Formación de las imágenes. (C-305)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Formación de las imágenes. (C-305)"

Transcripción

1 Formación de las imágenes (C-305)

2 Formación de Imágenes De continua a discreta Proceso: Iluminación Óptica Sensores Cámara Digitalizadora? Fuentes de degradación Calidad de una imagen? Movimientos de la banda Sistema de iluminación Escena Óptica Batería de cámaras Línea de inspección

3 Caracterización de las imágenes Medidas de calidad Calidad de la ópticas (PSF) SNR (tecnología cámaras) Resolución Factores Iluminación Superficies Ópticas Cámaras Digitalizadoras Entorno Pseñal SNR log 10 [ db] P ruido Cristal protector Lente Filtro IR Difusor Sensor

4 Ejemplo

5 Iluminación Estructurada & no estructurada Computación Gráfica Realismo ->interacción entre la luz y la materia Ray Tracing

6 Ejemplo

7 Iluminación Computación Gráfica Realismo ->interacción entre la luz y la materia Visión Artificial Ubicar de forma óptima: Fuentes Objetos Cámaras Modelos de superficies Textura Superficies lisas y rugosas Modelado Perfiles Aleatorios, N(, ) << (lisas), >> (rugosas) Manantial Luz incidente Halo difuso i n r n i Microsuperficies planas Sensor Pico especular Halo especular

8 Cálculo de la iluminación y la luminancia Paraxial E d da I d da r r I No paraxial E E H V I cos d I cos d E H tg

9 Ejemplo. Una superficie circular de 3 m de radio está iluminada por una bombilla de 50 cd de intensidad constante en todas direcciones situada a m de altura sobre el centro de la plataforma. Calcular la iluminación máxima y mínima sobre la superficie. I Emax 1. 5lx h I cos Emin. 13lx h / cos

10 Ejercicio Una luminaria se sitúa en el centro de un escenario de 5m x m y a una altura de 3m. La intensidad luminosa es entregada por el fabricante según el diagrama polar adjuntado. Calcular la iluminación en los puntos a), b) y c).

11 Ejercicio En el punto A, la intensidad es de 150 mw/sr y el ángulo entre la normal de la superficie y el foco es nula: E E E Ha Va a 3 I cos 16.6mW h E tg 0mW / m H 16.6mW / m / m

12 Ejercicio En el punto B, la intensidad es de 130 mw/sr y el ángulo entre la normal de la superficie y el foco es de 6.57º: E E E Hb Vb b 3 I cos 10.3mW / m h E tg 5.mW / m H 11.5mW / m

13 Ejercicio En el punto C, la intensidad es de 140 mw/sr y el ángulo entre la normal de la superficie y el foco es de 18.43º: 3 I cos EHc 13.3 mw / m h E E tg 4.4 mw / m E Vc c H 14 mw / m

14 Radiación d di di I L da cos d da cos da n v S r r r aparente Superficies: Lambertianas (rugosas) Especulares (lisas) Manantial Luz incidente Halo difuso i n r i Sensor Pico especular Halo especular I d I d in d n l in s s s I I r v k

15 Modelo de Phong de Reflexión de la luz Computación Gráfica RGB Sin interacción k I I I I I I I n l I r v I in in in a d s e a a d d s s e Manantial Sensor Luz incidente r n Pico especular Halo difuso i i Halo especular

16 Ejemplo.4 Una fuente luminosa de 0.1 W/sr ilumina a una superficie. Los factores de reflexión difusa y especular sobre esta superficie son: 1,0.5 3 Los ángulos de incidencia y de colocación de la cámara son: i, r 4 respecto a la normal de la superficie. Determinar la intensidad recibida Considérese que no hay interferencias de otras superficies y su emisión es nula. Utilizar el modelo de Pong. Dato: k= in 1 mw Id d Id n l 100cos sr in k 1 mw Is sis r v 100cos m k Manantial Luz incidente Halo difuso i n r i Sensor Pico especular Halo especular

17 Técnicas de Iluminación (1/6) Tipos básicos de iluminación Direccional, Difusa, a contraluz, estructurada Tipos de haces luminosos por su geometría Puntual, línea, plano, corona

18 Técnicas de Iluminación (/6) Direccional Inspección de piezas iluminación uniforme, fácil de implementar Brillos Colimada Rayos paralelos

19 Técnicas de Iluminación (3/6) Difusión Eliminación de contrastes en el objeto y de sombras Difusores blancos Inspección de piezas metálicas Difícil de implementar Problemas bordes Superficies suaves

20 Técnicas de Iluminación (4/6) A contraluz Opacos: formas Extracción de siluetas Translucidos: Propiedades de la materia

21 Técnicas de Iluminación (5/6) A contraluz Imágenes médicas Tomografía axial computarizada No necesariamente en el espectro visible

22 Técnicas de Iluminación (6/6) Estructurada Deformación de la luz Peligros al usuario Polarizadores Especular: acromática y polarizada. Saturación y cromaticidad Eliminación de brillos Luces estroboscópicas

23 Fuentes de iluminación Incandescentes Bajo costo, diversas formas Halógenas Continua & alterna 350ºC Fluorescentes Láser Led Difusa, reactancias de alta frecuencia Fibra óptica Endoscopia

24 Óptica Concentrar los rayos sobre el elemento sensor. Calidad y tamaño de los objetos. Cámara oscura (Cardan 1550) Modelos Pin-hole Lente delgada Lentes Requiere más energía convergentes o divergentes

25 Parámetros de la óptica Distancia focal, f Distancia entre la lente y el elemento sensor enfocando a infinito. Ángulo visual, A mayor f menor ángulo visual. Diafragma, F Potencia luminosa que le llega al sensor. Profundidad de campo Volumen que es proyectado de forma nítida.

26 Modelo pin-hole Sin enfoque Teorema de Tales Magnificación x f Z X y f Z Y M x X y Y f Z

27 Ejemplo.5 Para la práctica de calibración de las cámaras se ha empleado una cuadrícula tipo de ajedrez. Los lados son de 7 mm y se ha puesto la rejilla a 1 metro de distancia respecto a la cámara. Se ha empleado una cámara de píxel cuadrado de 5.6m. Las aristas de las caras se ven en 15 píxeles. Cuál debe ser la distancia focal de la óptica?. Qué área se visualiza, si la cámara está constituida por 357x93 píxeles?. Utilícese el modelo pin-hole. f S x y X Y M mm x m

28 Ejercicio 3 Se tiene una cámara de vídeo a calibrar. La óptica tiene una distancia focal de 3mm y el tamaño del píxel es de 5.6 m x 5.6 m. El número efectivo de píxeles son 357(H) x 93(V). Cual es la distancia mínima que podrá ponerse una rejilla de calibración respecto de la cámara, si ésta se constituye por cuadros blancos y negros de 7mm de lado y según se observa en la figura, hay 7x9 cuadrados?.

29 Ejercicio 3 En la mínima distancia deberá de entrar la rejilla completa. Se parte de la hipótesis que los nueve cuadros deben de entrar en las 357 columnas, por tanto: 3 Y Z f m 6 y Habrá que observar que en las filas entrar los siete cuadrados: 3 X Z f m 6 x Por tanto, se verifica que cuando la distancia es de m entra por completo la rejilla.

30 Aberraciones(1/) Imperfecciones introducidas por la óptica Espectro frecuencial (Cromáticas) Alejamiento del eje axial (geométricas) Cromáticas (refracción) Geométricas o Seidel Esféricas (distancia del eje axial) Coma (rayos no paraxiales) Astigmatismo (desenfoque en el mismo plano)

31 Aberraciones(/) Modelos El efecto del diafragma F-> menores aberraciones F-> Más iluminación Geométricas o Seidel Curvatura del campo (efecto del ángulo sólido) Distorsión (diferencia entre la proyección ideal y la real) d d u d u d y x r y r k r k y x r k r k x

32 Sensores de vídeo Cámara oscura, tubo de vacío(193), estado sólido(1970). Tecnologías: CCD, CID, TDI, CMOS Efecto fotoeléctrico Modelo radiométrico Cuantificación y transmisión Puerta V1 V n pixel Lr A 4 F 1 pixel M A O t I Pixel Pixel Carga T1 T T3 T4

33 Modelo radiométrico d L S d r aparente r A n L A t n 0 lente r S A I R1 A n L A t R 0 sensor r S A O I 1 pixel n sen sor A A pixel sen sor AA n L t 0 pixel f 1 M r pixel n 4 F 1 M pixel r A O I LA t pixel A O I npe Rr npixel d 1 L A 4 F 1 M r pixel npe Rr A O tid 1

34 Cámaras matriciales CCD & CMOS CCD mayor calidad CMOS bajo costo Color 1CCD-Bayer 3CCD-Prisma Requiere más luz Aberraciones cromáticas Elección de la cámara Formato de vídeo Resolución Tipo de rosca Señales adicionales Sincronismo Autoiris Tiempo de integración

35 Tecnologías de vídeo Iluminación, tiempo de integración y resolución Material de Visión Artificial:

36 Tecnologías de vídeo Tipos de cámaras Lineales TDI Matriciales Entrelazadas Progresivas Cámara TDI Elementos TDI Movimientos de la banda Líneas de inspección

37 Tecnologías de vídeo Resolución & t I & Iluminación

38 Modelo geométrico Pin-hole Conversión de mm a píxeles Aplicaciones: medición y navegación Parámetros Intrínsecos: f, C y modelo lentes Extrinsecos: T, R x f i i x z wi wi d' y n y f sy dy n py k x i i y z wi wi x p c d i xi x x y p c d i yi y y f x 0 c wi d x x zwi pxi f y p 0 wi yi c d y y zwi

39 Calibración y formatos de ficheros Procedimiento Determinar con precisión un conjunto de puntos 3D del mundo exterior. Fijar sus correspondencias con las proyecciones de estos puntos 3D sobre la imagen proyectada D. Obtener mediante técnicas de optimización la mejor solución de la determinación de los parámetros intrínsecos y extrínsecos. Coplanares o no

40 Ejercicio 4 Se emplea una cámara con una lente de 3mm y un sensor CMOS que tiene un pixel cuadrado de 5.6m x 5.6m. El número efectivo de píxeles es 357 (H) x 93 (V). Se ha colocado una plantilla de calibración a 500 mm respecto al eje de referencia en la cámara. Sabiendo que los lados del cuadrado son de 7mm y que las coordenadas XYZ del punto indicado en la rejilla son (50,50,500). Determinar en qué píxeles de la cámara se proyectan las cuatro esquinas del cuadrado seleccionado. Considérese que no hay distorsión en la lente, el eje axial de la lente pasa por el centro del elemento sensor y que los ejes de proyección son ortonormales.

41 Ejercicio 4 El modelo pin-hole de la cámara quedará definido por: fi x 0 wi x c wi d xi x z wi z wi pxi f 0 i ywi y p wi yi c d yi y z wi zwi El primer punto quedará proyectado en el píxel (00,3) y los otros tres en (9,3),(00,61) y (9,61).

42 Formatos de ficheros Formatos gráficos Vectoriales Mapas de bits raw Con o sin pérdida de información Compresión Codificación, redundancia visual

Formación de las imágenes

Formación de las imágenes Formación de las imágenes Formación de Imágenes De continua a discreta Proceso: Iluminación/superficie Óptica Sensores Cámara Proceso de digitalización Calidad de una imagen Parámetro subjetivo. Movimientos

Más detalles

Capítulo 2: Formación de Imágenes. Caracterización de las imágenes. Iluminación. De contínua a discreta Proceso: Iluminación

Capítulo 2: Formación de Imágenes. Caracterización de las imágenes. Iluminación. De contínua a discreta Proceso: Iluminación Capítulo : Formación de Imágenes De contínua a discreta Proceso: Iluminación Óptica Sensores Cámara Digitalizadora? Fuentes de degradación Calidad de una imagen? Sistema de iluminación Óptica Movimientos

Más detalles

Capítulo 2: Formación de Imágenes

Capítulo 2: Formación de Imágenes Capítulo : Formación de Imágenes De continua a discreta Proceso: Iluminación Óptica Sensores Cámara Digitalizadora? Fuentes de degradación Calidad de una imagen? Sistema de iluminación Óptica Movimientos

Más detalles

Tema 1. Elementos de un sistema de Visión por Computador. Esquema general de un sistema de visión por computador

Tema 1. Elementos de un sistema de Visión por Computador. Esquema general de un sistema de visión por computador Tema 1 Elementos de un sistema de Visión por Computador Índice Esquema general de un sistema de visión por computador Esquema de un proceso de visión por computador Estructura típica de un sistema Fundamentos

Más detalles

Figura 2.1 Captura digital: desde el espacio continuo al discreto. Dpto. Electrónica, Automática e Informática Industrial 33

Figura 2.1 Captura digital: desde el espacio continuo al discreto. Dpto. Electrónica, Automática e Informática Industrial 33 Formación de las imágenes Los sistemas de Visión Artificial se encuentran con escenas visuales de información en el espacio continuo y sin embargo el desarrollo y diseño de los equipos se sustenta en tecnología

Más detalles

Óptica Geométrica. Los medios materiales pueden ser: Transparentes Opacos Translúcidos

Óptica Geométrica. Los medios materiales pueden ser: Transparentes Opacos Translúcidos Óptica Geométrica La Óptica estudia las propiedades y la naturaleza de la luz y sus interacciones con la materia. La luz se puede propagar en el vacío o en otros medios. La velocidad a la que se propaga

Más detalles

Como partícula. Como onda. fotón. electrón. Experiencia de la doble rendija 1803 T. Young. Efecto fotoeléctrico 1905 A. Einsten

Como partícula. Como onda. fotón. electrón. Experiencia de la doble rendija 1803 T. Young. Efecto fotoeléctrico 1905 A. Einsten La luz se comporta a la vez como onda y partícula. Algunos fenómenos se explican más mejor suponiendo que la luz es una onda (reflexión, refracción, interferencia, difracción) en tanto que otros fenómenos,

Más detalles

Seminario de Física. 2º bachillerato LOGSE. Unidad 6. Óptica

Seminario de Física. 2º bachillerato LOGSE. Unidad 6. Óptica A) Óptica Física 1.- Un haz de luz roja penetra en una lámina de vidrio de 30 cm de espesor con un ángulo de incidencia de 45 º. a) Explica si cambia el color de la luz al penetrar en el vidrio y determina

Más detalles

2. Elementos de un sistema de Visión por Computador

2. Elementos de un sistema de Visión por Computador 2. Elementos de un sistema de Visión por Computador Nota: Las imágenes que aparecen en esta presentación provienen del libro: Visión por Computador: fundamentos y métodos. Hueso. Prentice Hall. Elementos

Más detalles

Bolilla 09. Óptica Geométrica (parte 2)

Bolilla 09. Óptica Geométrica (parte 2) Bolilla 09 Óptica Geométrica (parte 2) La óptica geométrica es la parte de la Física que estudia, mediante leyes geométricas sencillas, los cambios de dirección que experimentan los rayos de luz en la

Más detalles

El ángulo de desviación es el que forma el rayo incidente con el rayo emergente. 19, 46º

El ángulo de desviación es el que forma el rayo incidente con el rayo emergente. 19, 46º Prisma y láminas plano parlelas PROBLEMAS RESUELTOS SOBRE ÓPTICA GEOMÉTRICA. Sobre un prisma de vidrio de 30º e índice de refracción,5 incide un rayo de luz monocromática perpendicularmente a una de las

Más detalles

Profr. Jonathan Torres Barrera 5 de Abril de 2017

Profr. Jonathan Torres Barrera 5 de Abril de 2017 FISICA 4. UNIDAD II: Sistemas ópticos. 51.- Menciona la aportación que realizaron los personajes siguientes, acerca de la naturaleza de la luz: Arquimedes: Hertz: Huygens: Young: Newton: Planck: Einstein:

Más detalles

LUZ Y ÓPTICA. Propagación de la luz

LUZ Y ÓPTICA. Propagación de la luz LUZ Y ÓPTICA Propagación de la luz La luz se propaga en línea recta en un medio homogéneo. La hipótesis de la propagación de la luz explica varios fenómenos entre los que se puede resaltar: Cuando un rayo

Más detalles

Física II- Curso de Verano. Clase 7

Física II- Curso de Verano. Clase 7 Física II- Curso de Verano Clase 7 Formación de imágenes: ESPEJOS PLANOS Leyes de reflexión Imagen virtual, formada por la prolongación de los rayos Distancia imagen = distancia objeto d o =d i No invierte

Más detalles

ILUMINACIÓN LEYES DE LA ILUMINACIÓN

ILUMINACIÓN LEYES DE LA ILUMINACIÓN ILUMINACIÓN LEYES DE LA ILUMINACIÓN 1 DEFINICIONES - RESUMEN Flujo luminoso (Φ) es la cantidad de energía radiada por una fuente y que es capaz de generar sensación visual.- Lumen (lm) Eficiencia lumínica

Más detalles

Modelos de Iluminación

Modelos de Iluminación Modelos de Iluminación Facultad de Cs. de la Computación Juan Carlos Conde Ramírez Computer Graphics Contenido 1 Introducción 2 Modelos de Iluminación 3 Factor de Atenuación 4 Aplicación de Colores 1 /

Más detalles

Tema 12. Lentes. Lic. María Silvia Aguirre 1

Tema 12. Lentes. Lic. María Silvia Aguirre 1 Tema 2 Lentes Lic. María Silvia Aguirre Objetivos específicos Que el alumno logre: Diferenciar los distintos tipos de lentes. Obtener gráfica, analítica y experimentalmente la posición de la imagen de

Más detalles

B.0. Introducción y unidades de medida

B.0. Introducción y unidades de medida B.0. Introducción y unidades de medida B.0.1. La era de la información. Corresponde al auge de la optoelectrónica. Optoelectrónica: técnica de procesar la información mediante la luz. Necesidad de medios

Más detalles

13. Por qué no se observa dispersión cuando la luz blanca atraviesa una lámina de vidrio de caras planas y paralelas? 14. Sobre una lámina de vidrio,

13. Por qué no se observa dispersión cuando la luz blanca atraviesa una lámina de vidrio de caras planas y paralelas? 14. Sobre una lámina de vidrio, PROBLEMAS ÓPTICA 1. Una de las frecuencias utilizadas en telefonía móvil (sistema GSM) es de 900 MHz. Cuántos fotones GSM necesitamos para obtener la misma energía que con un solo fotón de luz violeta,

Más detalles

LEYES DE LA ILUMINACIÓN

LEYES DE LA ILUMINACIÓN ILUMINACIÓN LEYES DE LA ILUMINACIÓN 1 DEFINICIONES - RESUMEN Flujo luminoso (Φ) es la cantidad de energía radiada por una fuente y que es capaz de generar sensación visual.- Lumen (lm) Eficiencia lumínica

Más detalles

CAPITULO I: La Luz CAPITULO I: LA LUZ 1

CAPITULO I: La Luz CAPITULO I: LA LUZ 1 CAPITULO I: La Luz CAPITULO I: LA LUZ 1 1.- La luz 1.1.- El nanómetro 1.2.- El espectro visible 1.3.- Naturaleza de la luz 1.4.- Fuentes de luz 2.- La Materia y la luz 2.1.- Fórmula R.A.T. 22-2.2. Absorción

Más detalles

10. Óptica geométrica (I)

10. Óptica geométrica (I) 10. Óptica geométrica (I) Elementos de óptica geométrica Centro de curvatura: centro de la superficie esférica a la que pertenece el dioptrio esférico Radio de curvatura: radio de la superficie esférica

Más detalles

Ejercicios de Óptica

Ejercicios de Óptica Ejercicios de Óptica 1. a) Los rayos X, la luz visible y los rayos infrarrojos son radiaciones electromagnéticas. Ordénalas en orden creciente de sus frecuencias e indica algunas diferencias entre ellas.

Más detalles

Junio Pregunta 5A.- a) b) Junio Pregunta 3B.- a) b) Modelo Pregunta 4A.- a) b) Septiembre Pregunta 4B.

Junio Pregunta 5A.- a) b) Junio Pregunta 3B.- a) b) Modelo Pregunta 4A.- a) b) Septiembre Pregunta 4B. Junio 2013. Pregunta 5A.- A 10 cm de distancia del vértice de un espejo cóncavo de 30 cm de radio se sitúa un objeto de 5 cm de altura. a) Determine la altura y posición de la imagen b) Construya la imagen

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA D.

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA D. ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO 2011-2012 PRIMERA EVALUACIÓN DE FÍSICA D Nombre: Paralelo: PRIMERA PARTE: Ejercicios de opción múltiple (2 puntos c/u)

Más detalles

I.E.S. MARTÍNEZ MONTAÑÉS DEPARTAMENTO DE FÍSICA Y QUÍMICA ÓPTICA

I.E.S. MARTÍNEZ MONTAÑÉS DEPARTAMENTO DE FÍSICA Y QUÍMICA ÓPTICA Cuestiones ÓPTICA 1. a) Qué se entiende por interferencia de la luz? b) Por qué no observamos la interferencia de la luz producida por los dos faros de un automóvil? 2. a) Qué es una onda electromagnética?

Más detalles

FÍSICA - 2º BACHILLERATO ÓPTICA GEOMÉTRICA - HOJA 1

FÍSICA - 2º BACHILLERATO ÓPTICA GEOMÉTRICA - HOJA 1 FÍSICA - 2º BACHILLERATO ÓPTICA GEOMÉTRICA - HOJA 1 1. Los índices de refracción absolutos del agua y el vidrio para la luz amarilla del sodio son 1,33 y 1,52 respectivamente. a) Calcula la velocidad de

Más detalles

BACHILLERATO FÍSICA 9. ÓPTICA GEOMÉTRICA. Dpto. de Física y Química. R. Artacho

BACHILLERATO FÍSICA 9. ÓPTICA GEOMÉTRICA. Dpto. de Física y Química. R. Artacho BACHILLERATO FÍSICA 9. ÓPTICA GEOMÉTRICA R. Artacho Dpto. de Física y Química Índice CONTENIDOS 1. Introducción a la óptica geométrica 2. Óptica de la reflexión. Espejos planos y esféricos 3. Óptica de

Más detalles

JUNIO 2000 (CUESTIONES)...

JUNIO 2000 (CUESTIONES)... BLOQUE III. ÓPTICA. Convocatorias 1. JUNIO 1994... 3 1.1. PROBLEMA... 3 1.2. CUESTIÓN... 3 2. SEPTIEMBRE 1994... 3 2.1. CUESTIÓN... 3 2.2. CUESTIÓN... 3 3. JUNIO 1995... 3 3.1. CUESTIÓN... 3 4. SEPTIEMBRE

Más detalles

ÓPTICA GEOMÉTRICA MODELO 2016

ÓPTICA GEOMÉTRICA MODELO 2016 ÓPTICA GEOMÉTRICA MODELO 2016 1- Se desea obtener una imagen virtual de doble tamaño que un objeto. Si se utiliza: a) Un espejo cóncavo de 40 cm de distancia focal, determine las posiciones del objeto

Más detalles

RESPUESTA DE EXAMEN ACONDICIONAMIENTO LUMINICO DICIEMBRE PAGINA 1 DE 6. Nombre: C.I.:

RESPUESTA DE EXAMEN ACONDICIONAMIENTO LUMINICO DICIEMBRE PAGINA 1 DE 6. Nombre: C.I.: RESPUESTA DE EXAMEN ACONDICIONAMIENTO LUMINICO DICIEMBRE 2012 - PAGINA 1 DE 6 ACONDICIONAMIENTO LUMINICO EXAMEN JULIO 2012 Nombre: C.I.: Se solicita: a) Calcule la potencia de las lámparas a Emplear a

Más detalles

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA NOMBRE DE LA ASIGNATURA O UNIDAD DE APRENDIZAJE ÓPTICA GEOMÉTRICA CICLO Primero CLAVE DE LA ASIGNATURA OG OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA Proporcionar al estudiante un curso introductorio sólido

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I EVALUACION DE FISICA GENERAL II I TÉRMINO

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I EVALUACION DE FISICA GENERAL II I TÉRMINO ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I EVALUACION DE FISICA GENERAL II I TÉRMINO 2012-2013 Nombre: Paralelo: 01 Fecha: 02/07/2012 Profesor: Ing. Francisca Flores N. ATENCION:

Más detalles

ÓPTICA GEOMÉTRICA. Teniendo en cuenta que se trata de ángulos paraxiales, la expresión se puede simplificar a: En el triángulo APC:

ÓPTICA GEOMÉTRICA. Teniendo en cuenta que se trata de ángulos paraxiales, la expresión se puede simplificar a: En el triángulo APC: ÓPTICA GEOMÉTRICA Conceptos generales: Imágenes reales. No se ven a simple vista, pero pueden recogerse sobre una pantalla. Se forman por la intersección de rayos convergentes. Imágenes virtuales. No existen

Más detalles

5. Sea una fuente monocromática (λ =5500 Å), y un dispositivo de Young de las siguientes características:

5. Sea una fuente monocromática (λ =5500 Å), y un dispositivo de Young de las siguientes características: Física 2 (Físicos) Interferencia c DF, FCEyN, UBA Condiciones 1. Diga qué entiende por luz cuasi monocromática y dé algunos ejemplos. 2. Bajo qué condiciones se puede decir que dos fuentes son coherentes?

Más detalles

Indicar espacio distinto de aula (aula informáti ca, audiovisu al, etc.) GRUPO (marcar X) Indicar SI/NO es una sesión con 2 profesores PEQ UEÑ O

Indicar espacio distinto de aula (aula informáti ca, audiovisu al, etc.) GRUPO (marcar X) Indicar SI/NO es una sesión con 2 profesores PEQ UEÑ O SESIÓN SEMANA DENOMINACIÓN ASIGNATURA: AMPLIACIÓN DE FÍSICA GRADO: Ingeniería en Tecnologías de Telecomunicación; Ingeniería de Sistemas de Telecomunicación Ingeniería de Sistemas Audiovisuales; Ingeniería

Más detalles

ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS I TÉRMINO PRIMERA EVALUACION DE FISICA D. Nombre: Nota: Paralelo:

ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS I TÉRMINO PRIMERA EVALUACION DE FISICA D. Nombre: Nota: Paralelo: ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS I TÉRMINO 2012 2013 PRIMERA EVALUACION DE FISICA D Nombre: Nota: Paralelo: PRIMERA PARTE: Ejercicios de opción múltiple (2 puntos

Más detalles

FORMACIÓN DE IMÁGENES EN ESPEJOS

FORMACIÓN DE IMÁGENES EN ESPEJOS FORMACIÓN DE IMÁGENES EN ESPEJOS La reflexión que producen los objetos depende de las características de los cuerpos, de esta forma existen dos tipos de reflexiones a saber: 1.- Reflexión especular o regular.

Más detalles

IV - ÓPTICA PAU.98 PAU.98

IV - ÓPTICA PAU.98 PAU.98 1.- Dónde debe colocarse un objeto para que un espejo cóncavo forme imágenes virtuales?. Qué tamaño tienen estas imágenes?. Realiza las construcciones geométricas necesarias para su explicación PAU.94

Más detalles

1. Un faro sumergido en un lago dirige un haz de luz hacia la superficie del lago con î = 40º

1. Un faro sumergido en un lago dirige un haz de luz hacia la superficie del lago con î = 40º 1. Un faro sumergido en un lago dirige un haz de luz hacia la superficie del lago con î = 40º. Encuentra el ángulo refractado ( n agua = 1, 33 ).. Encuentra el ángulo límite para la reflexión total interna

Más detalles

1 1 1 s s 10 14s. Problema 95

1 1 1 s s 10 14s. Problema 95 Problema 95 Una lente convergente de de distancia focal se utiliza para formar la imagen de un objeto luminoso lineal colocado perpendicularmente a su eje óptico y de tamaño y = 1. a) Dónde hay que colocar

Más detalles

Problemas resueltos. Solución

Problemas resueltos. Solución Problemas resueltos 1. Una superficie está iluminada por una fuente luminosa puntual de 80 cd de intensidad constante en todas direcciones situada a 2 m de altura. Calcular la iluminancia horizontal y

Más detalles

TECNICATURA UNIVERSITARIA EN ÓPTICA Y CONTACTOLOGÍA

TECNICATURA UNIVERSITARIA EN ÓPTICA Y CONTACTOLOGÍA TECNICATURA UNIVERSITARIA EN ÓPTICA Y CONTACTOLOGÍA ASIGNATURA: ÓPTICA GEOMÉTRICA CONTENIDOS MÍNIMOS Definición de óptica, consideraciones generales y divisiones. Óptica geométrica: definición, elementos,

Más detalles

RESUMEN CLASE DE MICROSCOPÍA

RESUMEN CLASE DE MICROSCOPÍA RESUMEN CLASE DE MICROSCOPÍA Óptica geométrica Microscopio OBJETO planos conjugados DETECTOR espacio OBJETO espacio IMAGEN foco Conceptos básicos: lentes delgadas Lente: sistema óptico con dos superficies

Más detalles

Óptica Eddie L. Segura C. ÓPTICA GEOMÉTRICA

Óptica Eddie L. Segura C. ÓPTICA GEOMÉTRICA ÓPTICA GEOMÉTRICA 1. INTRODUCCIÓN A LA ÓPTICA GEOMÉTRICA Las leyes sobre las que se estructuró la óptica geométrica son: Ley de propagación rectilínea de la luz Ley de independencia de los rayos luminosos.

Más detalles

1 ÓPTICA GEOMÉTRICA 2

1 ÓPTICA GEOMÉTRICA 2 1 ÓPTICA GEOMÉTRICA 2 1.1. Objetivos Estudiar el fenómeno de refracción sobre diversos elementos ópticos, comprobar los modelos teóricos Analizar la ecuación para lentes delgadas Estudiar las aberraciones

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 1 octubre 2013

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 1 octubre 2013 2014-Modelo A. Pregunta 4.- Utilizando una lente convergente delgada que posee una distancia focal de 15 cm, se quiere obtener una imagen de tamaño doble que el objeto. Calcule a qué distancia ha de colocarse

Más detalles

Aberraciones del sistema visual humano. Clase 13 de mayo de 2008 Prof. María L. Calvo

Aberraciones del sistema visual humano. Clase 13 de mayo de 2008 Prof. María L. Calvo Aberraciones del sistema visual humano Clase 13 de mayo de 2008 Prof. María L. Calvo PSF de un Sistema óptico perfecto 7 mm pupila Circulo de difracción ancho 2 mm pupila Circulo de difracción más pequeño

Más detalles

Óptica geométrica: conceptos generales

Óptica geométrica: conceptos generales Óptica geométrica: conceptos generales Para comprender las imágenes y su formación, sólo necesitamos el modelo de rayos de la luz, las leyes de reflexión y refracción, y un poco de geometría y trigonometría

Más detalles

Problemas de Óptica. PAU (PAEG)

Problemas de Óptica. PAU (PAEG) 1. (Junio 09 ) Observamos una pequeña piedra que esta incrustada bajo una plancha de hielo, razona si su profundidad aparente es mayor o menor que su profundidad real. Traza un diagrama de rayos para justificar

Más detalles

5.1. Magnitudes radiométricas

5.1. Magnitudes radiométricas 5. Radiometría y fotometría 5.1. Magnitudes radiométricas y fotométricas tricas 1 5. Radiometría y fotometría. 2 Magnitudes radiométricas y fotométricas tricas Radiometría rama de la Física dedicada a

Más detalles

Lentes Clasificación Se clasifican en dos grupos convergentes (positivas) y divergentes (negativas), las cuales a su vez pueden adoptar formas

Lentes Clasificación Se clasifican en dos grupos convergentes (positivas) y divergentes (negativas), las cuales a su vez pueden adoptar formas Lentes Clasificación Se clasifican en dos grupos convergentes (positivas) y divergentes (negativas), las cuales a su vez pueden adoptar formas distintas. Estas geometrías de lentes tienen las siguientes

Más detalles

Sistemas de Percepción Visión por Computador

Sistemas de Percepción Visión por Computador Nota: Algunas de las imágenes que aparecen en esta presentación provienen del libro: Visión por Computador: fundamentos y métodos. Arturo de la Escalera Hueso. Prentice Hall. Sistemas de Percepción Visión

Más detalles

Código FS-14. Guía Cursos Anuales. Física Luz. Plan COMÚN

Código FS-14. Guía Cursos Anuales. Física Luz. Plan COMÚN Código FS-14 Guía Cursos Anuales Física 2005 Luz Plan COMÚN Ciencias Plan Común Introducción A través de la ejecución de la presente guía el alumno deberá desarrollar y aplicar los siguientes aprendizajes

Más detalles

n = 7, s 1 λ = c ν = , = 4, m

n = 7, s 1 λ = c ν = , = 4, m . (Andalucía, Jun. 206) Un rayo de luz con una longitud de onda de 300 nm se propaga en el interior de una fibra de vidrio, de forma que sufre reflexión total en sus caras. a) Determine para qué valores

Más detalles

Problemas de Óptica. PAU (PAEG)

Problemas de Óptica. PAU (PAEG) 1. (Junio 09 ) Observamos una pequeña piedra que esta incrustada bajo una plancha de hielo, razona si su profundidad aparente es mayor o menor que su profundidad real. Traza un diagrama de rayos para justificar

Más detalles

Física basada en Álgebra

Física basada en Álgebra Slide 1 / 66 Slide 2 / 66 ísica basada en Álgebra Óptica Geométrica 2015-12-01 www.njctl.org Slide 3 / 66 Tabla de ontenidos lick sobre el tópico para ir al tema Reflexión Espejo Esférico Refracción y

Más detalles

b) El tamaño mínimo de la pantalla para que se proyecte entera la imagen del objeto.

b) El tamaño mínimo de la pantalla para que se proyecte entera la imagen del objeto. 01. Un foco luminoso puntual está situado en el fondo de un recipiente lleno de agua cubierta por una capa de aceite. Determine: a) El valor del ángulo límite en la superficie de separación. b) El valor

Más detalles

Física basada en Álgebra

Física basada en Álgebra Slide 1 / 66 Slide 2 / 66 ísica basada en Álgebra Óptica Geométrica 2015-12-01 www.njctl.org Tabla de ontenidos Slide 3 / 66 lick sobre el tópico para ir al tema Reflexión Refracción y Ley de Snell Lentes

Más detalles

Reflexión. Física basada en Álgebra. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66.

Reflexión. Física basada en Álgebra. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66. Slide 1 / 66 Slide 2 / 66 ísica basada en Álgebra Óptica Geométrica 2015-12-01 www.njctl.org Slide 3 / 66 Slide 4 / 66 Tabla de ontenidos lick sobre el tópico para ir al tema Reflexión Refracción y Ley

Más detalles

Capítulo 1 SEMINARIO ÓPTICA GEOMÉTRICA

Capítulo 1 SEMINARIO ÓPTICA GEOMÉTRICA Capítulo 1 SEMINARIO 1. Un foco luminoso se encuentra situado en el fondo de una piscina de 3,00 metros de profundidadllena de agua. Un rayo luminoso procedente del foco que llega al ojo de un observador

Más detalles

ILUMINACION ARTIFICIAL. MATERIALIDAD II Taller DI BERNARDO

ILUMINACION ARTIFICIAL. MATERIALIDAD II Taller DI BERNARDO ILUMINACION ARTIFICIAL MATERIALIDAD II Taller DI BERNARDO FLUJO LUMINOSO FLUJO BRUTO / FLUJO NETO / FLUJO UTIL (lm) F Potencia: FLUJO BRUTO energía medida en watts (W: J /s ) Lámpara incandescente clara

Más detalles

ÓPTICA GEOMÉTRICA. ESPEJOS Y LENTES

ÓPTICA GEOMÉTRICA. ESPEJOS Y LENTES 80 0 ÓPTICA GEOMÉTRICA. ESPEJOS Y LENTES j Actividades. Define los siguientes conceptos: dioptrio, eje óptico, radio de curvatura, imagen real y centro óptico. Dioptrio: conjunto formado por dos medios

Más detalles

CURSO 2006/2007 TEMA 1:

CURSO 2006/2007 TEMA 1: HOJA DE PROBLEMAS ÓPTICA I CURSO 2006/2007 TEMA 1: 1.1.- La anchura de banda del espectro de emisión de una fuente láser es: ν = 30 MHz. Cuál es la duración del pulso luminoso emitido por la fuente? Cuál

Más detalles

LA LUZ. 1.- Qué es la luz?

LA LUZ. 1.- Qué es la luz? 1.- Qué es la luz? LA LUZ La luz es una radiación que se propaga en forma de ondas. Las ondas que se pueden propagar en el vacío se llaman ONDAS ELECTROMAGNÉTICAS. La luz es una radiación electromagnética.

Más detalles

FÍSICA 2º Bachillerato Ejercicios: Óptica

FÍSICA 2º Bachillerato Ejercicios: Óptica 1(8) Ejercicio nº 1 Entre las frecuencias del rojo 4 3.10 14 Hz y la del violeta 7 5.10 14 Hz se encuentran todos los colores del espectro visible. Cuáles son su período y su longitud de onda? Ejercicio

Más detalles

ENUNCIADOS. Cuestiones

ENUNCIADOS. Cuestiones ENUNCIADOS Cuestiones 1 a) Enuncie las Leyes de la reflexión y de la refracción de la luz y efectúe los esquemas gráficos correspondientes. b) Defina el concepto de ángulo límite y explique el fenómeno

Más detalles

Bolilla 12: Óptica Geométrica

Bolilla 12: Óptica Geométrica Bolilla 12: Óptica Geométrica 1 Bolilla 12: Óptica Geométrica Los contenidos de esta bolilla están relacionados con los principios primarios que rigen el comportamiento de los instrumentos ópticos. La

Más detalles

DESARROLLOS DE VISIÓN ARTIFICIAL BASADOS EN ÓPTICA AVANZADA

DESARROLLOS DE VISIÓN ARTIFICIAL BASADOS EN ÓPTICA AVANZADA DESARROLLOS DE VISIÓN ARTIFICIAL BASADOS EN ÓPTICA AVANZADA JOSÉ JUAN ESTEVE, DOCTOR EN FÍSICA RESPONSABLE DE PROYECTOS AIDO, INSTITUTO TECNOLOGICO DE ÓPTICA, COLOR E IMAGEN CONTENIDOS Introducción Sistemas

Más detalles

Sistema óptico: sistema a través del cual puede pasar la luz y que separa dos medios de distinto índice de refracción Sistemas centrados

Sistema óptico: sistema a través del cual puede pasar la luz y que separa dos medios de distinto índice de refracción Sistemas centrados Óptica geométrica. Formación de imágenes en espejos y lentes. La longitud de onda de la luz suele ser muy peueña en comparación con el tamaño de obstáculos o aberturas ue se encuentra a su paso. Esto permite

Más detalles

Tema: Formación Fotométrica de la Imagen

Tema: Formación Fotométrica de la Imagen Tema: Formación Fotométrica de la Imagen Visión por Computadora. Lizbeth Santacruz Flores. Introducción. Al modelar el proceso de formación de la imagen, hemos descrito como características geométricas

Más detalles

Optica PAU 18,3 10. La potencia de la lente es P 54,6 dp

Optica PAU 18,3 10. La potencia de la lente es P 54,6 dp 01. Ya que estamos en el Año Internacional de la Cristalografía, vamos a considerar un cristal muy preciado: el diamante. a) Calcula la velocidad de la luz en el diamante. b) Si un rayo de luz incide sobre

Más detalles

La luz y las ondas electromagnéticas

La luz y las ondas electromagnéticas La luz y las ondas electromagnéticas Cuestiones (96-E) a) Qué se entiende por interferencia de la luz? b) Por qué no observamos la interferencia de la luz producida por los dos faros de un automóvil? (96-E)

Más detalles

Luz y espectro electromagnético

Luz y espectro electromagnético Luz y espectro electromagnético Se llama luz (del latín lux, lucis) a la parte de la radiación electromagnética que puede ser percibida por el ojo humano. En física, el término luz se usa en un sentido

Más detalles

ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: ACÚSTICA Y ÓPTICA GUÍA: 1203 ESTUDIANTE: FECHA:

ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: ACÚSTICA Y ÓPTICA GUÍA: 1203 ESTUDIANTE:   FECHA: ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: ACÚSTICA Y ÓPTICA GUÍA: 1203 ESTUDIANTE: E-MAIL: FECHA: ACÚSTICA Resuelva cada uno de los siguientes problemas haciendo el proceso completo. 1. Un estudiante golpea

Más detalles

Óptica Geométrica. Slide 1 / 55. Slide 2 / 55. Slide 4 / 55. Slide 3 / 55. Slide 6 / 55. Slide 5 / 55. El Modelo de Rayos de la Luz.

Óptica Geométrica. Slide 1 / 55. Slide 2 / 55. Slide 4 / 55. Slide 3 / 55. Slide 6 / 55. Slide 5 / 55. El Modelo de Rayos de la Luz. Slide 1 / 55 Óptica Geométrica Slide 2 / 55 El Modelo de Rayos de la Luz La luz puede viajar en una linea recta. Representamos esto con rayos, cuales son lineas rectas emitidos por una fuente de luz or

Más detalles

1. a) Explique los fenómenos de reflexión y refracción de la luz. siempre refracción?

1. a) Explique los fenómenos de reflexión y refracción de la luz. siempre refracción? ÓPTICA 2001 1. a) Indique qué se entiende por foco y por distancia focal de un espejo. Qué es una imagen virtual? b) Con ayuda de un diagrama de rayos, describa la imagen formada por un espejo convexo

Más detalles

Óptica Geométrica. Slide 1 / 55. Slide 2 / 55. Slide 3 / 55. El Modelo de Rayos de la Luz. Reflexión. θ i. θ r

Óptica Geométrica. Slide 1 / 55. Slide 2 / 55. Slide 3 / 55. El Modelo de Rayos de la Luz. Reflexión. θ i. θ r Slide 1 / 55 Óptica Geométrica ' El Modelo de Rayos de la Luz Slide 2 / 55 La luz puede viajar en una linea recta. Representamos esto con rayos, cuales son lineas rectas emitidos por una fuente de luz

Más detalles

Física basada en Álgebra

Física basada en Álgebra Slide 1 / 66 Slide 2 / 66 ísica basada en Álgebra Óptica Geométrica 2015-12-01 www.njctl.org Tabla de ontenidos Slide 3 / 66 lick sobre el tópico para ir al tema Reflexión Espejo Esférico Refracción y

Más detalles

Física basada en Álgebra

Física basada en Álgebra Slide 1 / 66 Slide 2 / 66 ísica basada en Álgebra Óptica Geométrica 2015-12-01 www.njctl.org Slide 3 / 66 Tabla de ontenidos lick sobre el tópico para ir al tema Reflexión Espejo Esférico Refracción y

Más detalles

SESIÓN Nº 2: COMPROBACIÓN DE RELACIONES PARAXIALES. REFRACTOMETRÍA POR EFECTO PFFUND.

SESIÓN Nº 2: COMPROBACIÓN DE RELACIONES PARAXIALES. REFRACTOMETRÍA POR EFECTO PFFUND. Sesión nº 2: Comprobación de relaciones paraxiales. Refractometría por Efecto Pffund. SESIÓN Nº 2: COMPROBACIÓN DE RELACIONES PARAXIALES. REFRACTOMETRÍA POR EFECTO PFFUND. TRABAJO PREVIO 1. Conceptos fundamentales

Más detalles

Física P.A.U. ÓPTICA 1 ÓPTICA

Física P.A.U. ÓPTICA 1 ÓPTICA Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un rayo de luz de frecuencia 5 10¹⁴ Hz incide con un ángulo de incidencia de 30 sobre una lámina de vidrio de caras plano-paralelas de espesor

Más detalles

Física II. Dr. Mario Enrique Álvarez Ramos (Responsable)

Física II. Dr. Mario Enrique Álvarez Ramos (Responsable) Física II Dr. Mario Enrique Álvarez Ramos (Responsable) Dr. Roberto Pedro Duarte Zamorano (Colaborador) Dr. Ezequiel Rodríguez Jáuregui (Colaborador) Webpage: http://paginas.fisica.uson.mx/qb 2015 Departamento

Más detalles

ÓPTICA GEOMÉTRICA. Es el fenómeno que se observa cuando un rayo de luz incide sobre una superficie y se refleja. Su estudio se basa en dos leyes:

ÓPTICA GEOMÉTRICA. Es el fenómeno que se observa cuando un rayo de luz incide sobre una superficie y se refleja. Su estudio se basa en dos leyes: ONDAS LUMINOSAS La luz que nos llega del sol (luz blanca), está compuesta por rayos de luz de diferentes colores. Este conjunto de rayos constituye lo que se llama espectro visible, el cual, es una zona

Más detalles

CURSO: INSPECCION VISUAL NIVEL II DIRECTO

CURSO: INSPECCION VISUAL NIVEL II DIRECTO CURSO: INSPECCION VISUAL NIVEL II DIRECTO OBJETIVOS: El objetivo del curso de Inspección Visual nivel II DIRECTO es capacitar en forma general al participante en: los principios del método y sus técnicas

Más detalles

PROBLEMAS DE ÓPTICA (Selectividad) FÍSICA 2º Bachillerato

PROBLEMAS DE ÓPTICA (Selectividad) FÍSICA 2º Bachillerato PROBLEMAS DE ÓPTICA (Selectividad) FÍSICA 2º Bachillerato 1. (Junio 1997 ) a) Describe el funcionamiento óptico de un microscopio y analiza las características de sus imágenes. Deduce la expresión de su

Más detalles

Introducción a la Visión Artificial. Introducción a la Visión Artificial. Historía de la óptica

Introducción a la Visión Artificial. Introducción a la Visión Artificial. Historía de la óptica Introducción a la Visión Artificial Aristóteles: Visión es saber que hay y donde mediante la vista Los humanos prefieren el procesamiento de imágenes Introducción a la Visión Artificial Extracción de características

Más detalles

Características oculares que reducen la calidad de la imagen. Aberraciones esférica y cromática.

Características oculares que reducen la calidad de la imagen. Aberraciones esférica y cromática. Tema IX. Características oculares que reducen la calidad de la imagen. Aberraciones esférica y cromática. La imagen formada por el sistema óptico del ojo no es perfecta porque el ojo sufre aberraciones

Más detalles

4.60. Un espejo esférico cóncavo de 20 cm de radio se utiliza para proyectar una imagen de una bujía sobre un muro situado a 110 cm.

4.60. Un espejo esférico cóncavo de 20 cm de radio se utiliza para proyectar una imagen de una bujía sobre un muro situado a 110 cm. Problemas Óptica 4.60. Un espejo esférico cóncavo de 20 cm de radio se utiliza para proyectar una imagen de una bujía sobre un muro situado a 110 cm. Donde debe ser colocada la bujía y como se vera la

Más detalles

PRÁCTICA DE LABORATORIO N 2 Unidad 3 Óptica Leyes de la Reflexión

PRÁCTICA DE LABORATORIO N 2 Unidad 3 Óptica Leyes de la Reflexión PRÁCTICA DE LABORATORIO N 2 Unidad 3 Óptica Leyes de la Reflexión Comprobación experimental de la Ley de la Reflexión de la luz en espejos planos y cilíndricos Objetivos Estudiar las leyes de la óptica

Más detalles

Introducción a la Visión Artificial

Introducción a la Visión Artificial Introducción a la Visión Artificial Introducción a la Visión Artificial Aristóteles: Visión es saber que hay y donde mediante la vista Los humanos prefieren el procesamiento de imágenes Introducción a

Más detalles

ÓPTICA ÓPTICA GEOMÉTRICA

ÓPTICA ÓPTICA GEOMÉTRICA ÓPTICA La óptica es la parte de la física que estudia los fenómenos de la luz. Se divide en tres ramas: Óptica Geométrica: estudia la naturaleza particular de la luz desde el punto de vista corpuscular,

Más detalles

Microscopio óptico. Aumento total = aumento objetivo x aumento ocular. Ocular Capta y amplía la imagen formada en el objetivo

Microscopio óptico. Aumento total = aumento objetivo x aumento ocular. Ocular Capta y amplía la imagen formada en el objetivo Microscopía óptica El microscopio Microscopio óptico Ocular Capta y amplía la imagen formada en el objetivo Objetivo Sistema de lentes delgadas: proyecta una imagen real, aumentada e invertida de la muestra

Más detalles

FACULTAD DE INGENIERÍA - DEPARTAMENTO DE FÍSICA FÍSICA II-2018 ESPECIALIDADES: BIOINGENIERÍA-CIVIL-QUÍMICA-ALIMENTOS

FACULTAD DE INGENIERÍA - DEPARTAMENTO DE FÍSICA FÍSICA II-2018 ESPECIALIDADES: BIOINGENIERÍA-CIVIL-QUÍMICA-ALIMENTOS FACULTAD DE INGENIERÍA - DEPARTAMENTO DE FÍSICA FÍSICA II-2018 ESPECIALIDADES: BIOINGENIERÍA-CIVIL-QUÍMICA-ALIMENTOS GUÍA DE PROBLEMAS PROPUESTOS Y RESUELTOS ONDAS Y ÓPTICA GEOMÉTRICA Problema Nº 1 La

Más detalles

UNC FAUD INSTALACIONES III LUMINOTECNIA. FUENTES LUMINOSAS Lámparas y Artefactos Arq. Carlos A. ZOPPI

UNC FAUD INSTALACIONES III LUMINOTECNIA. FUENTES LUMINOSAS Lámparas y Artefactos Arq. Carlos A. ZOPPI UNC FAUD INSTALACIONES III LUMINOTECNIA FUENTES LUMINOSAS Lámparas y Artefactos 2017 LUMINARIAS LÁMPARAS ARTEFACTOS LÁMPARAS Principios de funcionamiento Fuente: OSRAM LÁMPARAS - CLASIFICACIÓN POR PRINCIPIO

Más detalles

Problemas de Óptica. PAU-PAEG-EVAU

Problemas de Óptica. PAU-PAEG-EVAU 1. (Junio 09 ) Observamos una pequeña piedra que esta incrustada bajo una plancha de hielo, razona si su profundidad aparente es mayor o menor que su profundidad real. Traza un diagrama de rayos para justificar

Más detalles

Temas de la unidad: Objetivo:

Temas de la unidad: Objetivo: Unidad N 2: LA LUZ Temas de la unidad: Origen de la luz Naturaleza de la luz Reflexión de la luz Espejos Refracción de la luz Lentes El ojo y la visión humana Objetivo: Reconocer el origen de los fenómenos

Más detalles