SEGUNDA LEY DE NEWTON

Tamaño: px
Comenzar la demostración a partir de la página:

Download "SEGUNDA LEY DE NEWTON"

Transcripción

1 SEGUNDA LEY DE NEWTON SEGUNDA LEY DE NEWTON " RELACION ENTRE ACELERACION y MASA" I.- OBJETIVO DEL EXPERIMENTO Investigar la relación que existe entre la aceleración y la masa de un cuerpo móvil. II.- EQUIPO Y MATERIAL EMPLEADO Sistema de Flotación Lineal FICER. modelo SFL-O3 Impulsor de Aire FICER. modelo IA-O3 Generador de Chispas FICER. modelo GCH-O3 Portapolea y polea mecánica Regla metálica Regla de chispeo Manguera -flexible Deslizador con electrodo de chispeo Juego de pesas para cambiar la masa del deslizador Tira de papel de registro Regla o escalímetro Portapesas Juego de pesas para jalar el deslizador Trozo de hilo Hoja de papel log-log, lápiz y borrador III.- ANALISIS TEORICO Experimentalmente se puede mostrar que cuando sobre un cuerpo actúa una fuerza, cambia su estado de movimiento y que cuanto mayor es la fuerza que se ejerce, mayor será la aceleración del cuerpo. También se puede mostrar que para un determinado valor de la fuerza, la aceleración que adquiere el cuerpo es inversamente proporcional a su masa. Por lo tanto, parece lógico relacionar a la fuerza F, masa m y aceleración a, por medio de la siguiente ecuación: a=f/m (1) La ecuación 1, establece que la aceleración que posee el objeto, es directamente proporcional a la fuerza actuante, e inversamente proporcional a su masa. Esta ecuación también se puede escribir como:

2 F = ma (2) Esta relación se conoce como una de las formas de la Segunda Ley de Newton, en ella, al termino m se le da el nombre de "masa inercial" y su valor esta definido por: m = F/a (3) Esta masa, es una medida de la inercia, o sea, la resistencia que todo Sistema Mecánico presenta al cambio de su movimiento. La unidad de masa internacionalmente aceptada es el Kilogramo (Kg). Esta es la masa contenida en un cuerpo hecho de platino e iridio que se conserva en la Oficina Internacional de Pesas y Medidas en Sévres Francia. El kilogramo es la unidad fundamental de masa en el Sistema Metro Kilogramo Segundo "MKS". En el Sistema centímetro gramo segundo "cgs", la unidad fundamental de masa es el gramo(gr). La relación entre ambas unidades es que el Kilogramo es igual a 1000 gramos. También se utiliza la ecuación 2 para definir la unidad de fuerza en el Sistema "MKS", la cual se llama Newton (N), siendo esta unidad de fuerza la que al actuar sobre un cuerpo de masa de 1Kg, le proporciona una aceleración de 1 m/seg 2. Esta unidad de fuerza es la universal ya que no cambia con la localidad. En el Sistema Británico, la unidad de fuerza es la libra (lb), la de masa es el slug y para la aceleración es el pie sobre segundo cuadrado (ft/seg 2 ). Otro Sistema usado es el Técnico cuyas unidades fundamentales son: De la fuerza, el Kilogramo; de la longitud, el metro y del tiempo, el segundo. En este Sistema la unidad de masa se conoce con el nombre de Unidad Técnica de masa "utm", siendo 1 utm = 9.81 kg (masa). IV.- DISEÑO DEL EXPERIMENTO El experimento se realiza de la siguiente manera: Primero: Al deslizador se le aplica una fuerza constante empleando el Método de Pesas y Polea. Segundo: La aceleración que adquiere dicho deslizador se determina por medio de un registro simple, empleando el Generador de Chispas. Tercero: Se desarrollan 4 o 5 nuevos registros de posición y tiempo, variando en cada uno de ellos la masa del deslizador y manteniendo en cada registro la misma fuerza aceleradora, es decir, usando las mismas pesas empleadas para jalar el deslizador. Cuarto: Con los datos de la aceleración obtenida en cada registro y el valor: de la masa, se procede a, obtener,la relación mencionada por el Método Gráfico y Analítico (Método de Mínimos Cuadrados).

3 V.- PROCEDIMIENTO Para realizar este experimento, ejecute los siguientes pasos: 1.- Instale el equipo como se muestra en la figura Nivele el Sistema de Flotación Lineal. 3.- Cerciórese que la tira de papel de registro esté instalada en la regla de chispeo. 4.- Conecte el Generador de Chispas al Sistema de Flotación para operar en el Modo Coloque sobre la guía del Sistema de Flotación un deslizador (de masa m conocida) con electrodo de chispeo, ajuste con las manos el electrodo de tal forma que quede preparado para un registro simple con el Generador de Chispas. Figura 1 Instalación del equipo 6.- Sujete el deslizador al pasador metálico del sistema de lanzamiento por medio de un hilo y aplíquele una fuerza constante, empleando el Método de Pesas y Polea. 7.- Encienda el impulsor de aire y el generador de chispas, seleccione en este último la frecuencia adecuada. 8.- Inicie el registro de posición y tiempo, presionando el botón del control remoto del Generador de Chispas y simultáneamente queme el hilo que sujeta al deslizador con el pasador metálico, para que el deslizador inicie su movimiento. Procure suspender el registro antes de que el deslizador alcance el otro extremo del Sistema de Flotación. 9.- Retire la regla de chispeo y encierre mediante círculos pequeños los puntos marcados en la tira de papel de registro. Después, vuelva a colocar la regla de chispeo en la regla metálica Mida la fuerza F que produjo el movimiento, es decir, determine el peso de la masa empleada para jalar el deslizador, (masa = pesas + portapesas).

4 11.- Repita el experimento 4 veces mas, pero en cada nuevo registro, cambie la masa del deslizador insertando pesas en la parte superior de este y manteniendo la misma fuerza que produce el movimiento para todos los registros. Al terminar cada uno de estos registros,,quite la regla de chispeo y marque con otro símbolo (triángulos, cuadrados, etc.) los nuevos puntos en el,papel de registro y regrese, la regla a su posición en el Sistema de Flotación Retire la tira de papel de registro de la regla de chispeo, y determine para cada uno de los registros, la aceleración a correspondiente del deslizador Con los diferentes valores de las masas del deslizador, sus correspondientes aceleraciones y el valor de la fuerza que produce el movimiento en cada uno de los eventos, construya la siguiente Tabla de Datos. Masa Aceleración Fuerza TABLA I 14.- Con los datos de la Tabla 1, haga una gráfica de a vs: m, en papel 1oglog. Utilice el eje de las ordenadas para la variable a, y el eje de las abscisas para la variable m Si la gráfica anterior,corresponde a la de una recta, su ecuación será de la forma: 1og(a) = C log(m) + K (4) De acuerdo con las propiedades de los logaritmos, la ecuación anterior se puede expresar como: log (a) = log (Fm C ) (5) donde K = log(f), o bien, F = antilog(k) De la ecuación 5, se observa que: a = Fm C (6) Esta última ecuación, conduce al objetivo del experimento, es decir, encontrar la relación entre la aceleración "a" y la masa "m" Utilice el Método de Mínimos Cuadrados para determinar los valores de las constantes F y C, desconocidas hasta ahora. Para ello, calcule para cada columna de la Tabla I, los siguientes parámetros: x = Iog (m) y y = Iog (a)

5 Llene a continuación, la siguiente Tabla: x y x 2 xy Σx Σy Σx 2 Σxy TABLA II 17.- Con los valores de la Tabla II, determine las constantes "K" y "C', empleando las siguientes ecuaciones: k = ( (Σy)(Σx 2 ) (Σx)(Σxy) ) / ( n(σx 2 ) (Σx) 2 ) (7) C = ( n(σxy) - (Σx)(Σy) ) / ( n(σx 2 ) (Σx) 2 ) (8) Siendo "n" el numero de eventos que se consideraron. Recordando que F,= anti1og (K), con las ecuaciones 7 y 8 se obtendrán los valores de "F" y "C" que satisfacen la ecuación 6, y con ello se determinara, la relación que debe existir entre la aceleración y la masa. VI.- DISCUSION y CONCLUSIONES Compare el valor de la constante F con la fuerza que actúa sobre el deslizador y, el valor de C con el esperado (1). Si hay discrepancia entre el modelo teórico (a = F/m) y el obtenido experimentalmente, haga una lista de las posibles fuentes de error. Repita el experimento minimizando los errores, compare los nuevos resultados con, los del experimento anterior y con el modelo teórico.

ANALISIS DE UN REGISTRO DE POSICION Y TIEMPO HECHO CON UN GENERADOR DE CHISPAS

ANALISIS DE UN REGISTRO DE POSICION Y TIEMPO HECHO CON UN GENERADOR DE CHISPAS ACELERACIÓN ANALISIS DE UN REGISTRO DE POSICION Y TIEMPO HECHO CON UN GENERADOR DE CHISPAS I.- OBJETIVO DEL EXPERIMENTO Introducir al estudiante en el uso y manejo del equipo, con el fin de aprender la

Más detalles

Laboratorio de Física I

Laboratorio de Física I Práctica 7. Determinación del impulso. Responda estas preguntas, antes de comenzar su práctica, para tener derecho a acceder al laboratorio. Cuál es la forma más general de escribir la segunda ley de Newton?

Más detalles

Wilfrido Massieu ALUMNO GRUPO EQUIPO PROFESOR FECHA CALIF. PRACTICA No. 1. I. NOMBRE: ESTUDIO DE LAS LEYES DE NEWTON DEL MOVIMIENTO.

Wilfrido Massieu ALUMNO GRUPO EQUIPO PROFESOR FECHA CALIF. PRACTICA No. 1. I. NOMBRE: ESTUDIO DE LAS LEYES DE NEWTON DEL MOVIMIENTO. INSTITUTO POLITÉCNICO NACIONAL Centro De Estudios Científicos Y Tecnológicos Wilfrido Massieu LABORATORIO DE FÍSICA II ALUMNO GRUPO EQUIPO PROFESOR FECHA CALIF. PRACTICA No. 1. I. NOMBRE: ESTUDIO DE LAS

Más detalles

EXPERIMENTO Nº 5 FUERZA DE GRAVEDAD

EXPERIMENTO Nº 5 FUERZA DE GRAVEDAD EXPERIMENTO Nº 5 FUERZA DE GRAVEDAD INTRODUCCION En este experimento se usará la segunda Ley de Newton; (F=m * a) para medir la fuerza ejercida sobre un objeto por el campo de Gravitación Terrestre. Idealmente

Más detalles

Leyes de Newton. Comprobar la validez de las leyes de Newton mediante el estudio experimental de un problema sencillo de mecánica.

Leyes de Newton. Comprobar la validez de las leyes de Newton mediante el estudio experimental de un problema sencillo de mecánica. Leyes de Newton 1 Leyes de Newton Objetivos Comprobar la validez de las leyes de Newton mediante el estudio experimental de un problema sencillo de mecánica. Material 1 Banco neumático SF/DC, 2m: 1 Soplador

Más detalles

EXPERIMENTO Nº 4 SEGUNDA LEY DE NEWTON

EXPERIMENTO Nº 4 SEGUNDA LEY DE NEWTON EXPERIMENTO Nº 4 SEGUNDA LEY DE NEWTON INTRODUCCIÓN La segunda ley de Newton relaciona la fuerza total y la aceleración. Una fuerza neta ejercida sobre un objeto lo acelerará, es decir, cambiará su velocidad.

Más detalles

LABORATORIO No. 6. Segunda ley de Newton

LABORATORIO No. 6. Segunda ley de Newton LABORATORIO No. 6 Segunda ley de Newton 6.1. Introducción No hay nada obvio acerca de las relaciones que gobiernan el movimiento de los cuerpos. En efecto, tomó alrededor de 4000 años de civilización para

Más detalles

PRÁCTICA DE LABORATORIO II-05 PÉNDULO DE TORSIÓN

PRÁCTICA DE LABORATORIO II-05 PÉNDULO DE TORSIÓN PRÁCTICA DE LABORATORIO II-05 PÉNDULO DE TORSIÓN OBJETIVOS Determinar la constante de torsión de un péndulo. Estudiar la dependencia del período de oscilación con el momento de inercia. Determinar experimentalmente

Más detalles

Práctica 3. Determinación del momento de inercia de una barra y dos masas puntuales.

Práctica 3. Determinación del momento de inercia de una barra y dos masas puntuales. Práctica 3. Determinación del momento de inercia de una barra y dos masas puntuales. Mauricio Arredondo Soto, Ricardo Martínez Martínez y José María Rico Martínez Departamento de Ingeniería Mecánica. División

Más detalles

E J E R C I C I O S D E LAS L E Y E S D E N E W T O N

E J E R C I C I O S D E LAS L E Y E S D E N E W T O N E J E R C I C I O S D E LAS L E Y E S D E N E W T O N A.- Instrucciones.- En el paréntesis a la izquierda de cada aseveración escriba la letra que corresponda a la respuesta correcta. 01.-( ) A la parte

Más detalles

LABORATORIO DE MECANICA INERCIA ROTACIONAL

LABORATORIO DE MECANICA INERCIA ROTACIONAL No 10 LABORATORIO DE MECANICA DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos Investigar la inercia rotacional de algunas distribuciones de masas conocidas.

Más detalles

Cuestionario sobre las Leyes de Newton

Cuestionario sobre las Leyes de Newton Cuestionario sobre las Leyes de Newton 1. Enuncie las leyes de Newton y represente gráficamente o por medio de una ilustración Primera Ley: La primera ley de Newton, conocida también como Ley de inercia,

Más detalles

Experiencia P22: Momento de Inercia Sensor de Movimiento rotatorio

Experiencia P22: Momento de Inercia Sensor de Movimiento rotatorio Sensor de Movimiento rotatorio Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Movimiento rotatorio P22 Rotational Inertia.DS Equipo necesario Cant. Equipo necesario Cant. Sensor de Movimiento

Más detalles

Laboratorio de Mecánica de Fluidos I

Laboratorio de Mecánica de Fluidos I Laboratorio de Mecánica de Fluidos I Práctica # 2: Calibración de manómetros Objetivos Observar el principio de funcionamiento de un manómetro de Bourdon. Calibrar un manómetro tipo Bourdon. Entender el

Más detalles

Inercia Rotacional. Determinar la inercia de rotación de un disco y un anillo experimentalmente y compararlos con los cálculos teóricos.

Inercia Rotacional. Determinar la inercia de rotación de un disco y un anillo experimentalmente y compararlos con los cálculos teóricos. Objetivo. Inercia Rotacional Determinar la inercia de rotación de un disco y un anillo experimentalmente y compararlos con los cálculos teóricos. Introducción. La inercia rotacional (o de rotación) de

Más detalles

Cinemática y Dinámica

Cinemática y Dinámica Cinemática y Dinámica Cinética de la partícula Objetivo: El alumno aplicará las leyes de Newton en la resolución de ejercicios de movimiento de la partícula en un plano, donde intervienen las causas que

Más detalles

Realización de la práctica

Realización de la práctica OBJETIVOS DE APRENDIZAJE CAIDA LIBRE Demostrar que un cuerpo en caída libre describe un movimiento uniformemente variado. Obtener experimentalmente la relación matemática entre la distancia recorrida y

Más detalles

Guía Nº I Experimentación CAIDA LIBRE

Guía Nº I Experimentación CAIDA LIBRE OBJETIVO Liceo Juan XXIII, Villa Alemana Departamento de Ciencias Prof. David Valenzuela Guía Nº I Experimentación Cinemática MRUA CAIDA LIBRE W³.fisic.jimdo.com Investigar la influencia de la masa en

Más detalles

t = Vf Vi Vi= Vf - a t Aceleración : Se le llama así al cambio de velocidad y cuánto más rápido se realice el cambio, mayor será la aceleración.

t = Vf Vi Vi= Vf - a t Aceleración : Se le llama así al cambio de velocidad y cuánto más rápido se realice el cambio, mayor será la aceleración. Las magnitudes físicas Las magnitudes fundamentales Magnitudes Derivadas son: longitud, la masa y el tiempo, velocidad, área, volumen, temperatura, etc. son aquellas que para anunciarse no dependen de

Más detalles

LABORATORIO DE MECÁNICA Balanza de fuerzas Paralelas

LABORATORIO DE MECÁNICA Balanza de fuerzas Paralelas No 3 LABORATORIO DE MECÁNICA Balanza de fuerzas Paralelas DEPARTAMENTO DE FÍSICA Y GEOLOGÍA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos Objetivo Principal: Comprender las condiciones

Más detalles

DINÁMICA ROTACIONAL. El torque o momento de la fuerza esta dado por la expresión:

DINÁMICA ROTACIONAL. El torque o momento de la fuerza esta dado por la expresión: DINÁMICA ROTACIONAL I OBJETIVO: Estudio del movimiento rotacional de un cuerpo rígido (Verificación de la segunda Ley de Newton para un sistema rotacional) II INTRODUCCION: En la figura 1 se muestra un

Más detalles

INSTITUCIÓN EDUCATIVA GENERAL SANTANDER FÍSICA GRADO DÉCIMO MATERIAL DE APOYO LA SEGUNDA LEY DE NEWTON (LA LEY DEL MOVIMIENTO)

INSTITUCIÓN EDUCATIVA GENERAL SANTANDER FÍSICA GRADO DÉCIMO MATERIAL DE APOYO LA SEGUNDA LEY DE NEWTON (LA LEY DEL MOVIMIENTO) 1 INSTITUCIÓN EDUCATIVA GENERAL SANTANDER FÍSICA GRADO DÉCIMO MATERIAL DE APOYO LA SEGUNDA LEY DE NEWTON (LA LEY DEL MOVIMIENTO) INTRODUCCIÓN: PUNTOS DE INTERÉS Una fuerza es el nombre que se le da a todo

Más detalles

FÍSICA I MAGNITUDES FÍSICASF

FÍSICA I MAGNITUDES FÍSICASF FÍSICA I CAPÍTULO I: I MAGNITUDES FÍSICASF Magnitudes Física Magnitud:Ente abstracto para el cual existe algún criterio para definir la IGUALDAD y la SUMA. Ejemplo 1: LONGITUD IGUALDAD A C A C Ejemplo

Más detalles

MECÁ NICÁ GENERÁL. UNIDAD I: SISTEMAS DE FUERZAS EN EL PLANO.

MECÁ NICÁ GENERÁL. UNIDAD I: SISTEMAS DE FUERZAS EN EL PLANO. MECÁ NICÁ GENERÁL. OBJETIVOS PARTICULARES UNIDAD I: SISTEMAS DE FUERZAS EN EL PLANO. Conceptual Comprender el significado de conceptos y principios fundamentales de mecánica general. Procedimental Aplicar

Más detalles

GUÍAS DE LOS LABORATORIO DE FÍSICA I Y LABORATORIO DE FÍSICA GENERAL

GUÍAS DE LOS LABORATORIO DE FÍSICA I Y LABORATORIO DE FÍSICA GENERAL UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO AREA DE TECNOLOGIA DEPARTAMENTO DE FÍSICA Y MATEMATICA COORDINACION DE LABORATORIOS DE FÍSICA GUÍAS DE LOS LABORATORIO

Más detalles

Experiencia P25: Transformación de la Energía potencial gravitatoria en Energía Cinética Sensor de Movimiento Rotatorio

Experiencia P25: Transformación de la Energía potencial gravitatoria en Energía Cinética Sensor de Movimiento Rotatorio Experiencia P5: Transformación de la EPG en Energía Cinética Experiencia P5: Transformación de la Energía potencial gravitatoria en Energía Cinética Sensor de Movimiento Rotatorio Tema DataStudio ScienceWorkshop

Más detalles

LABORATORIO DE MECÁNICA FUERZA CENTRÍPETA

LABORATORIO DE MECÁNICA FUERZA CENTRÍPETA No 8 LABORATORIO DE MECÁNICA DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Comprobar experimentalmente la relación entre la fuerza centrípeta Fc que

Más detalles

Práctica No. Bloque: LEY DE NEWTON. Objeto de Aprendizaje: Leyes de la dinámica. Desempeño del estudiante al concluir la práctica:

Práctica No. Bloque: LEY DE NEWTON. Objeto de Aprendizaje: Leyes de la dinámica. Desempeño del estudiante al concluir la práctica: Bloque: III Práctica No. 10 LEY DE NEWTON Objeto de Aprendizaje: Leyes de la dinámica Desempeño del estudiante al concluir la práctica: Aplica las Leyes de la dinámica de Newton, en la solución y explicación

Más detalles

Movimiento rectilíneo uniformemente acelerado

Movimiento rectilíneo uniformemente acelerado Movimiento rectilíneo uniormemente acelerado Objetivo General El alumno estudiará el movimiento rectilíneo uniormemente acelerado Objetivos particulares 1. Determinar experimentalmente la relación entre

Más detalles

PRÁCTICA 3 DINÁMICA ROTACIONAL

PRÁCTICA 3 DINÁMICA ROTACIONAL PRÁCTICA 3 DINÁMICA ROTACIONAL. Objetivos.. Objetivo General Determinar experimentalmente el momento de inercia de un objeto a partir de cálculos estadísticos y de un análisis de regresión..2. Objetivos

Más detalles

Práctica 3. Determinación del momento de inercia de una barra y dos masas puntuales.

Práctica 3. Determinación del momento de inercia de una barra y dos masas puntuales. Práctica 3. Determinación del momento de inercia de una barra y dos masas puntuales. Mauricio Arredondo Soto, Ricardo Martínez Martínez y José María Rico Martínez Departamento de Ingeniería Mecánica. División

Más detalles

Cinemática en un plano inclinado LABORATORIO DE MECÁNICA N 3 CINEMÁTICA EN UN PLANO INCLINADO MARIA BELIZA CALDERON GUERRA CARLOS ANDRÉS DIAZ ANDRADE

Cinemática en un plano inclinado LABORATORIO DE MECÁNICA N 3 CINEMÁTICA EN UN PLANO INCLINADO MARIA BELIZA CALDERON GUERRA CARLOS ANDRÉS DIAZ ANDRADE LABORATORIO DE MECÁNICA N 3 CINEMÁTICA EN UN PLANO INCLINADO MARIA BELIZA CALDERON GUERRA CARLOS ANDRÉS DIAZ ANDRADE LUZ ESTHER GALIANO GUTIERRES BRENDA JACOME RAMOS STEFANNY MONTERO JIMENEZ Trabajo presentado

Más detalles

FÍSICA GENERAL. Guía de laboratorio 03: Principio de Arquímedes

FÍSICA GENERAL. Guía de laboratorio 03: Principio de Arquímedes FÍSICA GENERAL Guía de laboratorio 03: Principio de Arquímedes I. LOGROS ESPERADOS a) Mide la fuerza de empuje sobre un cuerpo sumergido en agua. b) Obtiene la densidad del fluido utilizando el principio

Más detalles

TEMA 1: CONCEPTOS BASICOS EN FISICA

TEMA 1: CONCEPTOS BASICOS EN FISICA La Física está dividida en bloques muy definidos, y las leyes físicas deben estar expresadas en términos de cantidades físicas. Entre dichas cantidades físicas están la velocidad, la fuerza, densidad,

Más detalles

COMPETENCIA NUMERO 1: UNIDAD DE NIVELACIÓN

COMPETENCIA NUMERO 1: UNIDAD DE NIVELACIÓN COMPETENCIA NUMERO 1: UNIDAD DE NIVELACIÓN NOTACIÓN CIENTIFICA: Es una expresión matemática de la forma ; donde X es un numero racional comprendido entre uno y diez, N es el numero de lugares que se haya

Más detalles

1. DINÁMICA. Matías Enrique Puello Chamorro

1. DINÁMICA. Matías Enrique Puello Chamorro Índice 1. DINÁMICA 2 2. DINAMICA 3 2.1. Dinámica...................................................... 3 2.2. Concepto de FUERZA.............................................. 4 2.3. Tipos de fuerza...................................................

Más detalles

UNA FUERZA es un empujón o jalón que actúa sobre un objeto. Es una cantidad vectorial que tiene magnitud y dirección.

UNA FUERZA es un empujón o jalón que actúa sobre un objeto. Es una cantidad vectorial que tiene magnitud y dirección. LA MASA de un objeto es una medida de su inercia. Se le llama inercia a la tendencia de un objeto en reposo a permanecer en este estado, y de un objeto en movimiento a continuarlo sin cambiar su velocidad.

Más detalles

CINEMATICA 1. INTRODUCCION

CINEMATICA 1. INTRODUCCION CINEMATICA 1. INTRODUCCION En este laboratorio se conocerá los diferentes movimientos que puede experimentar un móvil ya sea en el MRUV o en caída libre, gracias a la ayuda de los instrumentos Pasco y

Más detalles

Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial

Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial Dinámica de una partícula. Leyes de Newton, fuerzas, representación vectorial PRIMERA LEY DE NEWTON. Todo cuerpo continuará en su estado de reposo o de velocidad constante en línea recta, a menos que una

Más detalles

MOMENTO DE INERCIA 1. I OBJETIVO: Determinar el momento de inercia de un cuerpo usando un método dinámico

MOMENTO DE INERCIA 1. I OBJETIVO: Determinar el momento de inercia de un cuerpo usando un método dinámico 1 MOMENTO DE INERCIA 1 I OBJETIVO: Determinar el momento de inercia de un cuerpo usando un método dinámico II TEORIA: Un cuerpo rígido es un sistema constituido por muchas partículas de masa m i tal que

Más detalles

Mecánica Vectorial Cap. 1. Juan Manuel Rodriguez Prieto I.M., M.Sc., Ph.D.

Mecánica Vectorial Cap. 1. Juan Manuel Rodriguez Prieto I.M., M.Sc., Ph.D. Mecánica Vectorial Cap. 1 Juan Manuel Rodriguez Prieto I.M., M.Sc., Ph.D. Qué estudiaremos en este curso? Tomado de: h5p://biomechanics.stanford.edu/sta

Más detalles

LABORATORIO Nº 3 SEGUNDA LEY DE NEWTON

LABORATORIO Nº 3 SEGUNDA LEY DE NEWTON LABORATORIO Nº 3 SEGUNDA LEY DE NEWTON I. LOGROS Comprobar e interpretar la segunda ley de Newton. Comprobar la relación que existe entre fuerza, masa y aceleración. Analizar e interpretar las gráficas

Más detalles

UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE FÍSICA LABORATORIO DE MECÁNICA FUERZA CENTRÍPETA

UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE FÍSICA LABORATORIO DE MECÁNICA FUERZA CENTRÍPETA FUERZA CENRÍPEA OBJEIVO Estudiar los efectos de la fuerza centrípeta en un objeto que describe una trayectoria circular, al variar la masa del objeto, y el radio del círculo que describe en su movimiento.

Más detalles

Biomecánica. Dinámica

Biomecánica. Dinámica Biomecánica. Dinámica Matías Enrique Puello Chamorro www.matiaspuello.wordpress.com 12 de septiembre de 2018 Índice 1. DINÁMICA 3 2. DINAMICA 4 2.1. Dinámica................................. 5 2.2. Concepto

Más detalles

COLISIONES EN DOS DIMENSIONES

COLISIONES EN DOS DIMENSIONES Objetivo COLISIONES EN DOS DIMENSIONES Estudiar las leyes de conservación del momento lineal y la energía mecánica en colisiones elásticas en dos dimensiones. Equipo Plano inclinado con canal de aluminio,

Más detalles

Prueba experimental. Determinación del módulo de cizalladura del cobre.

Prueba experimental. Determinación del módulo de cizalladura del cobre. Prueba experimental. Determinación del módulo de cizalladura del cobre. Objetivo El módulo de cizalladura (también llamado de corte, de rigidez o de elasticidad transversal) es una constante de cada material

Más detalles

PRÁCTICA Nº3 Estudio Experimental de las Leyes de Newton. ΣF =ma Teoría. 3-2.Objetivos:

PRÁCTICA Nº3 Estudio Experimental de las Leyes de Newton. ΣF =ma Teoría. 3-2.Objetivos: PRÁCTICA Nº3 Estudio Experimental de las Leyes de Newton 3.1-. Introducción Para esta práctica (divididas en cinco actividades), se procede al estudio de la II Ley Newton (Ley fundamental de la Dinámica),

Más detalles

FÍSICA I. Guía de laboratorio 03: PRINCIPIO DE MOMENTO ANGULAR

FÍSICA I. Guía de laboratorio 03: PRINCIPIO DE MOMENTO ANGULAR I. LOGRO ESPERADO FÍSICA I Guía de laboratorio 03: PRINCIPIO DE MOMENTO ANGULAR a) Determina el momento de inercia de un disco metálico respecto a su eje de simetría utilizando el Principio de Momento

Más detalles

EXPERIENCIA RECUPERATIVA MÁQUINA DE ATWOOD

EXPERIENCIA RECUPERATIVA MÁQUINA DE ATWOOD UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA DEPARTAMENTO DE FÍSICA LABORATORIO FIS 110 EXPERIENCIA RECUPERATIVA MÁQUINA DE ATWOOD OBJETIVOS Verificar experimentalmente la relación entre Aceleración y Momento

Más detalles

Laboratorio #4 Ley de Ohm

Laboratorio #4 Ley de Ohm Laboratorio #4 Ley de Ohm Objetivo: Estudiar la relación entre la diferencia de potencial V y la intensidad de corriente I en una resistencia eléctrica R conectada en un circuito de corriente continua.

Más detalles

LABORATORIO DE FÍSICA TEORÍA DE GRÁFICAS

LABORATORIO DE FÍSICA TEORÍA DE GRÁFICAS Página 1 de 15 LABORATORIO DE FÍSICA TEORÍA DE GRÁFICAS OBJETIVO Las gráficas se utilizan para estudiar y comprender el mecanismo de un fenómeno observado, a la vez por medio del análisis de ellas se puede

Más detalles

DINÁMICA. Física 1º bachillerato Dinámica 1

DINÁMICA. Física 1º bachillerato Dinámica 1 DINÁMICA 1. Fuerzas. 2. Principios de la dinámica. 3. Momento lineal (o cantidad de movimiento). 4. Impulso mecánico. 5. Interacción gravitatoria. 6. Fuerza centrípeta. 7. Fuerza elástica. 8. Fuerza de

Más detalles

Experiencia P41: Ondas en un hilo Amplificador de potencia

Experiencia P41: Ondas en un hilo Amplificador de potencia Amplificador de potencia Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Ondas P41 Waves.DS P31 Waves on a String P31_WAVE.SWS Equipo necesario Cant Equipo necesario Cant Amplificador de potencia

Más detalles

UNIVERSIDAD AUTONOMA JUAN MISAEL SARACHO FACULTAD DE CIENCIAS Y TECNOLOGIA CARRERA DE INGENIERIA CIVIL FISICA I CIV 121 DOCENTE: ING. JOEL PACO S.

UNIVERSIDAD AUTONOMA JUAN MISAEL SARACHO FACULTAD DE CIENCIAS Y TECNOLOGIA CARRERA DE INGENIERIA CIVIL FISICA I CIV 121 DOCENTE: ING. JOEL PACO S. UNIVERSIDAD AUTONOMA JUAN MISAEL SARACHO FACULTAD DE CIENCIAS Y TECNOLOGIA CARRERA DE INGENIERIA CIVIL FISICA I CIV 121 DOCENTE: ING. JOEL PACO S. PONDERACION DE EVALUACION EXAMENES ( 60 % ) - 1 era Evaluación

Más detalles

Verificación experimental de la segunda ley de Newton.

Verificación experimental de la segunda ley de Newton. Objetivo Temático Segunda ley de Newton Verificación experimental de la segunda ley de Newton. Objetivo Específico Encontrar experimentalmente la relación entre la fuerza resultante aplicada a un cuerpo

Más detalles

EJERCICIOS A DESARROLLAR

EJERCICIOS A DESARROLLAR EJERCICIOS A DESARROLLAR 1. Obtenga la resultante de los siguientes vectores: a) b) A B A B c) A B d) Utilice los vectores del ítem "a": Coloque al vector A sobre el ejc de las abscisas con punto de aplicación

Más detalles

SEGUNDA EVALUACIÓN. FÍSICA Septiembre 10 del 2014 (08h30-10h30)

SEGUNDA EVALUACIÓN. FÍSICA Septiembre 10 del 2014 (08h30-10h30) SEGUNDA EVALUACIÓN DE FÍSICA Septiembre 10 del 2014 (08h30-10h30) Como aspirante a la ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar" NOMBRE: FIRMA:

Más detalles

Dinámica de Rotaciones

Dinámica de Rotaciones Pontificia Universidad Católica de Chile Instituto de Física FIZ02 Laboratorio de Mecánica Clásica Dinámica de Rotaciones Objetivo Estudiar la dinámica de objetos en movimiento rotacional. Introducción

Más detalles

Experiencia P21: Rozamiento cinético Célula Fotoeléctrica/Sistema de Poleas

Experiencia P21: Rozamiento cinético Célula Fotoeléctrica/Sistema de Poleas Experiencia P21: Rozamiento cinético Célula Fotoeléctrica/Sistema de Poleas Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Leyes de Newton P21 Kinetic Friction.DS P25 Kinetic Friction P25_KINE.SWS

Más detalles

P = Mg 2. Práctica 3: Estática

P = Mg 2. Práctica 3: Estática En esta Práctica de Laboratorio haremos experimentos sobre Estática comprobando que las Leyes descubiertas por Isaac Newton, también se cumplen en esta situación. Leer todo el procedimiento antes de hacer

Más detalles

LABORATORIO DE MECÁNICA SEGUNDA LEY DE NEWTON

LABORATORIO DE MECÁNICA SEGUNDA LEY DE NEWTON No 4 LABORATORIO DE MECÁNICA DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Estudiar y verificar la Segunda Ley de Newton así como el comportamiento

Más detalles

Práctica 1. Verificación de la segunda ley de Newton mediante posición y tiempo.

Práctica 1. Verificación de la segunda ley de Newton mediante posición y tiempo. Práctica 1. Verificación de la segunda ley de Newton mediante posición y tiempo. Mauricio Arredondo Soto, Ricardo Martínez Martínez y José María Rico Martínez Departamento de Ingeniería Mecánica. División

Más detalles

PRACTICA No. 3 EL ESTADO GASEOSO

PRACTICA No. 3 EL ESTADO GASEOSO PRACTICA No. 3 EL ESTADO GASEOSO INTRODUCCION: Las sustancias en Estado Gaseoso tienen propiedades físicas y químicas que las hacen diferentes de otras que se encuentran en un estado físico distinto. A

Más detalles

INSTITUTO SUPERIOR DE COMERCIO EDUARDO FREY MONTALVA

INSTITUTO SUPERIOR DE COMERCIO EDUARDO FREY MONTALVA INSTITUTO SUPERIOR DE COMERCIO EDUARDO FREY MONTALVA GUÍA DE ACTIVIDADES física 2 DO MEDIO UNIDAD: Profesor Marco Palma Cifuentes. Curso: Estudiante Fecha : Aprendizaje esperado Comprender la naturaleza

Más detalles

Serie de Dinámica MOVIMIENTO RECTILÍNEO

Serie de Dinámica MOVIMIENTO RECTILÍNEO Serie de Dinámica MOVIMIENTO RECTILÍNEO 1. En un ascensor en movimiento se pesa un cuerpo de 5 kg con una balanza de resorte. La balanza indica 5.1 kg. Halle la aceleración del ascensor. 2. Los pesos de

Más detalles

Informe De Laboratorio PRÁCTICA 8: CONSERVACIÓN DE LA ENERGIA MECANICA

Informe De Laboratorio PRÁCTICA 8: CONSERVACIÓN DE LA ENERGIA MECANICA R Informe De Laboratorio PRÁCTICA 8: CONSERVACIÓN DE LA ENERGIA MECANICA Presentado Por: JEAN NICOLAS HERNANDEZ BUITRAGO G7N16 ALEJANDRO GOMEZ G7N15 MAURICIO POLANIA G7N23 SANTIAGO ALDANA G7N02 Presentado

Más detalles

UNIVERSIDAD DEL ZULIA PROGRAMA DE INGENIERÍA NÚCLEO COSTA ORIENTAL DEL LAGO UNIDAD CURRICULAR: FÍSICA I

UNIVERSIDAD DEL ZULIA PROGRAMA DE INGENIERÍA NÚCLEO COSTA ORIENTAL DEL LAGO UNIDAD CURRICULAR: FÍSICA I UNIVERSIDAD DEL ZULIA PROGRAMA DE INGENIERÍA NÚCLEO COSTA ORIENTAL DEL LAGO UNIDAD CURRICULAR: FÍSICA I INSTRUCTIVO PRÁCTICA Nº 3. TRAZADO DE GRÁFICAS Preparado por. Ing. Ronny J. Chirinos S., MSc OBJETIVO

Más detalles

I. Objetivos. II. Introducción.

I. Objetivos. II. Introducción. Universidad de Sonora División de Ciencias Exactas y Naturales Departamento de Física Laboratorio de Mecánica II Práctica #: Dinámica rotacional: Cálculo del Momento de Inercia I. Objetivos. Medir el momento

Más detalles

Física y Química. A = 7 u. B = 5 u

Física y Química. A = 7 u. B = 5 u Introducción Cálculo con Vectores [a] Vectores con la misma dirección y con el mismo sentido El módulo del vector resultante será la suma de los módulos de los vectores participantes. La dirección y el

Más detalles

La fuerza es una cantidad vectorial y por esta razón tiene magnitud dirección y sentido. DINÁMICA LEYES DEL MOVIMIENTO

La fuerza es una cantidad vectorial y por esta razón tiene magnitud dirección y sentido. DINÁMICA LEYES DEL MOVIMIENTO DINÁMICA LEYES DEL MOVIMIENTO La Dinámica clásica estudia todas las relaciones que existen entre los cuerpos en movimiento y las posibles causas que lo producen, o dicho de otra manera estudia las fuerzas

Más detalles

SEGUNDA LEY DE NEWTON. MÁQUINA DE ATWOOD (SISTEMA DE FOTOCOMPUERTA Y POLEA).

SEGUNDA LEY DE NEWTON. MÁQUINA DE ATWOOD (SISTEMA DE FOTOCOMPUERTA Y POLEA). SEGUNDA LEY DE NEWTON. MÁQUINA DE ATWOOD (SISTEMA DE FOTOCOMPUERTA Y POLEA). Physics Labs with Computers. PASCO. Actividad Práctica 10. Teacher s Guide Volumen 1. Pág. 89. Student Workbook Volumen 1. Pág.

Más detalles

1. Objetivos. 2. Fundamento teórico. c Alberto Pérez Izquierdo, Francisco Medina y Rafael R. Boix 1

1. Objetivos. 2. Fundamento teórico. c Alberto Pérez Izquierdo, Francisco Medina y Rafael R. Boix 1 c Alberto Pérez Izquierdo, Francisco Medina y Rafael R. Boix 1 PRÁCTICA 2B MEDIDA DE LA FUERZA MAGNÉTICA SOBRE CORRIENTES ESTACIONARIAS. BALANZA DE CORRIENTE 1. Objetivos Con esta práctica se trata, en

Más detalles

FISVIR Física virtual al alcance de todos TALLER DE EJERCICIOS PARA PRACTICAR OBJETOS VIRTUALES DE APRENDIZAJE OVA s OTRAS TAREAS

FISVIR Física virtual al alcance de todos TALLER DE EJERCICIOS PARA PRACTICAR OBJETOS VIRTUALES DE APRENDIZAJE OVA s OTRAS TAREAS FISVIR Física virtual al alcance de todos TALLER DE EJERCICIOS PARA PRACTICAR OBJETOS VIRTUALES DE APRENDIZAJE OVA s OTRAS TAREAS Preguntas. 1. Cuál es la distancia total recorrida por un cuerpo que ejecuta

Más detalles

que alcanza y choca frontalmente con otra esfera de masa m 2 y velocidad v m v m v m v m v d 2 2d m v m v m v m v

que alcanza y choca frontalmente con otra esfera de masa m 2 y velocidad v m v m v m v m v d 2 2d m v m v m v m v Choques Fundamento Se caracteriza un choque elástico porque hay conservación de dos magnitudes antes y después del choque y éstas son la cantidad de movimiento y la energía cinética. Supongamos una esfera

Más detalles

LABORATORIO Nº 2 PRIMERA Y SEGUNDA CONDICIÓN DE EQUILIBRIO

LABORATORIO Nº 2 PRIMERA Y SEGUNDA CONDICIÓN DE EQUILIBRIO LABORATORIO Nº 2 PRIMERA Y SEGUNDA CONDICIÓN DE EQUILIBRIO I. LOGRO Comprobar experimental, gráfica y analíticamente la primera y segunda condición de equilibrio a través de diagramas de cuerpo libre.

Más detalles

Primera Ley: En ausencia de una fuerza externa neta, todo cuerpo permanece en reposo o en movimiento con velocidad constante.

Primera Ley: En ausencia de una fuerza externa neta, todo cuerpo permanece en reposo o en movimiento con velocidad constante. Leyes de Newton Primera Ley: En ausencia de una fuerza externa neta, todo cuerpo permanece en reposo o en movimiento con velocidad constante. Sistema Inercial de Referencia Es uno donde se cumple la primera

Más detalles

EXPERIENCIA N 4 COLISIONES EN UNA DIMENSIÓN

EXPERIENCIA N 4 COLISIONES EN UNA DIMENSIÓN UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA DEPARTAMENTO DE FÍSICA LABORATORIO FIS 110 COLISIONES EN UNA DIMENSIÓN OBJETIVO GENERAL Después de realizar con éxito esta experiencia, usted debería ser capaz

Más detalles

PRIMERA EVALUACIÓN. FÍSICA Junio 19 del 2014 (11h30-13h30)

PRIMERA EVALUACIÓN. FÍSICA Junio 19 del 2014 (11h30-13h30) PRIMERA EVALUACIÓN DE FÍSICA Junio 19 del 2014 (11h30-13h30) Como aspirante a la ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar" NOMBRE: FIRMA: VERSIÓN

Más detalles

PRIMERA EVALUACIÓN. FÍSICA Junio 19 del 2014 (08h30-10h30)

PRIMERA EVALUACIÓN. FÍSICA Junio 19 del 2014 (08h30-10h30) PRIMERA EVALUACIÓN DE FÍSICA Junio 19 del 2014 (08h30-10h30) Como aspirante a la ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar" NOMBRE: FIRMA: VERSIÓN

Más detalles

y v y Trayectoria de un proyectil

y v y Trayectoria de un proyectil EXPERIMENTO 1- Lanzamiento Horizontal I OBJETIVO: Comprobar que el lanzamiento de proyectiles es la superposición de dos movimientos: un movimiento a velocidad constante en la dirección horizontal y un

Más detalles

Magnitudes, Cantidades: fundamentales y derivadas. Sistema de Unidades. Mediciones.

Magnitudes, Cantidades: fundamentales y derivadas. Sistema de Unidades. Mediciones. Magnitudes, Cantidades: fundamentales y derivadas. Sistema de Unidades. Mediciones. Resumen La física, como los demás ciencias, es una empresa de creación, no simplemente una colección de hechos. La física

Más detalles

FLUIDOS Profesor: Robinson Pino Hernández

FLUIDOS Profesor: Robinson Pino Hernández FLUIDOS Profesor: Robinson Pino Hernández 1 PRESIÓN Fuerza perpendicular que se ejerce por unidad de área. Presión = fuerza perpendicular Área Sus unidades Sistema Internacional: Pascal = N/m² CGS: baria

Más detalles

Estática. Principios Generales

Estática. Principios Generales Estática 1 Principios Generales Objetivos Cantidades básicas e idealizaciones de la mecánica Leyes de Newton de movimiento y gravitación SI sistema de unidades y uso de prefijos Cálculo numérico Consejos

Más detalles

FUERZA DE FRICCIÓN CINÉTICA (SISTEMA DE FOTOCOMPUERTA Y POLEAS)

FUERZA DE FRICCIÓN CINÉTICA (SISTEMA DE FOTOCOMPUERTA Y POLEAS) FUERZA DE FRICCIÓN CINÉTICA (SISTEMA DE FOTOCOMPUERTA Y POLEAS) Physics Labs with Computers. PASCO. Actividad Práctica 21. Teacher s Guide Volumen 1. Pág.199. Student Workbook Volumen 1. Pág. 145. EQUIPOS

Más detalles

Tema 4: Dinámica del punto I

Tema 4: Dinámica del punto I Tema 4: Dinámica del punto I FISICA I, 1º Grado en Ingeniería Aeroespacial Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Introducción Leyes de Newton Fuerzas activas y de reacción

Más detalles

FUERZAS Y LEYES DE NEWTON. Profesor : Marco Rivero Menay Ingeniero Ejecución Industrial UVM

FUERZAS Y LEYES DE NEWTON. Profesor : Marco Rivero Menay Ingeniero Ejecución Industrial UVM FUERZAS Y LEYES DE NEWTON Profesor : Marco Rivero Menay Ingeniero Ejecución Industrial UVM 1 FUERZAS Y Leyes de Newton Una fuerza es toda causa capaz de deformar un cuerpo o modificar su estado de reposo

Más detalles

FÍSICA GENERAL. Guía de laboratorio 02: Conservación de la Energía Mecánica

FÍSICA GENERAL. Guía de laboratorio 02: Conservación de la Energía Mecánica I. LOGROS ESPERADOS FÍSICA GENERAL Guía de laboratorio 02: Conservación de la Energía Mecánica a) Compara la energía potencial elástica, inicialmente almacenada en un resorte, con la máxima energía potencial

Más detalles