Guía 1: CONCEPTOS BÁSICOS DE GEOMETRÍA
|
|
|
- Alicia Martínez Gallego
- hace 9 años
- Vistas:
Transcripción
1 OLIO LOS SROS ORZONS ONPION urso: echa:. ompleta la tabla: uía : ONPTOS ÁSIOS OMTRÍ onceptos efinición Representación Notación Punto Un punto es una ubicación exacta en el espacio. Plano Un plano es una superficie plana que se extiende al infinito en todas las direcciones Recta Una recta es una sucesión de puntos que se extiende al infinito en dos direcciones. Semirrecta Segmento de recta Una semirrecta es parte de una recta que comienza en un punto y se extiende al infinito en una sola dirección. Un segmento de recta es una parte de la recta comprendida entre dos puntos de ella. Segmento de recta congruentes Un segmento de recta es congruente con otro segmento cuando ambos tienen la misma longitud. Punto medio de un segmento de recta l punto medio de un segmento de recta es la mitad entre los dos extremos del segmento y forma dos segmentos congruentes nuevos. Líneas paralelas os líneas son paralelas cuando se mantienen a la misma distancia y nunca se intersectan. Líneas secantes Las líneas secantes son dos o más líneas que se cortan en un solo punto. Líneas perpendiculares Las líneas perpendiculares son dos líneas que se intersectan, formando un águlo de 90
2 OLIO LOS SROS ORZONS ONPION urso: echa:. ompleta la tabla: uía : MIIÓN Y LSIIIÓN ÁNULOS Ángulos Representación lasificación = 0 = 90 I = 45 JKL = 0 MNO = 80 QRS = 50 TUV = 60 XYZ = 80
3 OLIO LOS SROS ORZONS ONPION urso: echa: uía : LSIIIÓN TRIÁNULOS. lasifica triángulos según la medida de sus lados y de sus ángulos: S MIS LSIIION = = = = = = = = = = = =
4 OLIO LOS SROS ORZONS ONPION urso: echa: uía 4: LSIIIÓN URILÁTROS. lasifica los cuadriláteros: URILÁTROS MIS LSIIION = = = = lasificación 4 = = = 4 = lasificación L M LM = MN = NO = OL = lasificación O 4 N K 4 I J I = IJ = JK = K = lasificación
5 OLIO LOS SROS ORZONS ONPION QUINTOS ÁSIOS urso: echa:. umple lo solicitado, usando un lápiz de color: uía 5: SRIPIÓN IURS K L L Punto de intersección entre dos rectas. os lados paralelos en un cuadrado. os lados perpendiculares en un rectángulo. I J Puntos de intersección en un triángulo.. Identifica las siguientes figura y completa: N N es un punto de y son líneas y son líneas M y son líneas J K L La figura KLM es un La figura JKMN es un. ompleta el cuadro: ómo se dibuja? ómo se dice? ómo se escribe? secante La recta RS es paralela con la recta TU O R S P OP RS l punto es la intersección entre las líneas secantes y MN 4. Resuelve: " Matías se le pidió que dibujara una figura, con cuatro puntos de intersección, un par de lados paralelos y dos lados perpendiculares" N M on qué requisito no cumplió? K L
6 OLIO LOS SROS ORZONS ONPION QUINTOS ÁSIOS urso: echa: uía 6: SRIPIÓN IURS. umple lo solicitado, usando un lápiz de color: Intersección entre dos aristas. Intersección entre dos caras. os aristas paralelas. os aristas perpendiculares paralelas paralelas. perpendiculares. perpendiculares.. Pinta la(s) característica(s) que corresponde(n) en cada caso: a) Qué relación se puede establecer entre las caras de un cubo? Intersección Paralelismo Perpendicularidad b) Qué relación se puede establecer entre las caras de una pirámide de base cuadrada? Intersección Paralelismo Perpendicularidad c) Qué relación se puede establecer entre las caras de un paralelepípedo? Intersección Paralelismo Perpendicularidad. ompleta: La figura muestra el punto de intersección de La figura muestra la intersección de La figura muestra el paralelismo entre 4. Resuelve: La red de un paralelepípedo tiene pintadas dos regiones rectangulares como muestra la siguiente figura. La profesora al armar la figura, qué quiere mostrar a sus estudiantes? La intersección?, el paralelismo o la perpendicularidad?
Una recta es una línea (de puntos) que no tiene ni principio ni final. Un segmento es la parte de una recta que se encuentra entre 2 puntos.
RECTAS Y ÁNGULOS RECTAS Una recta es una línea (de puntos) que no tiene ni principio ni final. Un punto divide a una recta en 2 semirrectas. Un segmento es la parte de una recta que se encuentra entre
Hoja de actividad sobre las propiedades de las figuras geométricas planas
Nombre Unidad 4.6: Diseños en nuestro mundo Hoja de actividad sobre las propiedades de las figuras geométricas planas Fecha Instrucciones: Mira cada figura con detenimiento. Nombra cada una de las figuras
Matemática. Conociendo las Formas de 3D y 2D. Cuaderno de Trabajo. Básico
Cuaderno de Trabajo 5 Básico Módulo didáctico para la enseñanza y el aprendizaje en escuelas rurales multigrado Cuaderno de trabajo Módulo didáctico para la enseñanza y el aprendizaje en escuelas rurales
Módulo Nº 4. Plan de Nivelación. Matemática. Introducción a la Geometría
Módulo Nº 4 Plan de Nivelación Matemática 2008 Introducción a la Geometría Plan de Nivelación Introducción a la Geometría Introducción Para resolver ejercicios de geometría tipo PSU, es necesario recordar
Área: Ciencia y Tecnología Asignatura: MATEMÁTICA. Título. Trabajo Práctico Cuerpos. Año: Pag.1/7
Área: Ciencia y Tecnología Asignatura: MATEMÁTICA Título Trabajo Práctico Cuerpos Curso 1 Año Año: 2007 Pag.1/7 CUERPOS GEOMÉTRICOS Escribe en tu carpeta cómo se llama el cuerpo geométrico al que se parece
ángulo agudo ángulo agudo triángulo acutángulo triángulo acutángulo ángulo ángulo Nombre Ángulo que es menor que un ángulo recto
Tarjetas de vocabulario ángulo agudo ángulo agudo Ángulo que es menor que un ángulo recto acutángulo acutángulo Un con tres ángulos agudos ángulo ángulo Una figura formada por dos semirrectas que tienen
CÁLCULO II ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B
ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS CÁLCULO II VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B b) A B + C c) 4A 3B d) 4(A + B) 5C e) 1 2 (A B) + 1 4 C 2. Sean
Punto. Recta. Semirrecta. Segmento. Rectas Secantes. Rectas Paralelas. Rectas Perpendiculares
Punto El punto es un objeto geométrico que no tiene dimensión y que sirve para indicar una posición. A Recta Es una sucesión continua e indefinida de puntos en una sola dimensión. Semirrecta Es una línea
Un punto divide a una recta en dos semirrectas. Ese punto es el origen de ambas semirrectas.
Una línea recta es una línea que no tiene principio ni fin. Una semirrecta es una línea que tiene principio pero no tiene final. o Un punto divide a una recta en dos semirrectas. Ese punto es el origen
A mi muy querida profesora que con ansias debe estar esperando mi trabajo. I. Introducción pag. 4
MONOGRAFÍA NOMBRE : COLEGIO : GRADO : IVº B TEMA : Geometría del Espacio PROFESORA : FECHA : 30 de Noviembre DEDICATORIA A mi muy querida profesora que con ansias debe estar esperando mi trabajo índice
Autor: 2º ciclo de E.P.
1 Autor: 2º ciclo de E.P. Una línea recta es una línea que no tiene principio ni fin. Una semirrecta es una línea que tiene principio pero no tiene final. o Un punto divide a una recta en dos semirrectas.
TEMA 1: GEOMETRÍA EN EL ESPACIO
MATEMÁTICA 2do año A y B Marzo, 2012 TEMA 1: GEOMETRÍA EN EL ESPACIO Ejercicio 1: Indica si cada una de las siguientes proposiciones es verdadera o falsa: Por un punto pasa una recta y una sola Dos puntos
TORNEOS GEOMÉTRICOS Primera Ronda Primer Nivel - 5º Año de Escolaridad Apellido Nombres DNI Tu Escuela.. Localidad Provincia
Primer Nivel - 5º Año de Escolaridad Problema 1. El hexágono regular de la figura tiene área 6cm 2. Halla el área de la región sombreada. Problema 2. Usando sólo una regla sin marcas, dibujar en la cuadrícula
Cuadriláteros I. b. Rombo. Definición: = 360º. Clasificación general: c. Cuadrado > 180º. I. Paralelogramo. d. Romboide
uadriláteros I efinición: b. Rombo + + + = 360º lasificación general: c. uadrado > 180º ONVEXO NO ONVEXO I. aralelogramo d. Romboide b a a b lasificación de los paralelogramos a. Rectángulo 3 ÑO II. Trapecio
a 2 = = 1600 ; a = 40 A = = 80. Iguales A = 361 1:150
uno es agudo y el otro es obtuso. Á = (48. 5 ) / 2 = 120 D 2 = 20 2 + 10 2 + 6 2 = 536 ; D = 23 15 V = V S + V c = 2 / 3. π 125 + 1 / 3. π 25. 3 = 325/3. π Área = lado x lado = l 2 Los paralelepípedos
ÁNGULOS ÁNGULO FORMADO ENTRE DOS RECTAS
ÁNGULOS ÁNGULO FORMADO ENTRE DOS RECTAS QUE SE CORTAN 1 - Se halla el plano que forman R y S. 2 Se abaten las dos rectas para hallar el ángulo. Se puede abatir con el método directo, o con el método tradicional
La carrera geométrica
La carrera geométrica Materiales: el tablero 1, un personaje por cada jugador y un dado. 1. Cada jugador ubica su ficha en la salida. 2. Por turno, cada jugador tira el dado y mueve su ficha tantos casilleros
1. El cubo de la figura tiene vértices A, B, C, D, E, F, G y H. Si AE = 5 cm, cuál de las siguientes afirmaciones es FALSA? H
onvenio Nº Guía práctica Planos en el espacio Ejercicios PSU 1. El cubo de la figura tiene vértices,,, D, E, F, G y H. Si E = 5 cm, cuál de las siguientes afirmaciones es FLS? H G ) G = 5 2 cm F E ) EH
Primer Nivel. Solución: Por los valores de los lados del triángulo, éste debe ser un triángulo rectángulo, y en consecuencia su área es (3 4 ) 6
Primer Nivel Problema 1- Los lados de un cuadrado de área 4cm se han dividido en cuatro partes iguales. Halla el área del cuadrado sombreado. Solución: Trazando los segmentos adicionales indicados en la
EVALUACIÓN CONCEPTUAL ÁREA MATEMÁTICA GEOMETRÍA FIGURAS EN EL PLANO
EVALUACIÓN CONCEPTUAL ÁREA MATEMÁTICA GEOMETRÍA FIGURAS EN EL PLANO Instrumento utilizado para la evaluación Esta evaluación fue realizada en forma individual. La consigna fue escrita en el pizarrón y
Universidad de Talca Taller de Matemática 2002 Estudiantes de Enseñanza Media
Taller 5 Construcciones con Regla y Compás Profesores: Claudio del Pino, Cristian Mardones 1. Copiar un triángulo Dado un triángulo ABC. Copiar este triángulo. A C B Construir un punto (P) cualquiera y
Matemática. Conociendo las Formas de 3D y 2D. Cuaderno de Trabajo. Básico
Cuaderno de Trabajo 3 Básico Módulo didáctico para la enseñanza y el aprendizaje en escuelas rurales multigrado Cuaderno de trabajo Módulo didáctico para la enseñanza y el aprendizaje en escuelas rurales
Un punto carece de dimensiones, es sólo una posición en el espacio. Se acostumbra denotar los puntos por letras mayúsculas, por ejemplo.
Un punto carece de dimensiones, es sólo una posición en el espacio. Se acostumbra denotar los puntos por letras mayúsculas, por ejemplo. A: punto A. Una línea es una secuencia infinita de puntos. Las líneas
Un ángulo mide y otro Cuánto mide la suma de estos ángulos?
Los Ángulos Qué es un ángulo y su notación? Son dos rayos cualesquiera que determinan dos regiones del plano. Su notación: Para nombrar los ángulos, utilizaremos los símbolos
MINISTERIO DE EDUCACIÓN PÚBLICA DIRECCIÓN DE DESARROLLO CURRICULAR DEPARTAMENTO DE PRIMERO Y SEGUNDO CICLOS ASESORÍA NACIONAL DE MATEMÁTICA
MINISTERIO DE EDUCACIÓN PÚBLICA DIRECCIÓN DE DESARROLLO CURRICULAR DEPARTAMENTO DE PRIMERO Y SEGUNDO CICLOS ASESORÍA NACIONAL DE MATEMÁTICA Área matemática: Geometría Primer periodo 20XX Habilidad(es)
INSTITUTO RAÚL SCALABRINI ORTIZ CUADRILATERO
CUADRILATERO INTRODUCCION Son polígonos de 4 lados. La suma de los ángulos interiores es igual a 360º y la suma de los ángulos exteriores es igual a 360º. Vértices : A, B, C, D Lados : a, b, c, d Ángulos
Universidad del istmo INGENIERÍA EN SISTEMAS CON ÉNFASIS EN SEGURIDAD INFORMATICA
Universidad del istmo INGENIERÍA EN SISTEMAS CON ÉNFASIS EN SEGURIDAD INFORMATICA ASIGNATURA: Cálculo Diferencial e Integral I PROFESOR: José Alexander Echeverría Ruiz CUATRIMESTRE: Segundo TÍTULO DE LA
(El producto de una rotación y una reflexión no es conmutativo!!!)
HOMOTECIS (H) l numero (µ) se llama razón de la homotecia: d (O,P) / d (O, P ) = µ Si (m)>0 (es positivo), los puntos P y P están del mismo lado respecto al punto O. Si (m)
ELEMENTOS BASICOS DE TECNOLOGIA
ELEMENTOS BASICOS DE TECNOLOGIA GEOMETRIA Y MATEMATICA BASICA. POLIGONOS CLASIFICACION DE POLIGONOS POLIGONOS REGULARES POLIGONOS ESTRELLADOS. COCEPTOSINICIALES INICIALES. El punto no tiene dimensiones.
FORMAS POLIGONALES TEMA 8
FORMAS POLIGONALES TEMA 8 1. LOS POLÍGONOS DEFINICIÓN: Un polígono es una figura geométrica plana limitada por segmentos llamados lados, y por vértices. A B C A Lado D Clasificación de los polígonos:
TEMA 1. TRAZADOS GEOMÉTRICOS ELEMENTALES
TEMA 1. TRAZADOS GEOMÉTRICOS ELEMENTALES GEOMETRÍA: Rama de las matemáticas que se ocupa del estudio de las figuras geométricas, incluyendo puntos, rectas, planos Proviene del Griego GEO (tierra) METRÍA
PERIMETROS Y AREAS DE FIGURAS PLANAS
PreUnAB PERIMETROS Y AREAS DE FIGURAS PLANAS Clase # 19 Octubre 2014 PERÍMETROS Y ÁREAS DE FIGURAS PLANAS Definiciones: El perímetro P de una figura geométrica es la medida de su contorno. Área A, es la
PROBFlfiFlfi GEOMETRIA POR. CñTEDRñTICO DE MfiTEMñTICñS. En EL. Instituto BcnEral y Técnica de Lagrana LOGROÑO IMPRENTA Y LIBRERÍA MODERNA
PROBFlfiFlfi DE GEOMETRIA POR Miguel Hayos y Julia CñTEDRñTICO DE MfiTEMñTICñS En EL Instituto BcnEral y Técnica de Lagrana LOGROÑO IMPRENTA Y LIBRERÍA MODERNA 1913 GEOMETRIA POR Miguel Hayos y Julia
Geometría del Plano Rectas y Ángulos
Geometría del Plano Rectas y Ángulos Hablar de geometría es hablar de longitudes, rectas, ángulos, triángulos, rectángulos, círculos Desde siempre, los hombres necesitaron medir. Los babilonios inventaron
5to Parcial de Geometría Euclidiana. 2) Sea p un polígono tal que se puede descomponer en n polígonos simples
5to Parcial de Geometría Euclidiana AREAS y VOLUMENES Definición 55 (Área) Se define el área como una función A definida del conjunto de todos los polígonos P en R + (A : P R + ), con las siguientes propiedades:
GEOMETRÍA. Instrumentos geométricos básicos: Reglas: regla graduada y la regla T Escuadra y cartabón transportador Compás
GEOMETRÍA La geometría como palabra tiene dos raíces griegas: GEO = tierra y METRÓN = medida; es decir, significa: medida de la tierra. Es la rama de las matemáticas que estudia las propiedades de las
4) Traslada el siguiente polígono 4, 8, 12 y 16 cuadrados hacia abajo. 5) Traslada el siguiente polígono 12 cuadrados hacia la derecha y 5 hacia abajo
Cuál es tu nombre? Fecha: 1) Indica cuántos cuadrados se trasladó hacia la derecha la figura. cuadrados cuadrados cuadrados 2) Indica cuántos cuadrados se trasladó hacia abajo la figura. cuadrados cuadrados
TORNEOS GEOMÉTRICOS Primera Ronda Primer Nivel - 5º Año de Escolaridad
TORNEOS GEOMÉTRICOS 2017. Primera Ronda Primer Nivel - 5º Año de Escolaridad Problema 1. El hexágono regular de la figura tiene área 6cm 2. Halla el área de la región sombreada. Solución: El triángulo
INSTITUTO POLITÉCNICO NACIONAL CECYT LÁZARO CÁRDENAS DEL RÍO ÁREA BÁSICA ACADÉMIA DE MATEMÁTICAS TURNO MATUTINO
PRIMER EXAMEN PARCIAL INSTITUTO POLITÉCNICO NACIONAL CECYT LÁZARO CÁRDENAS DEL RÍO ÁREA BÁSICA ACADÉMIA DE MATEMÁTICAS TURNO MATUTINO GUÍA DE GEOMETRÍA ANALÍTICA 2016-2017A SISTEMA DE COORDENADAS, LUGARES
Soluciones Primer Nivel - 5º Año de Escolaridad
Primer Nivel - 5º Año de Escolaridad Problema 1. La diagonal del cuadrado mide cm. El cuadrado se descompone en cuatro triángulos rectángulos cuyos catetos miden 1cm. Las áreas de estos triángulos miden
Recursos. Temas. Tiempo. Evaluación. Competencias:
Lic. José Antonio Martínez y Martínez @jamm2014 Competencias: Utiliza formas geométricas, símbolos, signos y señales para el desarrollo de sus actividades cotidianas. Aplica el pensamiento lógico, reflexivo,
DPTO. MATEMÁTICAS IES Luis Bueno Crespo FECHA: / /
EXPRESIONES ALGEBRAICAS 1º. Indica las expresiones algebraicas correspondientes a los siguientes enunciados, utilizando una sola letra (x): a) El siguiente de un número, más tres unidades. b) El anterior
Clasificación de los angulos
Clasificación de los angulos Los ángulos se clasifican según su magnitud, según sus características y según su posición. A.- Según su magnitud: I Angulos Nulos: Son aquellos iguales a 0. II Angulos Convexos:
New Jersey Centro para Enseñanza y Aprendizaje. Inciativa de Matemática Progresiva
Slide 1 / 126 New Jersey Centro para Enseñanza y Aprendizaje Inciativa de Matemática Progresiva Este material está disponible gratuitamente en www.njctl.org y está pensado para el uso no comercial de estudiantes
MATEMÁTICA 5 BÁSICO GUÍAS DEL ESTUDIANTE LOCALIZACIONES, CARACTERIZACIONES Y TRANSFORMACIONES GEOMÉTRICAS
MATEMÁTICA 5 BÁSICO LOCALIZACIONES, CARACTERIZACIONES Y TRANSFORMACIONES GEOMÉTRICAS Material elaborado por: Héctor Muñoz Adaptación: Equipo de Matemática Fundación Chile GUÍA : ADIVINA EL PUNTO REGLAS
Apuntes de Dibujo Técnico
APUNTES DE DIBUJO TÉCNICO 1. Materiales para trazados geométricos. - La Escuadra y el Cartabón. El juego de escuadra y cartabón constituye el principal instrumento de trazado. Se deben usar de plástico
La asignatura de Matemática estimula el desarrollo de diversas habilidades:
La asignatura de Matemática estimula el desarrollo de diversas habilidades: Intelectuales, como: El razonamiento lógico y flexible, la imaginación, la inteligencia espacial, el cálculo mental, la creatividad,
10-A-1/8. Nombre. Coge un lápiz afilado y marca dentro del rectángulo un punto de color rojo.
10--1/8 Geometría (líneas) Coge un lápiz afilado y marca dentro del rectángulo un punto de color rojo. Si sigo dibujando puntos uno a continuación de otro, pero muy, muy juntos, dibujo una línea. Si los
TEMA 12: PROBLEMAS MÉTRICOS EN EL ESPACIO.
TEMA 12: PROBLEMAS MÉTRICOS EN EL ESPACIO. 1. Distancia entre dos puntos: Si A= (a 1, a 2, a 3 ) y B= (b 1, b 2, b 3 ), entonces: 2.Ángulo entre elementos del espacio: Ángulo entre dos rectas: d (A, B)
Preguntas tipo OLIMPIADA DE DIBUJO TÉCNICO MARZO 2014
E S C U E L A T É C N I C A S U P E R I O R D E A R Q U I T E C T U R A U N I V E R S I D A D D E N A V A R R A Preguntas tipo OLIMPIADA DE DIBUJO TÉCNICO MARZO 2014 G E O M E T R Í A M É T R I C A. T
POLIEDROS. POLIEDROS Prof. Annabella Zapattini. Definición: Llamamos poliedro a la región del espacio limitada por polígonos planos.
POLIEDROS Definición: Llamamos poliedro a la región del espacio limitada por polígonos planos. Definiciones: Llamamos caras de un poliedro a los polígonos que lo definen. Llamamos aristas a los segmentos
RAZONAMIENTO GEOMÉTRICO
RAZONAMIENTO GEOMÉTRICO Fundamentos de Matemáticas I Razonamiento geométrico Video Previo a la actividad: Áreas y perímetros de cuerpos y figuras planas Video Previo a la actividad: Áreas y perímetros
III: Geometría para maestros. Capitulo 1: Figuras geométricas
III: Geometría para maestros. Capitulo : Figuras geométricas SELECCIÓN DE EJERCICIOS RESUELTOS SITUACIONES INTRODUCTORIAS En un libro de primaria encontramos este enunciado: Dibuja un polígono convexo
Matemática. Conociendo las Formas de 3D y 2D. Cuaderno de Trabajo. Clase 9
Cuaderno de Trabajo Módulo didáctico para la enseñanza y el aprendizaje en escuelas rurales multigrado Clase 9 Cuaderno de trabajo Módulo didáctico para la enseñanza y el aprendizaje en escuelas rurales
Además del centro y el radio, distinguen: 1. Cuerda: segmento que une dos puntos cualquiera de la circunferencia. EF
23 1.5 ircunferencia efinición ado un punto y una distancia r, la circunferencia de centro y radio r, es el conjunto de puntos del plano y solo ellos, que están a la distancia r del punto. La circunferencia
Congruencia de triángulos.
ongruencia de triángulos. efinición: os triángulos son congruentes si eiste una correspondencia entre sus ángulos y entre sus lados, tal que cada par de ángulos y cada par de lados correspondientes (homólogos)
Unidad 4 Geometría. b. El nombre del punto O es centro de la circunferencia. Las principales partes de la circunferencia son:
Sección 1 írculo lase 1 Sector circular y segmento P S a. Qué tipo de figura se formará si se conectan los puntos que se encuentran a la misma distancia desde un punto fijo O? b. uál es el nombre del punto
CONTENIDOS Y CRITERIOS DE EVALUACIÓN 4º MATEMÁTICAS ED. PRIMARIA
1ª EVALUACIÓN: CONTENIDOS Y CRITERIOS DE EVALUACIÓN 4º MATEMÁTICAS ED. PRIMARIA CONTENIDOS: -Valor de posición de una cifra en un número. Equivalencias. -Los números de seis y de siete cifras: la centena
Dirección General del Bachillerato Centro de Estudios de Bachillerato 5/3 José Vasconcelos Calderón
1 Problema 1. os piezas cuadradas y tres piezas rectangulares se acomodan para formar un rompecabezas cuadrado como muestra la figura. Si cada una de las dos piezas cuadradas tiene 72cm de perímetro y
Curso: Matemáticas segundo medio
urso: Matemáticas segundo medio LEGI SS NEPIN NMRE: lase Teórica Práctica Nº 29 IRUNFERENI La circunferencia se define como la figura geométrica cuyo conjunto de puntos del plano que la componen, están
El cubo o hexaedro regular
El cubo o hexaedro regular Como los ángulos de un cuadrado miden 90, solo podemos formar un poliedro de caras cuadradas, tres por cada vértice. La suma de las caras que están unidas en cada vértice será:
TORNEOS GEOMÉTRICOS 2018 Segunda Ronda. Primer Nivel - 5º Año de Escolaridad. Apellido Nombres. Calle..N Piso.Dpto..CP.. Localidad.Provincia.
TORNEOS GEOMÉTRICOS 2018 Segunda Ronda Primer Nivel - 5º Año de Escolaridad Apellido Nombres. DNI.. Tu Escuela. Tu Domicilio Calle..N Piso.Dpto..CP.. Localidad.Provincia. Lee con atención: 1- Es posible
CANGURO MATEMÁTICO 2011 SEGUNDO DE SECUNDARIA
CANGURO MATEMÁTICO 2011 SEGUNDO DE SECUNDARIA INDICACIONES Las marcas en la hoja de respuestas se deben realizar, únicamente, con LÁPIZ. Escriba su apellido paterno, apellido materno y nombres con letras
TORNEOS GEOMÉTRICOS 2016 Primera Ronda. Primer Nivel - 5º Año de Escolaridad. Apellido Nombres.. DNI Tu Escuela. Localidad Provincia
Primer Nivel - 5º Año de Escolaridad 1- En el triángulo rectángulo ABC cuyo ángulo en C mide 48º se trazan la bisectrices de los ángulos B y C, que se cortan en O. Calcula la medida de los ángulos del
S1A. GeoGebra (s1a_11_iniciales_proba_ej_3.ggb)
S1A 11.- RECTAS Y ÁNGULOS Ejercicio 1. GeoGebra (s1a_11_iniciales_proba_ej_1.ggb) Traza una recta pasando por dos puntos A y B. Con la herramienta Ángulo dada su amplitud, dibuja un ángulo de 30 dando
Cuerpos Geométricos. Volúmenes de Cuerpos Geométricos
Cuerpos Geométricos. Volúmenes de Cuerpos Geométricos Un cuerpo geométrico es un elemento que existe en la realidad o que somos capaces de concebir, llamado sólido, el cual ocupa un volumen en el espacio,
Elementos de Geometría
Elementos de Geometría Manuel Maia 19 de marzo de 2012 1 Puntos, Rectas, Planos y Ángulos Hay cuatro términos o conceptos que aceptaremos sin definición: conjunto, punto recta y plano. Estos se llaman
CUERPOS GEOMÉTRICOS. 2º E.S.O. PUNTOS, RECTAS Y PLANOS EN EL ESPACIO DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS
CUERPOS GEOMÉTRICOS. PUNTOS, RECTAS Y PLANOS EN EL ESPACIO 2º E.S.O. DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS Determinación de puntos: DETERMINACIÓN DE PUNTOS, RECTAS Y PLANOS Determinación de una recta:
CONTENIDOS Y CRITERIOS DE EVALUACIÓN 4º MATEMÁTICAS ED. PRIMARIA
PRIMER TRIMESTRE: CONTENIDOS Y CRITERIOS DE EVALUACIÓN 4º MATEMÁTICAS ED. PRIMARIA CONTENIDOS: -Valor de posición de una cifra en un número. Equivalencias. -Los números de seis y de siete cifras: la centena
NOCIÓN DE PUNTO, RECTA Y PLANO
NOCIÓN DE PUNTO, RECT Y PLNO Si les das una imagen de una figura o un objeto, como un mapa con las ciudades y los caminos marcados en él, Cómo podrías explicar la imagen geométricamente? Después de completar
TEMA 11: ÁREA Y FIGURAS GEOMÉTRICAS.
TEMA 11: ÁREA Y FIGURAS GEOMÉTRICAS. LOS POLÍGONOS El polígono es una porción del plano limitado por una línea poligonal cerrada. Un polígono se nombra con las letras mayúsculas situadas en los vértices.
Poliedros y cuerpos redondos para imprimir
Poliedros y cuerpos redondos para imprimir Nombre Curso: Fecha: Escribe en la parte derecha lo que falta. 1. Los cuerpos redondos. La geometría del espacio estudia los cuerpos que tienen tres dimensiones:
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: DIBUJO TÉCNICO II
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2013-2014 MATERIA: DIBUJO TÉCNICO II INSTRUCCIONES GENERALES Y CALIFICACIÓN Después
CUERPOS GEOMÉTRICOS. Un polígono es una figura compuesta por tres o más segmentos rectos (lados) que cierran una región en el espacio.
CUERPOS GEOMÉTRICOS 07 Comprende que son los cuerpos geométricos e identifica las partes que los componen. En Presentación de Contenidos recuerdan qué son los polígonos para comprender cómo se forman los
Líneas y ángulos. Obje1vo: Dis1nguir los 1pos de rectas y dis1nguir los 1pos de ángulos.
Líneas y ángulos Obje1vo: Dis1nguir los 1pos de rectas y dis1nguir los 1pos de ángulos. VAMOS A VER 1. Conceptos básicos: Punto, recta, semirrecta, segmento y plano. 2. Rectas: paralelas, secantes y perpendiculares
Quién lo descubre? Vamos a explorar, reconocer, construir y usar características de figuras y cuerpos geométricos.
Vamos a explorar, reconocer, construir y usar características de figuras y cuerpos geométricos. Quién lo descubre? Qué figuras geométricas mira el nene en la compu? Vamos a explorar, reconocer, construir
UNIDAD 8 Geometría analítica
Pág. 1 de 5 I. Sabes hallar puntos medios de segmentos, puntos simétricos de otros y ver si varios puntos están alineados? 1 Los puntos A( 1, 3), B(2, 6), C (7, 2) y D( 5, 3) son vértices de un cuadrilátero.
D7 Perpendicularidad
El sistema diédrico D7 Perpendicularidad Rectas perpendiculares Rectas perpendiculares son las que se cortan formando ángulos rectos. Dos rectas que se cruzan en el espacio son perpendiculares si al trazar
INSTITUCIÓN EDUCATIVA LA ASUNCIÓN Aprobada mediante Resolución Octubre 11 de 2013
INSTITUCIÓN EDUCATIVA LA ASUNCIÓN Aprobada mediante Resolución 10033 Octubre 11 de 2013 TALLER DE RECUPERACION II PERIODO Versión 01 Fecha de aprobación: Página 1 de 11 ÁREA: MATEMATICAS Grado: 2 Docente
TEMA 9. S.D. PARALELISMO Y PERPENDICULARIDAD.
TEMA 9. S.D. PARALELISMO Y PERPENDICULARIDAD. 9.1. PARALELISMO. Rectas paralelas. Si dos rectas son paralelas en el espacio sus proyecciones ortogonales sobre los planos de proyección serán paralelas.
MATEMÁTICAS Y SU DIDÁCTICA
MATEMÁTICAS Y SU DIDÁCTICA ESCUELA UNIVERSITARIA DE MAGISTERIO SAGRADO CORAZÓN UNIVERSIDAD DE CÓRDOBA Curso académico: 2009 2010 ACTIVIDADES DE GEOMETRÍA TRABAJO EN GRUPO Las siguientes actividades se
TEMA 7 Las formas y las medidas que nos rodean. 2. Repaso a las figuras planas elementales
TEMA 7 Las formas y las medidas que nos rodean 1. Introducción 1.1. Qué es la geometría? Es una rama de la matemática que se ocupa del estudio de las propiedades de las figuras geométricas en el plano
MATHEMATICA. Geometría - Recta. Ricardo Villafaña Figueroa. Material realizado con Mathematica. Ricardo Villafaña Figueroa
MATHEMATICA Geometría - Recta Material realizado con Mathematica 2 Contenido Sistema de Coordenadas... 3 Distancia entre dos puntos... 3 Punto Medio... 5 La Recta... 8 Definición de recta... 8 Pendiente
PRESENTACIÓN TODOS LOS APUNTES Y HOJAS DE EJERCICIOS ESTÁN EN EL BLOG QUE HE CREADO PARA MIS CLASES:
PRESENTACIÓN TODOS LOS APUNTES Y HOJAS DE EJERCICIOS ESTÁN EN EL BLOG QUE HE CREADO PARA MIS CLASES: http://espaiescolar.wordpress.com CONCEPTOS PREVIOS PROPORCIONALIDAD Recta: línea continua formada por
MÓDULO DIDÁCTICO PARA LA ENSEÑANZA Y EL APRENDIZAJE DE LA ASIGNATURA DE MATEMÁTICA EN ESCUELAS RURALES MULTIGRADO
MÓDULO DIDÁCTICO PARA LA ENSEÑANZA Y EL APRENDIZAJE DE LA ASIGNATURA DE MATEMÁTICA EN ESCUELAS RURALES MULTIGRADO Conociendo las Formas de 3D y 2D CLASE 9 CUADERNO DE TRABAJO Cuaderno de Trabajo, Matemática
GUIA Nº3 GEOMETRIA EN EL ESPACIO
GUIA Nº Obtenga las longitudes de los lados del triángulo ABC determine si éste es rectángulo, isósceles o ambos: a) A(,, ) B(,, ) C(,, ) b) A(,, ) B(,, ) C(,, ) c) A(,, ) B(,, ) C(6,, ) d) A(,, ) B(,,
Figura en el espacio o cuerpo geométrico es el conjunto de puntos que no están contenidos en un mismo plano, es la porción de espacio limitado.
Cuenca, 11 de noviembre de 2013 Clase 13 Geometría del espacio Figuras geométricas en el espacio Definiciones: Geometría del espacio: Rama de las matemáticas encargada de las propiedades y medida de las
Problemas de exámenes de Geometría
1 Problemas de exámenes de Geometría 1. Consideramos los planos π 1 : X = P+λ 1 u 1 +λ 2 u 2 y π 2 : X = Q+µ 1 v 1 +µ 2 v 2. Cuál de las siguientes afirmaciones es incorrecta? a) Si π 1 π 2 Ø, entonces
DIBUJO GEOMÉTRICO. - Segmento: es una parte limitada de la recta comprendida entre dos puntos que por lo tanto se nombraran con mayúscula.
DIBUJO GEOMÉTRICO 1. SIGNOS Y LÍNEAS. A. El punto: es la intersección de dos rectas. Se designa mediante una letra mayúscula y se puede representar también con un círculo pequeño o un punto. A B C D X
SISTEMASS DE REPRESENTACIÓNN Geometría Básica
SISTEMASS DE REPRESENTACIÓNN Geometría Básica Coordinadora de Cátedra: Ing. Canziani, Mónica Profesores: Arq. Aubin, Mónica Arq. Magenta, Gabriela Ing. Medina, Noemí Ing. Nassipián, Rosana V. Ing. Borgnia,
Departamento de Física y Matemáticas Grado de Primaria Curso Matemáticas II
Departamento de Física y Matemáticas Grado de Primaria urso 2016-2017 Matemáticas II 9 de enero de 2017 1. Dibuja la circunferencia que pasar por los puntos, y de la figura, razonando el procedimiento
Bases Matemáticas para la Educación Primaria. Guía de Estudio. Tema 4: Figuras geométricas
Bases Matemáticas para la Educación Primaria Guía de Estudio Tema 4: Figuras geométricas 1 Conceptos geométricos En la clase de matemáticas, y en los textos escolares, encontramos expresiones tales como:
Listo para seguir? Intervención de destrezas Figuras básicas de la geometría
8-1 Listo para seguir? Intervención de destrezas Figuras básicas de la geometría Un punto es una ubicación exacta. Una línea es una trayectoria recta que se extiende sin fin en direcciones opuestas. Un
MATEMÁTICA N O 3. Santillana FASCÍCULO PSU N O 3 MATEMÁTICA. Santillana
MATEMÁTICA N O FASCÍCULO PSU N O MATEMÁTICA 1 MATEMÁTICA N O 1. 2 ( 4 ) 2 =? A) 8 B) 10 C) 12 D) 16 E) 24 2. Al escribir la expresión (0,0006) 2 en notación científica se obtiene: A),6 10 - B),6 10 9 C),6
SIMCE 4 Básico un Desafío para el Profesor EJE GEOMETRÍA
EJE GEOMETRÍA 155 FICHA DE TRABAJO N 1 1) Une cada figura con el nombre correspondiente. PUNTO ANGULO RAYO RECTA TRAZO RECTAS PARALELAS POLIGONAL RECTAS SECANTES 156 2) Escribe el nombre de cada ángulo
