3121: Problemario Marzo 2005.

CO3121: Problemario Marzo 2005. CO3121: Problemario Marzo 2005. 1. Sea f(u) = ce u, u R. Si f es una función de densidad de probabilidad, cuál es el valor de c?. 2. Sea X una v.a. con función de densidad f(x) = 2x, 0 < x < 1. Encuentre

Más detalles

Universidad Simón Bolívar Curso de Probabilidades Enero-Marzo Problemario III

Universidad Simón Bolívar Curso de Probabilidades Enero-Marzo Problemario III Universidad Simón Bolívar Curso de Probabilidades Enero-Marzo 200 Problemario III. La variable X toma los valores, 2 y 3 con la misma probabilidad. Una vez observado el valor de X, digamos, X = x, Y se

Más detalles

Notas sobre convergencia y funciones generatrices

Notas sobre convergencia y funciones generatrices Notas sobre convergencia y funciones generatrices Universidad Carlos III de Madrid Abril 2013 Para modelar un fenómeno aleatorio que depende del tiempo, podemos considerar sucesiones de variables X 1,X

Más detalles

Cálculo de Probabilidades II Preguntas Tema 2

Cálculo de Probabilidades II Preguntas Tema 2 Cálculo de Probabilidades II Preguntas Tema 2 1. Demuestre que la suma de n v.a. Bernuolli(p) independientes tiene una distribución Binomial con parametros (n, p). 2. Se dice que una v.a tiene una distribución

Más detalles

PROBABILIDADES Trabajo Práctico 5. 0 si x<0. x3 si 0 x<2 1 si x 2

PROBABILIDADES Trabajo Práctico 5. 0 si x<0. x3 si 0 x<2 1 si x 2 PROBABILIDADES Trabajo Práctico 5 1. Sea X una variable aleatoria con función de distribución acumulada a) Calcular, usando F X, P (X 1) P (0.5 X 1) P (X >1.5) b) Hallar la mediana de esta distribución.

Más detalles

Probabilidades: Vectores Aleatorios

Probabilidades: Vectores Aleatorios Probabilidades: Vectores Aleatorios Raúl Jiménez, 1 Densidad conjunta y densidades marginales Un par ordenado (X, Y ) de v.a. continuas, es un punto aleatorio en el plano. Experimentos aleatorios como

Más detalles

Variables aleatorias continuas y Teorema Central del Limite

Variables aleatorias continuas y Teorema Central del Limite Variables aleatorias continuas y Teorema Central del Limite FaMAF 17 de marzo, 2015 Variables aleatorias continuas Definición Una variable aleatoria X se dice (absolutamente continua) si existe f : R R

Más detalles

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas Cálculo de probabilidad Tema 3: Variables aleatorias continuas Guión Guión 3.1. La función de densidad de probabilidad Definición 3.1 Sea P una medida de probabilidad en un espacio muestral Ω. Se dice

Más detalles

Variables aleatorias continuas, TCL y Esperanza Condicional

Variables aleatorias continuas, TCL y Esperanza Condicional Variables aleatorias continuas, TCL y Esperanza Condicional FaMAF 17 de marzo, 2011 1 / 37 Poisson P(λ) Número de éxitos en una cantidad grande de ensayos independientes Rango: {0, 1, 2,... } = {0} N Función

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3 P (X > 0) P ( 0,5 < X < 0,5) P ( X > 0,25) 1 si 2 x P (X 1) P (0,5 X 1) P (0,5 < X 1 X < 1)

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3 P (X > 0) P ( 0,5 < X < 0,5) P ( X > 0,25) 1 si 2 x P (X 1) P (0,5 X 1) P (0,5 < X 1 X < 1) PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3 1. Sea X una v.a. con función de densidad { 0,75 (1 x f X (x) = 2 ) 1 x 1 0 en otro caso. a) Verificar que f X es realmente una función de densidad. b) Calcular:

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3 1. Sea X una v.a. con función de densidad ½ 0.75 (1 x f X (x) = 2 ) 1 x 1 0 en otro caso. a) Verificar que f X es realmente una función de densidad. b) Calcular:

Más detalles

Trimestre Septiembre-Diciembre 2007 Departamento de Cómputo Científico y Estadística Probabilidades para Ingenieros CO3121 Guía de ejercicios # 6

Trimestre Septiembre-Diciembre 2007 Departamento de Cómputo Científico y Estadística Probabilidades para Ingenieros CO3121 Guía de ejercicios # 6 Trimestre Septiembre-Diciembre 2007 Departamento de Cómputo Científico y Estadística Probabilidades para Ingenieros CO3121 Guía de ejercicios # 6 Contenido Valor Esperado, Caso Discreto. Valor Esperado,

Más detalles

Cálculo de Probabilidades y Estadística. Segunda prueba. 1

Cálculo de Probabilidades y Estadística. Segunda prueba. 1 08231. Cálculo de Probabilidades y Estadística. Segunda prueba. 1 Problema 1. Se eligen tres puntos A, B y C, al azar e independientemente, sobre una circunferencia. Determinar la distribución del valor

Más detalles

no es función de distribución de un vector aleatorio (b) Mostrar que:

no es función de distribución de un vector aleatorio (b) Mostrar que: Probabilidades y Estadística (M) Práctica 4 2 cuatrimestre 2004 Vectores aleatorios e independencia de variables 1. (a) Demostrar que la función 1 e x y si x 0 e y 0 F (x, y) = 0 sino no es función de

Más detalles

Cálculo de Probabilidades II Preguntas Tema 1

Cálculo de Probabilidades II Preguntas Tema 1 Cálculo de Probabilidades II Preguntas Tema 1 1. Suponga que un experimento consiste en lanzar un par de dados, Sea X El número máximo de los puntos obtenidos y Y Suma de los puntos obtenidos. Obtenga

Más detalles

Introducción al Tema 8. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones.

Introducción al Tema 8. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones. Introducción al Tema 8 1 Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones. V.A. de uso frecuente Tema 7. Modelos probabiĺısticos discretos

Más detalles

Y \ X

Y \ X 18 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 4 1. En la siguiente tabla se presenta la función de probabilidad conjunta del vector aleatorio discreto (X, Y ): Y \ X 1 2 3 4 1 0.10 0.05 0.02 0.02 2 0.05

Más detalles

Relación de Problemas. Tema 5

Relación de Problemas. Tema 5 Relación de Problemas. Tema 5. Supongamos que tenemos una muestra aleatoria simple de tamaño n de una v.a. X que sigue una distribución geométrica con función de probabilidad P (X = k) = p( p) k Calcular

Más detalles

Lista de Ejercicios (Parte 1)

Lista de Ejercicios (Parte 1) ACT-11302 Cálculo Actuarial III ITAM Lista de Ejercicios (Parte 1) Prof.: Juan Carlos Martínez-Ovando 15 de agosto de 2016 P0 - Preliminar 1. Deriva las expresiones de las funciones de densidad (o masa

Más detalles

Relación de Problemas. Variables Aleatorias

Relación de Problemas. Variables Aleatorias Relación de Problemas. Variables Aleatorias 1. Un experimento consiste en lanzar cuatro monedas al aire. Calcular la función de probabilidad y la función de distribución de las siguientes variables aleatorias:

Más detalles

0 en otro caso. P (X > 0) P ( 0.5 < X < 0.5) P ( X > 0.25) x 3 si 0 x < 2. 1 si 2 x P(X 1) P(0.5 X 1) P(0.5 < X 1 X < 1) f X (x) = (1+αx) 2

0 en otro caso. P (X > 0) P ( 0.5 < X < 0.5) P ( X > 0.25) x 3 si 0 x < 2. 1 si 2 x P(X 1) P(0.5 X 1) P(0.5 < X 1 X < 1) f X (x) = (1+αx) 2 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3 1. Sea X una v.a. con función de densidad { 0.75(1 x f X (x) = 2 ) 1 x 1 0 en otro caso. a) Verificar que f X es realmente una función de densidad. b) Calcular:

Más detalles

Unidad 3. Probabilidad. Javier Santibáñez (IIMAS, UNAM) Inferencia Estadística Semestre / 22

Unidad 3. Probabilidad. Javier Santibáñez (IIMAS, UNAM) Inferencia Estadística Semestre / 22 Unidad 3. Probabilidad Javier Santibáñez (IIMAS, UNAM) Inferencia Estadística Semestre 2018-1 1 / 22 Espacios de probabilidad El modelo matemático para estudiar la probabilidad se conoce como espacio de

Más detalles

Ejercicio 1. Ejercicio 2

Ejercicio 1. Ejercicio 2 Guía de Ejercicios Ejercicio. Calcular los momentos de primer y segundo orden (media y varianza) de una variable aleatoria continua con distribución uniforme entre los límites a y b.. Sabiendo que la función

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD GUÍA DE TRABAJO 3 Profesor: Hugo S. Salinas. Primer Semestre 2010 1. Sea X 1,..., X n una muestra aleatoria

Más detalles

Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas

Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas Estadística Tema 2 Variables Aleatorias 21 Funciones de distribución y probabilidad 22 Ejemplos distribuciones discretas y continuas 23 Distribuciones conjuntas y marginales 24 Ejemplos distribuciones

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Grado en Ingeniería Informática Tema 5 Esperanza y momentos Javier Cárcamo Departamento de Matemáticas Universidad Autónoma de Madrid javier.carcamo@uam.es Javier Cárcamo PREST.

Más detalles

Simulación. La mayoría de los procesos de simulación tiene la misma estructura básica:

Simulación. La mayoría de los procesos de simulación tiene la misma estructura básica: Simulación La mayoría de los procesos de simulación tiene la misma estructura básica: 1 Indentificar una variable de interés y escribir un programa para simular dichos valores Generar una muestra independiente

Más detalles

Notas de clase. Prof. Nora Arnesi

Notas de clase. Prof. Nora Arnesi Notas de clase Este material está sujeto a correcciones, comentarios y demostraciones adicionales durante el dictado de las clases, no se recomienda su uso a aquellos alumnos que no concurran a las mismas

Más detalles

Momentos de Funciones de Vectores Aleatorios

Momentos de Funciones de Vectores Aleatorios Capítulo 1 Momentos de Funciones de Vectores Aleatorios 1.1 Esperanza de Funciones de Vectores Aleatorios Definición 1.1 Sea X = (X 1,..., X n ) un vector aleatorio (absolutamente continuo o discreto)

Más detalles

F (x, y) = no es la función de distribución acumulada de ningún vector aleatorio. b) Mostrar que. { (1 e x )(1 e y ) si x 0, y 0

F (x, y) = no es la función de distribución acumulada de ningún vector aleatorio. b) Mostrar que. { (1 e x )(1 e y ) si x 0, y 0 Probabilidades y Estadística (M) Práctica 5 1 o cuatrimestre 2014 Vectores aleatorios 1. a) Demostrar que la función F (x, y) = 1 e x y si x 0, y 0 0 en caso contrario no es la función de distribución

Más detalles

Hoja de Problemas Tema 3 (Variables aleatorias multidimensionales)

Hoja de Problemas Tema 3 (Variables aleatorias multidimensionales) Depto. de Matemáticas Estadística (Ing. de Telecom.) Curso 2004-2005 Hoja de Problemas Tema 3 (Variables aleatorias multidimensionales) 1. Consideremos dos variables aleatorias independientes X 1 y X 2,

Más detalles

Tema 3: Función de Variable Aleatoria y Teoremas Asintóticos

Tema 3: Función de Variable Aleatoria y Teoremas Asintóticos Tema 3: Función de Variable Aleatoria y Teoremas Asintóticos Curso 2016-2017 Contenido 1 Función de una Variable Aleatoria 2 Cálculo de la fdp 3 Generación de Números Aleatorios 4 Momentos de una Variable

Más detalles

1. Sea (X, Y ) un vector aleatorio con función de densidad conjunta. 0 en otro caso.

1. Sea (X, Y ) un vector aleatorio con función de densidad conjunta. 0 en otro caso. 18 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 4 1. Sea (X, Y ) un vector aleatorio con función de densidad conjunta { k (x f XY (x, y) = 2 + y 2 ) 20 x 30, 20 y 30 0 en otro caso. a) Cuál es el valor de

Más detalles

(b) V ar X directamente usando la definición. (d) V ar X usando la fórmula abreviada.

(b) V ar X directamente usando la definición. (d) V ar X usando la fórmula abreviada. Ejercicios y Problemas adicionales. Capítulo II 1. La función de masa de probabilidad de X= número de defectos importantes en un elestrodoméstico seleccionado al azar, de un cierto tipo, es x 0 1 2 3 4.

Más detalles

Estadística I Tema 5: Modelos probabiĺısticos

Estadística I Tema 5: Modelos probabiĺısticos Estadística I Tema 5: Modelos probabiĺısticos Tema 5. Modelos probabiĺısticos Contenidos Variables aleatorias: concepto. Variables aleatorias discretas: Función de probabilidad y Función de distribución.

Más detalles

PROBABILIDADES (TELE-00031)

PROBABILIDADES (TELE-00031) PROBABILIDADES (TELE-0003) Tema. Variable aleatoria en una dimensión Abril 06. La unción de probabilidad de la variable aleatoria discreta N viene dada por N n p (n) = K.r, n = 0,,.... Calcule el valor

Más detalles

Variables aleatòries vectorials Els problemes assenyalats amb un (*) se faran a classe. 1.- Los estudiantes de una universidad se clasifican de acuerdo a sus años en la universidad (X) y el número de visitas

Más detalles

2 Modelos de probabilidad discretos sobre R

2 Modelos de probabilidad discretos sobre R UN CATÁLOGO DE MODELOS DE POBABILIDAD Julián de la Horra Departamento de Matemáticas U.A.M. Introducción En este capítulo vamos a dar un catálogo de algunos de los modelos de probabilidad más utilizados,

Más detalles

Variables Aleatorias y Distribución de Probabilidades

Variables Aleatorias y Distribución de Probabilidades Variables Aleatorias y Distribución de Probabilidades Julio Deride Silva Área de Matemática Facultad de Ciencias Químicas y Farmcéuticas Universidad de Chile 27 de mayo de 2011 Tabla de Contenidos Variables

Más detalles

Unidad 3. Probabilidad

Unidad 3. Probabilidad Unidad 3. Probabilidad Javier Santibáñez 17 de agosto de 2018 1. Introducción Definición 1. La probabilidad es una medida subjetiva del grado de creencia que se tiene acerca de que algo desconocido sea

Más detalles

Tema 3:Introducción a las variables aleatorias PROBLEMAS PROPUESTOS. 2. La función de densidad de la variable aleatoria X viene dada por la expresión

Tema 3:Introducción a las variables aleatorias PROBLEMAS PROPUESTOS. 2. La función de densidad de la variable aleatoria X viene dada por la expresión Tema :Introducción a las variables aleatorias PROBLEMAS PROPUESTOS. Puede ser la función de densidad de una variable aleatoria continua mayor que uno en algún punto? Sí. La función de densidad de la variable

Más detalles

Distribuciones multivariadas

Distribuciones multivariadas Distribuciones multivariadas Si X 1,X 2,...,X p son variables aleatorias discretas, definiremos la función de probabilidad conjunta de X como p(x) =p(x 1,x 2,...,x k )=P (X 1 = x 1,X 2 = x 2,...,X p =

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 4. a) Hallar las funciones de probabilidad marginal de X ydey : p X (x) y p Y (y) respectivamente.

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 4. a) Hallar las funciones de probabilidad marginal de X ydey : p X (x) y p Y (y) respectivamente. PROBABILIDADES Y ESTADÍSTICA (C) Práctica 4 1. En la siguiente tabla se presenta la función de probabilidad conjunta del vector aleatorio discreto (X, Y ): Y \ X 1 2 3 4 1 0.10 0.05 0.02 0.02 2 0.05 0.20

Más detalles

Transformaciones y esperanza

Transformaciones y esperanza Capítulo 3 Transformaciones y esperanza 3.1. Introducción Por lo general estamos en condiciones de modelar un fenómeno en términos de una variable aleatoria X cuya función de distribución acumulada es

Más detalles

Estadística I Tema 5: Modelos probabiĺısticos

Estadística I Tema 5: Modelos probabiĺısticos Estadística I Tema 5: Modelos probabiĺısticos Tema 5. Modelos probabiĺısticos Contenidos Variables aleatorias: concepto. Variables aleatorias discretas: Función de probabilidad y función de distribución.

Más detalles

Modelos de distribuciones discretas y continuas

Modelos de distribuciones discretas y continuas Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Modelos de distribuciones discretas y continuas Estadística I curso 2008 2009 1. Distribuciones discretas Aquellas

Más detalles

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES GUÍA 3: VARIABLES ALEATORIAS Y ESTIMACIÓN Profesor: Hugo S. Salinas Segundo Semestre 2010 1. Una

Más detalles

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10 Estadistica II Tema 0. Repaso de conceptos básicos Curso 2009/10 Tema 0. Repaso de conceptos básicos Contenidos Variables aleatorias y distribuciones de probabilidad La distribución normal Muestras aleatorias,

Más detalles

Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas

Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas Part I unidimensionales de s de s Definición Dado un experimento aleatorio, con espacio muestral asociado Ω, una es cualquier función, X, X : Ω R que asocia a cada suceso elemental un número real, verificando

Más detalles

Distribuciones Probabilísticas. Curso de Estadística TAE,2005 J.J. Gómez Cadenas

Distribuciones Probabilísticas. Curso de Estadística TAE,2005 J.J. Gómez Cadenas Distribuciones Probabilísticas Curso de Estadística TAE,005 J.J. Gómez Cadenas Distribución Binomial Considerar N observaciones independientes tales que: El resultado de cada experimento es acierto o fallo

Más detalles

. Luego, para el período n + 1 los resultados estarán, en cualquier caso, en el conjunto {λ k n 0 } n+1. k= (n+1). Consideremos Y = λ U n

. Luego, para el período n + 1 los resultados estarán, en cualquier caso, en el conjunto {λ k n 0 } n+1. k= (n+1). Consideremos Y = λ U n Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Probabilidades MA, /5/9, Prof. Raúl Gouet Solución Control #. Considere una colonia de bacterias con población inicial

Más detalles

Var E E x f x dx E. E[aX + b] = b + a E[X] Var[aX + b] = a Var[X] 83) Mendel pg158 Sea la función de densidad de una variable aleatoria continua

Var E E x f x dx E. E[aX + b] = b + a E[X] Var[aX + b] = a Var[X] 83) Mendel pg158 Sea la función de densidad de una variable aleatoria continua 1.1 Continuas 1.1.1 Genéricas Transformaciones: Probabilidades: E F(x) = P( x) df(x) = M f( xdx ) = 1 dx = x f x dx [] [] = ( []) = ( []) [ ] Var E E x f x dx E E[a + b] = b + a E[] Var[a + b] = a Var[]

Más detalles

Tablas de Probabilidades

Tablas de Probabilidades Tablas de Probabilidades Ernesto Barrios Zamudio José Ángel García Pérez José Matuk Villazón Departamento Académico de Estadística Instituto Tecnológico Autónomo de México Mayo 2016 Versión 1.00 1 Barrios

Más detalles

Repaso de Estadística

Repaso de Estadística Teoría de la Comunicación I.T.T. Sonido e Imagen 25 de febrero de 2008 Indice Teoría de la probabilidad 1 Teoría de la probabilidad 2 3 4 Espacio de probabilidad: (Ω, B, P) Espacio muestral (Ω) Espacio

Más detalles

Matemática 3 Curso 2014

Matemática 3 Curso 2014 Matemática 3 Curso 204 Práctica 4: Variables aleatorias continuas. Funciones de distribución de probabilidad uniforme, exponencial, normal ) El tiempo total, medido en unidades de 00 horas, que un adolescente

Más detalles

TEORÍA DE LA COMUNICACIÓN TEMA 2 RUIDO EN LOS SISTEMA DE COMUNICACIONES. Variable aleatoria (Real)

TEORÍA DE LA COMUNICACIÓN TEMA 2 RUIDO EN LOS SISTEMA DE COMUNICACIONES. Variable aleatoria (Real) TEORÍA DE LA COMUNICACIÓN TEMA 2 RUIDO EN LOS SISTEMA DE COMUNICACIONES Grado Ing Telemática (UC3M) Teoría de la Comunicación Variable Aleatoria / 26 Variable aleatoria (Real) Función que asigna un valor

Más detalles

UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 4

UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 4 UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 4 DOCENTE: Ing. Patricio Puchaicela ALUMNA: Andrea C. Puchaicela G. CURSO: 4to. Ciclo de Electrónica y Telecomunicaciones AÑO

Más detalles

Distribuciones de probabilidad bidimensionales o conjuntas

Distribuciones de probabilidad bidimensionales o conjuntas Distribuciones de probabilidad bidimensionales o conjuntas Si disponemos de dos variables aleatorias podemos definir distribuciones bidimensionales de forma semejante al caso unidimensional. Para el caso

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS TEMA 1 (20 puntos): RUBRICA La magnitud de temblores registrados en una región de América

Más detalles

Matemática 3 Curso 2013

Matemática 3 Curso 2013 Matemática 3 Curso 2013 Práctica 3: Variables aleatorias discretas. Funciones de distribución Binomial, Geométrica, Hipergeométrica, Poisson. 1) Dadas las siguientes funciones, determinar cuales son funciones

Más detalles

Unidad 1: Espacio de Probabilidad

Unidad 1: Espacio de Probabilidad Unidad 1: Espacio de Probabilidad 1.1 Espacios de Probabilidad. (1) Breve introducción histórica de las probabilidades (2) Diferencial entre modelos matemáticos deterministicos y probabilísticos (3) Identificar

Más detalles

2. Ejercicio: 003_VACD_081

2. Ejercicio: 003_VACD_081 FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS ACADEMIA DE PROBABILIDAD Semestre: 7- SERIE TEMA VARIABLES ALEATORIAS CONJUNTAS. Ejercicio: _VACD_8 Sean las distribuciones

Más detalles

Departamento de Matemática Aplicada a la I.T.T.

Departamento de Matemática Aplicada a la I.T.T. Departamento de Matemática Aplicada a la I.T.T. ASIGNATURA: ESTADÍSTICA Y PROCESOS ESTOCÁSTICOS EXAMEN FINAL Duración: horas Fecha: de Julio de Fecha publicación notas: -7- Fecha revisión examen: 8-7-

Más detalles

3. Distribuciones importantes

3. Distribuciones importantes Ejercicios Distribuciones Importantes 1 3. Distribuciones importantes 3.1. Distribución Binomial 1. La probabilidad de que un cliente compre un modelo de un par de zapatos en talla 41 es de 0.40. La tienda

Más detalles

6.3. Distribuciones continuas

6.3. Distribuciones continuas 144 Bioestadística: Métodos y Aplicaciones Solución: Si consideramos la v.a. X que contabiliza el número de personas que padecen la enfermedad, es claro que sigue un modelo binomial, pero que puede ser

Más detalles

Curso de Probabilidad y Estadística

Curso de Probabilidad y Estadística Curso de Probabilidad y Estadística Conceptos Fundamentales Parte 2 Dr. José Antonio Camarena Ibarrola camarena@umich.mx Universidad Michoacana de San Nicolás de Hidalgo Facultad de Ingeniería Eléctrica

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II-Coincidente (Septiembre 2017) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II-Coincidente (Septiembre 2017) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II-Coincidente (Septiembre 207) Selectividad-Opción A Tiempo: 90 minutos a + a Problema (2 puntos) Se considera la matriz A = a a a 0 a a) Estúdiese para

Más detalles

Modelos Estocásticos I Primer Examen Parcial Respuestas

Modelos Estocásticos I Primer Examen Parcial Respuestas Modelos Estocásticos I Primer Examen Parcial Respuestas 1. Cierta especie de plantas produce un número N de semillas, donde N sigue una distribución de Poisson de parámetro λ. La probabilidad de que una

Más detalles

Curso de Probabilidad y Estadística

Curso de Probabilidad y Estadística Curso de Probabilidad y Estadística Distribuciones de Probabilidad Dr. José Antonio Camarena Ibarrola camarena@umich.mx Universidad Michoacana de San Nicolás de Hidalgo Facultad de Ingeniería Eléctrica

Más detalles

Cálculo de Probabilidades y Estadística. Segunda prueba. 1

Cálculo de Probabilidades y Estadística. Segunda prueba. 1 08231. Cálculo de Probabilidades y Estadística. Segunda prueba. 1 Problema 1. En una circunferencia de radio 1 se toman tres puntos, al azar e independientemente. Hallar la probabilidad de que el triángulo

Más detalles

ESTADÍSTICA (Química) PRÁCTICA 4 Sumas de variables aleatorias

ESTADÍSTICA (Química) PRÁCTICA 4 Sumas de variables aleatorias ESTADÍSTICA (Química) PRÁCTICA 4 Sumas de variables aleatorias 1. Se realizan mediciones independientes del volumen inicial y final en una bureta. Supongamos que las mediciones inicial y final siguen el

Más detalles

VARIABLES ALEATORIAS CONTINUAS

VARIABLES ALEATORIAS CONTINUAS VARIABLES ALEATORIAS CONTINUAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Definición de una V.A.C. Definición de una V.A.C.

Más detalles

Examen Final A Total puntos: /100. Buena suerte y éxito! Utilice la siguiente información para responder a las preguntas 1 al 5.

Examen Final A Total puntos: /100. Buena suerte y éxito! Utilice la siguiente información para responder a las preguntas 1 al 5. Universidad de Puerto Rico, Recinto de Río Piedras Instituto de Estadística y Sistemas Computarizados de Información Estadísticas para administración de empresas (ESTA 3041) Nombre: Número de estudiante:

Más detalles

Part I. Momentos de una variable aleatoria. Esperanza y varianza. Modelos de Probabilidad. Mario Francisco. Esperanza de una variable aleatoria

Part I. Momentos de una variable aleatoria. Esperanza y varianza. Modelos de Probabilidad. Mario Francisco. Esperanza de una variable aleatoria una una típica Part I Momentos. Esperanza y varianza Esperanza una una típica Definición Sea X una discreta que toma los valores x i con probabilidades p i. Supuesto que i x i p i

Más detalles

1. Ejercicios. 2 a parte

1. Ejercicios. 2 a parte 1. Ejercicios. 2 a parte Ejercicio 1 Calcule 1. P (χ 2 9 3 33) 2. P (χ 2 15 7 26). 3. P (15 51 χ 2 8 22). 4. P (χ 2 70 82). Ejercicio 2 Si X χ 2 26, obtenga un intervalo [a, b] que contenga un 95 % de

Más detalles

8 Resolución de algunos ejemplos y ejercicios del tema 8.

8 Resolución de algunos ejemplos y ejercicios del tema 8. INTRODUCCIÓN A LA ESTADÍSTICA. GRUPO 71 LADE. 29 8 Resolución de algunos ejemplos y ejercicios del tema 8. 8.1 Ejemplos. Ejemplo 49 Supongamos que el tiempo que tarda en dar respuesta a un enfermo el personal

Más detalles

Relación de Problemas. Tema 6

Relación de Problemas. Tema 6 Relación de Problemas. Tema 6 1. En una urna hay 5 bolas blancas y 2 negras y se sacan tres bolas sin reemplazamiento. a) Calcular la distribución conjunta del número de bolas blancas y negras de entre

Más detalles

Por: Dra. Victoria Serrano

Por: Dra. Victoria Serrano Por: Dra. Victoria Serrano Una variable aleatoria es una función que asigna un número real X ζ a cada resultado ζ en el espacio muestral S de un experimento aleatorio S X ζ = x ζ x línea real S X Una moneda

Más detalles

Algunas distribuciones teóricas continuas

Algunas distribuciones teóricas continuas Algunas distribuciones teóricas continuas Dr. Pastore, Juan Ignacio Profesor Adjunto. Algunas Distribuciones Estadísticas Teóricas Distribución Continuas: a) Distribución Uniforme b) Distribución de Exponencial

Más detalles

Tema 3: Funcio n de Variable Aleatoria

Tema 3: Funcio n de Variable Aleatoria Tema 3: Funcio n de Variable Aleatoria Teorı a de la Comunicacio n Curso 2007-2008 Contenido 1 Función de una Variable Aleatoria 2 3 Cálculo de la fdp 4 Generación de Números Aleatorios 5 Momentos de una

Más detalles

EJERCICIOS VARIABLES ALEATORIAS

EJERCICIOS VARIABLES ALEATORIAS EJERCICIOS VARIABLES ALEATORIAS 1.- Tenemos dos urnas, en la urna A hay 5 bolas blancas y 4 rojas y en la B hay 6 blancas y 3 rojas. Se sacan, sin reemplazamiento, dos bolas de cada urna. Sea X el nº de

Más detalles

Familias de distribuciones

Familias de distribuciones Capítulo 2 Familias de distribuciones 2.1. Introducción Las distribuciones estadísticas son usadas para modelar poblaciones a través de un miembro de una familia de distribuciones. Cada familia se encuentra

Más detalles

Distribuciones unidimensionales continuas

Distribuciones unidimensionales continuas Estadística II Universidad de Salamanca Curso 2011/2012 Outline 1 Distribución uniforme continua 2 Estándar 3 Distribución χ 2 de Pearson 4 Distribución uniforme continua Definición Es una variable continua

Más detalles

Probabilidad y Procesos Aleatorios

Probabilidad y Procesos Aleatorios y Dr. Héctor E. Poveda P. hector.poveda@utp.ac.pa www.hpoveda7.com.pa @hpoveda7 Plan del curso Probabilidad Múltiples 1. Probabilidad Espacios probabilísticos Probabilidad condicional 2. 3. Múltiples 4.

Más detalles

ESTADÍSTICA I. A continuación se presentan los Modelos Probabilísticos Continuos más importantes.

ESTADÍSTICA I. A continuación se presentan los Modelos Probabilísticos Continuos más importantes. 1 ESTADÍSTICA I Capítulo 6: MODELOS PROBABILÍSTICOS CONTINUOS. Contenido: Distribución Uniforme Continua. Distribución Triangular. Distribución Normal. Distribuciones Gamma, Exponencial, Erlang y Chi Cuadrado.

Más detalles

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda

Más detalles

Distribución conjunta de variables aleatorias

Distribución conjunta de variables aleatorias Distribución conjunta de variables aleatorias En muchos problemas prácticos, en el mismo experimento aleatorio, interesa estudiar no sólo una variable aleatoria sino dos o más. Por ejemplo: Ejemplo 1:

Más detalles

Distribución de Probabilidad

Distribución de Probabilidad Distribución de Probabilidad Variables continuas Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Distribuciones de probabilidad continuas

Más detalles

Distribuciones de probabilidad Discretas

Distribuciones de probabilidad Discretas Distribuciones de probabilidad Discretas Distribución Uniforme Discreta Definición Una variable aleatoria X, tiene una distribución uniforme discreta, si cada uno de los valores x 1, x 2,.. x n, tiene

Más detalles

ESTADÍSTICA Y ANÁLISIS DE DATOS. Práctica del Tema 5. Variable aleatoria (en R y R 2 )

ESTADÍSTICA Y ANÁLISIS DE DATOS. Práctica del Tema 5. Variable aleatoria (en R y R 2 ) ESTADÍSTICA Y ANÁLISIS DE DATOS Práctica del Tema 5. Variable aleatoria (en R y R ). Se considera un dado regular y se define la v.a. X: puntuación obtenida en un lanzamiento cualquiera de dicho dado.

Más detalles

Probabilidad para una V.A. Continua. P( a X b) = f ( x)

Probabilidad para una V.A. Continua. P( a X b) = f ( x) Tema 4: Variables Aleatorias Contínuas Prof. Heriberto Figueroa S. Capítulo 4 Variables Aleatorias Continuas y sus Distribuciones de Probabilidad 4.1. Variables Aleatorias Continuas Una variable aleatoria

Más detalles

Laboratorios Incentivados Equilibria. Probabilidad. Respuestas al Examen Mayo

Laboratorios Incentivados Equilibria. Probabilidad. Respuestas al Examen Mayo EQUILIBRIA ECONOMÍA 04 Laboratorios Incentivados Equilibria Probabilidad Respuestas al Examen Mayo 03 Parte Opción Múltiple.- (i) Notemos que X ~Exp(). Por lo tanto E[X] = Var(X) = Y como Var(X) = E[X

Más detalles

Estadística Bayesiana

Estadística Bayesiana Universidad Nacional Agraria La Molina 2017-1 Teoría de la decisión Riesgo de Bayes La teoría de decisión es un área de suma importancia en estadística ya que muchos problemas del mundo real pueden tomar

Más detalles

DISTRIBUCIONES DE PROBABILIDAD

DISTRIBUCIONES DE PROBABILIDAD DISTRIBUCIONES DE PROBABILIDAD VARIABLE ALEATORIA Una variable x valuada numéricamente varía o cambia, dependiendo del resultado particular del experimento que se mida. Por ejemplo, suponga que se tira

Más detalles

Muestreo de variables aleatorias

Muestreo de variables aleatorias Estadística II Universidad de Salamanca Curso 2011/2012 Outline 1 Introducción 2 Distribución de la muestra 3 4 5 Distribuciones de la media y la varianza en poblaciones normales Introducción Tiene como

Más detalles