Problema nº 1: Dominó/Dominó triangular
|
|
|
- Francisco Javier Saavedra Navarro
- hace 9 años
- Vistas:
Transcripción
1 Problema nº 1: Dominó/Dominó triangular Las fichas del juego del dominó son rectángulos formados a partir de la unión de dos cuadrados. En esos cuadrados hay puntos que pueden variar de 0 a 6. Así tenemos la ficha 3-4 (o 4-3 que es la misma), la 0-0 (conocida como blanca doble), la 0-5, la 3-3, etc. Un juego completo de dominó se compone de 8 fichas. a) Si quisiéramos hacer un dominó en el que los puntos de cada cuadrado sólo fueran de 0 a 4, cuántas fichas tendría el juego completo? = b) Y si los puntos fueran de 0 a 10? =66 El dominó triangular es parecido al dominó. Las fichas son triángulos equiláteros y cada una lleva tres valores (números de 0 a 5, en vez de puntos), uno en cada vértice, tal como podéis ver en los ejemplos siguientes:
2 (Estas dos fichas son la misma) (Estas dos fichas son diferentes) c) Dos fichas son iguales si tienen los mismos tres números y están colocados en el mismo orden circular. Cuántas fichas diferentes hay en este dominó triangular? Indico una manera de contar, hay otras. Con un 5 arriba Hay 36 fichas = 6^. Del mismo modo, contando el cuadro de las que tienen un 4, hay 5^ y sigue 3^, ^, 1^. Pero las fichas de la primera fila están repetidas en la primera columna, excepto el 5-5-5, que sólo está una vez, luego hay que quitar 5 fichas. En el cuadro del 4 pasa lo mismo, hay que quitar 4 fichas, y en los siguientes, 3,, 1, 0. Por lo tanto, el número de fichas será: ( ) ( ) = = 76
3 Problema nº : El juego de los cartones Ocho alumnos de una clase, Aurora, Berta, Clara, David, Ester, Fernando, Gloria y Helia tienen ocho cartones cuadrados, todos de la misma medida, donde han escrito sus iniciales (cuatro iniciales en cada cartón). Deciden hacer un juego que consiste en colocar sucesivamente los cartones cuadrados en un tablero, también cuadrado, que tiene la longitud del lado doble de las de los cartones: Cada cartón se ha de colocar con los lados paralelos a los del tablero y de manera que cada cartón que se coloque tape parcialmente el anterior (el segundo ha de tapar una parte del primero, el tercero una parte del segundo y también si se quiere una parte del primero, el cuarto una parte del tercero y si se quiere de los anteriores, etc.) Una posible sucesión de jugadas podría ser ésta: Y otra sucesión posible es ésta: Después de haber colocado los ocho alumnos sus cartones, el tablero presenta este aspecto:
4 a) De los ocho alumnos, quién fue el último en colocar su cartón? Berta. b) Y quién fue el penúltimo? David. c) Cuál ha sido el orden en el que se han colocado los cartones? Clara, Ester, Fernando, Aurora, Helia, Gloria, David, Berta Observar que hay una rotación que debe terminar en D, B. d) Crees que sin colocar todos los cartones, pero siguiendo las instrucciones del juego, se podría llegar a cubrir todo el tablero? Cuántos cartones harían falta? Pon un ejemplo, colocando los cartones por orden alfabético (esto es, primero Aurora, segundo Berta, etc.) y di cómo quedaría el tablero. No se puede hacer con menos de siete cartones. Yo creo que una razonable justificación es que la mitad superior (y la inferior) necesitan tres cartones cada una para cubrirse (aunque inicialmente se pusieran en diagonal, que abarcan más), pero al tener que solaparse entre ellas se necesita el séptimo de caballería para ganar la batalla. Un ejemplo sería con A,B,C,D.E,F,G, y el tablero quedaría, por ejemplo así (hay otras posibilidades). A A C C A B D D G G F E G G F E
5 Problema nº 3: Poliamantes Un poliamante es una figura formada por varios triángulos equiláteros, todos con lados de la misma longitud, unidos por uno de sus lados. Por ejemplo, con dos triángulos equiláteros se puede formar una sola figura, el diamante, y con tres triángulos equiláteros se puede formar también una sola figura, el triamante. En la Figura 1 puedes ver el diamante colocado en distintas posiciones y en la Figura puedes ver el triamante en dos posiciones diferentes. Contesta a las siguientes preguntas y justifica las respuestas: a) Cuántas figuras diferentes podemos formar con cuatro triángulos equiláteros? Las llamaremos los tetramantes. Dibuja cada uno de ellos en esta trama: b) Varios tetramantes se han combinado para formar la Figura 3. Halla una descomposición de la figura, señalando los tetramantes que la forman. Se me ocurren estas dos:
6 c) Cuántas figuras diferentes podemos formar con cinco triángulos equiláteros? Las llamaremos los pentamantes. Dibuja cada uno de ellos en esta trama de puntos: Ojo con las respuestas de los niños! Estos seis pentamantes podrían ser cuatro si se consideran en el espacio! d) Varios pentamantes se han combinado para formar la Figura 4. Halla una descomposición de la figura, señalando los pentamantes que la forman. Se me ocurren estas dos:
7 Problema nº 4: El cubo rodante Se tiene un cubo, con números del 1 al 6, en cada una de sus caras, cuyo desarrollo es el que se ve en la Figura 1. a) En la Figura puedes ver dos desarrollos del cubo anterior, pero se han borrado algunos números. Rellena los huecos en blanco para que estos desarrollos sean también del mismo cubo que el de la Figura Figura Se dispone ahora de un tablero con doce casillas del mismo tamaño que las caras del cubo. Se coloca el cubo en la casilla A-1 del tablero, siendo la cara superior la ocupada por el número 1. Cada movimiento del cubo consiste en voltearlo sobre una de sus aristas para situarlo en una de las casillas vecinas. b) Se han realizado, desde la posición inicial una serie de movimientos de forma que el cubo ha pasado una sola vez por cada una de las casillas del tablero y en cada una hemos anotado el número que figura en la cara de arriba. El resultado obtenido es el que aparece en la Figura 3. Di cuál ha sido el camino que ha seguido el cubo sobre el tablero, explicando tu razonamiento. 3
8 A-1, A-, A-3, A-4, B-4, C-4, C-3, B-3, B-, C-, C-1, B-3 Exceptuando los primeros movimientos, en los que hay que buscar el volteo correcto, después la mayoría son movimientos obligados por los bordes o por coincidencia con números contiguos. c) Explica por qué la configuración de la Figura 4 no se puede obtener mediante el proceso antes descrito de movimientos del cubo a partir de la posición inicial A Si pasamos del 1 arriba (A1) al 3 arriba (B1), queda a la izquierda un 5 y detrás un 6, luego no podemos pasar a 3 en B ni a en C1. - Si pasamos del 1 arriba (A1) al 4 arriba (A), queda a la izquierda un 6 y detrás un 5, luego no podemos pasar a 3 en B ni a en A3. Entonces no se puede completar la figura rodando el cubo.
9 - Problema nº 5: El museo Las salas de un Museo son habitaciones como las que se muestran en la figura. Cada habitación está conectada por una puerta con cada una de las habitaciones con las que comparte un lado. La entrada y la salida del Museo están situadas en habitaciones diametralmente opuestas. En los dibujos aparecen dos diseños diferentes de Museo. El de la izquierda está formado por cuatro habitaciones dispuestas como un cuadrado, diremos que es un Museo. El de la derecha es un Museo 3 3: Un visitante del Museo que entra por la ENTRADA desea visitar cada habitación exactamente una vez y salir por la SALIDA. A estos recorridos los llamaremos caminos aceptables. a) Puedes encontrar un camino aceptable en el Museo? Y en el Museo 3 3? En el x, NO y en el 3 x 3, SÍ. b) Inténtalo en los Museos 4 4 y 5 5 (dibújalos e intenta encontrar caminos aceptables en ellos). E E S S c) En algunos de los anteriores Museos no has podido encontrar ningún camino aceptable y es que, a veces, es imposible. Explica por qué en algunos casos no es posible encontrar un camino aceptable. (Quizás te ayude imaginarte un tablero de ajedrez). - Cada cambio de habitación supone un cambio de color. En el primer caso hay que recorrer 16 habitaciones desde E hasta S, luego hay que hacer 14 cambios de color (un número par). Si empezamos en blanco, terminamos en negro, luego es imposible. - En el Museo 5 x 5 hay 5 habitaciones, por lo tanto hay que hacer 3 cambios de color (un número impar). Si empezamos en blanco, terminamos en blanco, luego es posible. Hay muchas
10 formas de hacerlo, una de ellas es recorrer las filas enteras de derecha a izquierda y al revés, bajando desde E hasta S. d) No vas a dibujar un Museo , pero te lo puedes imaginar y tratar de ver si hay un camino aceptable o no. Lo mismo podrías hacer con otro Museo que sea Y lo mismo podrías hacer con un Museo que sea de la forma N N, donde N representa un número cualquiera. Podrías dar una regla general que nos permita decidir si en un Museo cuadrado N N vamos a poder encontrar un camino aceptable? Por el razonamiento anterior, el recorrido será posible cuando N sea impar. e) Planteamos ahora la misma pregunta, esta vez con Museos rectangulares. Entrénate, por ejemplo, con Museos 3, 4, 5 7, etc. E E S E S S - En el 3 x hay que atravesar 4 puertas (par), luego se entra por blanco y se sale por negro, posible: hay que recorrer columnas de arriba a abajo y de abajo a arriba desde E hasta S. - En el 4 x hay que atravesar 6 puertas (par), luego se entra por blanco y se sale por negro, imposible. - En el 5 x 7, con el mismo razonamiento, es posible, claramente: hay muchas formas de hacer el recorrido. Imagínate un Museo de dimensión , o bien Podrías encontrar un camino aceptable? Lo mismo podrías hacer con un Museo que sea de la forma N M, donde N es un número cualquiera y M es otro número cualquiera distinto de N. Qué condiciones han de cumplir N y M para que en un Museo N M haya con seguridad un camino aceptable? - Razonando como antes vemos que existe un camino aceptable si y sólo si N ó M es un número impar.
11 Problema nº 6: Jugando con las estrellas Se considera la estrella de David, formada con dos triángulos equiláteros que se cortan como los de la figura, determinando 1 puntos (seis vértices y seis puntos de intersección de los lados). Un juego consiste en construir una estrella mágica colocando en los puntos los números del 1 al 1 sin repetir ninguno, con la condición de que los cuatro que están sobre cada lado sumen siempre lo mismo. a) Encuentra una solución en la que sobre los tres vértices de uno de los triángulos estén los números 1, y 9 con la condición de que los cuatro números que están sobre cada lado sumen Basta observar que los números 11 y 1 están obligados, aunque pueden alternarse. b) En cualquier solución de la estrella mágica la suma de los cuatro números colocados sobre un lado es siempre 6. Explica por qué. - La suma del 1 al 1 es 78. Como cada punto hay que contarlo dos veces (uno por cada lado que pasa por el punto), la suma total de todos los puntos (contado cada uno dos veces) será: 78 x = 156. Como esta suma tiene que repartirse por igual entre los seis lados, dividimos 156:6 =6. - Un razonamiento que pueden hacer los críos: como cada lado me dicen que suma 6, todos los lados juntos sumarán 6 x 6 =156. Como los números del 1 al 1 suman 78, pues 156:78 = y esto quiere decir que por cada punto pasan dos lados.
12 c) Encuentra otra solución sabiendo que la suma de los números colocados en los seis vértices es también 6 y que, además, los números colocados en los vértices de uno de los triángulos son impares y suman lo mismo que los colocados en los vértices del otro triángulo. - La suma de los vértices ha de ser 13. Entonces sólo hay dos posibilidades {1,3,9} y {1,5,7}. - En la primera opción hay dos posibilidades para el otro triángulo: {,4,7} y {,5,6}. - En la segunda opción hay dos posibilidades para el otro triángulo: {,3,8} y {3,4,6} - Probando las cuatro combinaciones, sólo resultan estas dos válidas: d) En cualquier solución de la estrella mágica la suma de los números colocados sobre los vértices de uno de los triángulos es igual a la suma de los números colocados sobre los vértices del otro triángulo. Explica por qué. - La suma de los tres lados de uno de los triángulos es 6 x 3 =78 que puede descomponerse en la suma de los vértices + la suma de los puntos que forman el hexágono interior. - En el otro triángulo ocurre los mismo: 78 = suma de los vértices + la suma de los puntos que forman el hexágono interior. Por lo tanto, como el hexágono interior es el mismo para ambos: Suma de los vértices del triángulo (1)+ la suma de los puntos que forman el hexágono interior = Suma de los vértices del triángulo ()+ la suma de los puntos que forman el hexágono interior. De donde, suma de los vértices del triángulo (1) = suma de los vértices del triángulo ().
b) Si el hexágono mide 50 metros de lado, cuántos animales se pueden poner en el zoológico como máximo?
1. EL ZOOLÓGICO Un zoológico tiene forma hexagonal con celdas que son triángulos equiláteros de 10 metros de lado, como en las figuras. Por seguridad no puede haber dos animales en una misma celda y si
III: Geometría para maestros. Capitulo 1: Figuras geométricas
III: Geometría para maestros. Capitulo : Figuras geométricas SELECCIÓN DE EJERCICIOS RESUELTOS SITUACIONES INTRODUCTORIAS En un libro de primaria encontramos este enunciado: Dibuja un polígono convexo
6. Mosaicos y movimientos. en el plano
6. Mosaicos y movimientos en el plano Ámbito científico 1. Mosaicos 2. Módulos planos 3. Diseña mosaicos 4. Ejemplos de mosaicos 5. Ejemplos de tramas 6. Mosaicos semiregulares I 7. Libro de espejos 8.
CANGURO MATEMÁTICO Nivel Estudiante (6to. Curso)
CANGURO MATEMÁTICO 2003 Nivel Estudiante (6to. Curso) Día 22 de marzo de 2003. Tiempo: hora y 5 minutos No se permite el uso de calculadoras. Hay una única respuesta correcta para cada pregunta. Cada pregunta
CUADERNO DE CÁLCULO:
CUADERNO DE CÁLCULO: 2013-2014 TERCER CICLO 6º PRIMARIA ALUMNO/A:... Cálculo 6º Ed. Primaria Colegio Romareda 2013/14 Página 2 Cálculo 6º Ed. Primaria Colegio Romareda 2013/14 Página 3 Índice Cálculo mental
unidad 11 Transformaciones geométricas
unidad 11 Transformaciones geométricas Cómo dibujar ángulos de 60 con regla y compás Página 1 La cuerda de un arco de 60 (apertura del compás) es igual al radio con que se ha trazado. Veamos el proceso:
Enunciados de los problemas (1)
Enunciados de los problemas (1) Problema 1. El peso de tres manzanas y dos naranjas es de 255 gramos. El peso de dos manzanas y tres naranjas es de 285 gramos. Si todas las manzanas son del mismo peso
1. Progresiones aritméticas
1 PROGRESIONES ARITMÉTICAS 1 1. Progresiones aritméticas Una progresión aritmética es una sucesión en la que cada término es igual al anterior más un número constante llamado diferencia de la progresión.
1. Laura y Rosa están mirando un tarro con forma de cilindro. Lo que ven está representado en la figura.
Sector y Nivel: Matemática 4 Básico Eje: Geometría 1. Laura y Rosa están mirando un tarro con forma de cilindro. Lo que ven está representado en la figura. Desde dónde es posible que estén observando el
1. CIRCUITO. a) Irene se dio un paseo por este circuito y salió convertida en el 17. Qué itinerario siguió y qué número era al principio?
1. CIRCUITO Este circuito solo reconoce números naturales (0, 1, 2,,...). Cuando un número entra en este circuito se coloca en la casilla de Entrada y siguiendo las flechas va avanzando hasta llegar a
POLIEDROS. ÁREAS Y VOLÚMENES.
7. POLIEDROS. ÁREAS Y VOLÚMENES. EN ESTA UNIDAD VAS A APRENDER CUERPOS GEOMÉTRICOS POLIEDROS POLIEDROS REGULARES PRISMAS PIRÁMIDES CARACTERÍSTICAS DEFINICIÓN ELEMENTOS DEFINICIÓN ELEMENTOS - Tetaedro.
EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA
1.- Dos triángulos ABC y A C son semejantes y la razón de semejanza entre el primero y el segundo es,4. Calcula las longitudes de los lados que faltan sabiendo que AB = 0 cm, BC = 15 cm y A C = 10 cm.
MATRICES DE RAVEN SET AVANZADO II CRITERIOS UTIIZADOS PARA RESOLVER LAS MATRICES DIDÁCTICA DE LA FÍSICA PÁGINA 20
MATRICES DE RAVEN SET AVANZADO II CRITERIOS UTIIZADOS PARA RESOLVER LAS MATRICES NOMBRE: William H. Angulo M. DIDÁCTICA DE LA FÍSICA RESPUESTA: 8 PÁGINA 20 1. Se identificaron los elementos que forman
Jugando con el Dominó
Jugando con el Dominó Antonio M. Oller Marcén 1. Introducción Todos conocéis el juego del dominó. Es más que probable que hayáis jugado más de una vez e incluso que alguno sea un experto. Ahora bien, si
SEGUNDA OLIMPIADA ESTATAL DE MATEMÁTICAS
PROBLEMAS PROPUESTOS PARA LA ETAPA DE ZONA PRIMER GRADO 1. Marcos tiene todas las letras del abecedario en tres tamaños: grandes, medianas y pequeñas: A,B,C,D,E,...,Z A,B,C,D,E,...,Z A,B,C,D,E,...,Z Usando
1. TARJETAS NUMERADAS.
1. TARJETAS NUMERADAS. Alex y Bea tienen 10 tarjetas numeradas con los números 1, 2, 3,... 10. Juegan a un juego en el que uno de ellos debe usar tres tarjetas para obtener la suma que diga su compañero.
Seminario de problemas. Curso Hoja 1
Seminario de problemas. Curso 2011-12. Hoja 1 1. En la estación central de una red ferroviaria se venden tantos billetes distintos como estaciones a las que se puede ir desde una estación determinada de
Soluciones Segundo Nivel Infantil
SOCIEDAD ECUATORIANA DE MATEMÁTICA ETAPA FINAL "VIII EDICIÓN DE LAS OLIMPIADAS DE LA SOCIEDAD ECUATORIANA DE MATEMÁTICA" Soluciones Segundo Nivel Infantil 21 de mayo de 2011 1. El resultado de la siguiente
ESTALMAT-Andalucía Actividades 05/06 Sesión: nº 22 Fecha: 10 de junio de 2006 Título: Construcción de Poliedros deltaedros-
Hoja número 0. CONSTRUYENDO POLIEDROS. El material que tienes sobre la mesa se llama CREATOR o POLYDRON. Consta de piezas polígonos regulares- que pueden engarzarse para formar cuerpos como los sólidos
Información importante que debes leer antes de comenzar a trabajar
PROYECTO DE LA REAL ACADEMIA DE CIENCIAS S.A.E.M. THALES ESTALMAT Estímulo del Talento Matemático Prueba de selección 4 de junio de 2011 Nombre:... Apellidos:... Localidad: Provincia:... Fecha de nacimiento:././199.
1. Dualidad de poliedros. 2. Prismas y antiprismas. 3. Estructuras espaciales. 4. Secciones y simetrías de poliedros. 5. Macizamiento del espacio
5. Poliedros Matemáticas 2º ESO 1. Dualidad de poliedros 2. Prismas y antiprismas 3. Estructuras espaciales 4. Secciones y simetrías de poliedros 5. Macizamiento del espacio 6. Coordenadas en el espacio
Cuadriláteros y circunferencia
CLAVES PARA EMPEZAR Un triángulo isósceles tiene dos lados iguales: b c. Como es rectángulo, se cumple el teorema de Pitágoras: 10 2 b 2 b 2 100 2b 2 b 7,07. Los dos lados miden 7,07 cm cada uno. r A C
Trabajo 2. Jonathan A. Trejos O. El primer problema es uno típico de teoría de números, en el cual se puede apreciar la simetría.
Trabajo Jonathan A. Trejos O. 1 Primer problema El primer problema es uno típico de teoría de números, en el cual se puede apreciar la simetría. Enunciado 1 Halle y pruebe una bonita fórmula para el producto
SEGUNDA OLIMPIADA ESTATAL DE MATEMÁTICAS
PROBLEMAS PROPUESTOS PARA LA ETAPA DE ZONA SEGUNDO GRADO 1. Tenemos tres balanzas equilibradas, como muestran las figuras. Cuántas tazas se necesitan para equilibrar la jarra? Se presentan dos formas de
Recuerda lo fundamental
Recuerda lo fundamental Curso:... Fecha:... RECTS Y ÁNGULOS RECTS INTERESNTES La mediatriz de un segmento es una recta perpendicular al... en su... Cada punto P de la mediatriz de un segmento equidista
MAQUETERÍA 02: POLIEDROS, CUERPOS REDONDOS Y SU CONSTRUCCIÓN
MAQUETERÍA 02: POLIEDROS, CUERPOS REDONDOS Y SU CONSTRUCCIÓN Concepto de Poliedro Definiremos como poliedro a un cuerpo geométrico tridimensional que encierra un espacio limitado. La palabra proviene de
Bases Matemáticas para la Educación Primaria. Guía de Estudio. Tema 4: Figuras geométricas
Bases Matemáticas para la Educación Primaria Guía de Estudio Tema 4: Figuras geométricas 1 Conceptos geométricos En la clase de matemáticas, y en los textos escolares, encontramos expresiones tales como:
TESELAS. Alumno: Fecha
Llamamos mosaico o tesela al recubrimiento que hacemos en el plano mediante polígonos y que cumple dos condiciones: No deben superponerse los polígonos No deben dejar huecos. MOSAICOS REGULARES Fíjate
ÁREAS DE FIGURAS PLANAS
6. ÁREAS DE FIGURAS PLANAS EN ESTA UNIDAD VAS A APRENDER ÁREAS POLÍGONOS RECTÁNGULO CUADRADO PARALELOGRAMO TRIÁNGULO TRAPECIO ROMBO POLÍGONO IRREGULAR FÓRMULA RESOLUCIÓN DE PROBLEMAS CÍRCULO FÓRMULA FIGURAS
19 a Competencia de MateClubes Primera Ronda Nivel Preolímpico
Primera Ronda Nivel Preolímpico La prueba dura 2 horas. Nombre del Club:.................................... Código del club: 19 0.............. 1. Rafa tiene $21 y Betty tiene $3. Cada semana, Rafa recibe
Slide 1 / 139. Geometría 3-D
Slide 1 / 139 Geometría 3-D Tabla de Contenidos Sólidos 3-Dimensional Redes Volumen Prismas y Cilindros Pirámides, Conos y Esferas Área de la Superficie Prismas Pirámides Cilindros Esferas Más Práctica/Revisión
Ecuaciones de la forma. y se sabe que pasa por el punto ( 4 ;16 ), cuál es la ecuación de la recta? con m > 0. contenga los puntos ( 2;? por qué?
Ecuaciones de la forma y = m. Haga las gráficas de y = y = y = y = y y y y y y a. Como son las rectas b. Cuales son simétricas respecto al origen c. La recta y que tipo de simetría presenta respecto a
ENTRETENIMIENTOS MATEMÁTICOS. Nacho Diego
ENTRETENIMIENTOS MATEMÁTICOS Nacho Diego El Gordo de la Lotería ha correspondido al número que cumple todas estas condiciones Averigua cuál ha sido: Es mayor que 50.000 y menor que 60.000. La cifra de
a) 12 = b) 45 = c) 54 a) 2 = 2 c) 9 c) 9 = 9 Tema 2 - Hoja 2: Raíz de un número
Tema - Hoja : Raíz de un número Expresa como producto de un número entero y un radical los siguientes radicales: a) a) = = = = = = Expresa en forma de raíz las siguientes potencias de exponente fraccionario:
POLÍGONOS POLÍGONOS. APM Página 1
POLÍGONOS 1. Polígonos. 1.1. Elementos de un polígono. 1.2. Suma de los ángulos interiores de un polígono. 1.3. Diagonales de un polígono. 1.4. Clasificación de los polígonos. 2. Polígonos regulares. Elementos.
Problema 1. Para un planeta general del interior, la probabilidad de visita se calculará a partir de la probabilidad de los planetas anteriores. .
Problema l comandante de la flota escarlata está muy interesado en saber cual es la probabilidad de encuentro con la flota azul, que si ocurre tal encuentro será en algún planeta de la diagonal central.
a) 8 triángulos equiláteros y 6 cuadrados. V=12, C=14, A=24. b) 8 triángulos equiláteros y 6 octógonos no regulares. V=24, C=14, A=36.
1. CUBO CORTADO a) Uniendo los puntos medios de las aristas de un cubo, como se ve en la figura, se obtiene una pirámide triangular por cada vértice. Quitando estas pirámides qué polígonos forman las caras
Poliedros Regulares Convexos
Poliedros Regulares Convexos Características y relaciones entre ellos AUTOR: Begoña Soler de Dios 1 Máster en Profesor de Educación Secundaria Esp. Matemáticas 1 [email protected] Poliedros Regulares
CONCURSO NACIONAL DE MATEMÁTICA SECUNDARIA BÁSICA CURSO TEMARIO COMÚN
CONCURSO NACIONAL DE MATEMÁTICA SECUNDARIA BÁSICA CURSO 2005 2006 TEMARIO COMÚN NOMBRE: GRADO: ESCUELA: MUNICIPIO: TIEMPO: 4 HORAS. Una panadería vende panecillos a $0.30 cada uno, o 7 panecillos en $.00
Punto. Recta. Semirrecta. Segmento. Rectas Secantes. Rectas Paralelas. Rectas Perpendiculares
Punto El punto es un objeto geométrico que no tiene dimensión y que sirve para indicar una posición. A Recta Es una sucesión continua e indefinida de puntos en una sola dimensión. Semirrecta Es una línea
19 a Competencia de MateClubes Ronda Final Primer Nivel
Ronda Final Primer Nivel Nombre del Club:.................................... Código del club: 19 1............ 1. Rafa elige 8 números distintos del 1 al 9 y los escribe en el tablero, un número en cada
Una actividad muy relacionada con la anterior consiste en la generación de mosaicos por medio de polígonos regulares.
Una actividad muy relacionada con la anterior consiste en la generación de mosaicos por medio de polígonos regulares. Actividad 1 (Polígonos regulares): En esta primera actividad los y las estudiantes
Mayo Evaluación de 3er. curso de Educación Primaria. Prueba de competencia matemática + = + = =
2 Mayo 2015 Evaluación de 3er. curso de Educación Primaria Prueba de competencia matemática + = + = 3 1 4 5 5 5 8 + 5-2 = INSTRUCCIONES En esta prueba tendrás que responder a preguntas relacionadas con
a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta.
POLIEDROS Ejercicio nº 1.- a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. b Cuál es la relación llamada fórmula de Euler que hay entre el número de caras,
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
SLUINES LS EJERIIS E L UNI Pág. 1 Página 207 PRTI 1 Reproduce sobre papel cuadriculado el paralelogramo (,,, ). a) Somételo a una traslación de vector t 1. b) Traslada la figura obtenida, ', mediante t
Olimpiada de Matemáticas para Alumnos de Primaria y Secundaria en Guanajuato. 13 de diciembre de Tercer Selectivo (NIVEL PRIMARIA)
Olimpiada de Matemáticas para Alumnos de Primaria y Secundaria en Guanajuato Instrucciones. 13 de diciembre de 2014 Tercer Selectivo (NIVEL PRIMARIA) 1. Tienes 4 horas y media para hacer el examen. Lee
http://www.matesymas.es/ MATERIAL PLOT El material PLOT está formado por láminas de cartulina troquelada y gomas elásticas de colores para realizar las uniones. De las láminas de cartulina se obtienen
13Soluciones a los ejercicios y problemas PÁGINA 250
PÁGINA 50 Pág. 1 Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Halla el área y el perímetro de las figuras coloreadas de los siguientes ejercicios: 1 a) b) 5 dm 4 cm cm 5 cm 8 cm a) 5 5 dm b) 8 8 cm P 5 4 0
Hoja de actividad sobre las propiedades de las figuras geométricas planas
Nombre Unidad 4.6: Diseños en nuestro mundo Hoja de actividad sobre las propiedades de las figuras geométricas planas Fecha Instrucciones: Mira cada figura con detenimiento. Nombra cada una de las figuras
SOLUCIONES MINIMOS 2º ESO TEMA 8 CUERPOS GEOMÉTRICOS
SOLUCIONES MINIMOS º ESO TEMA 8 CUERPOS GEOMÉTRICOS Ejercicio nº 1.- Escribe el nombre de cada uno de los elementos de este poliedro: Ejercicio nº.- Cuáles de las siguientes figuras son poliedros? Por
Prueba de selección 5 de junio de Nombre:... Apellidos:... Fecha de nacimiento:... Teléfonos:...
Prueba de selección 5 de junio de 2007 Nombre:... Apellidos:... Fecha de nacimiento:... Teléfonos:... Información importante que debes leer antes de comenzar a trabajar En primer lugar debes mirar todos
Unidad 8 Áreas y Volúmenes
Unidad 8 Áreas y Volúmenes PÁGINA 132 SOLUCIONES Unidades de medida. Pasa a centímetros cuadrados las siguientes cantidades. a) b) c) Pasa a metros cúbicos las siguientes unidades. a) b) c) Cuántos litros
Soluciones - Tercer Nivel Infantil
SOCIEDAD ECUATORIANA DE MATEMÁTICA ETAPA CLASIFICATORIA "VII EDICIÓN DE LAS OLIMPIADAS DE LA SOCIEDAD ECUATORIANA DE MATEMÁTICA" Soluciones - Tercer Nivel Infantil 01 de abril de 2010 1. En un reloj de
XXV Olimpiada Mexicana de Matemáticas en Tamaulipas Examen Selectivo 2 de octubre de 2011
XXV Olimpiada Mexicana de Matemáticas en Tamaulipas Examen Selectivo 2 de octubre de 2011 1. Un maestro de matemáticas avisa a sus alumnos que preguntará la demostración de tres de los ocho teoremas vistos
MATEMÁTICAS Y SU DIDÁCTICA
MATEMÁTICAS Y SU DIDÁCTICA ESCUELA UNIVERSITARIA DE MAGISTERIO SAGRADO CORAZÓN UNIVERSIDAD DE CÓRDOBA Curso académico: 2011 2012 ACTIVIDADES DE GEOMETRÍA TRABAJO EN GRUPO Las siguientes actividades se
CENTRO EDUCATIVO PAULO FREIRE TALLER
CENTRO EDUCATIVO PAULO FREIRE TALLER 1: Una plaza circular está limitada por una circunferencia de longitud 188,4m. Determinar el diámetro y el área de la plaza. 2: Si el área de un círculo es 144 cm 2,
EXAMEN A: Ejercicio nº 1.- Página 1 de 25 Indica el valor de los ángulos señalados en cada figura: Ejercicio nº 2.- La siguiente figura es una esfera de centro C y radio 3 unidades. Cómo definirías dicha
CUERPOS GEOMÉTRICOS. Un polígono es una figura compuesta por tres o más segmentos rectos (lados) que cierran una región en el espacio.
CUERPOS GEOMÉTRICOS 07 Comprende que son los cuerpos geométricos e identifica las partes que los componen. En Presentación de Contenidos recuerdan qué son los polígonos para comprender cómo se forman los
RAZONAMIENTO GEOMÉTRICO
RAZONAMIENTO GEOMÉTRICO Fundamentos de Matemáticas I Razonamiento geométrico Video Previo a la actividad: Áreas y perímetros de cuerpos y figuras planas Video Previo a la actividad: Áreas y perímetros
Recuerda lo fundamental
12 Figuras planas y espaciales Recuerda lo fundamental Curso:... Fecha:... TRIÁNGULOS Mediana de un triángulo es un segmento que...... Las tres medianas de un triángulo se cortan en el...... Las mediatrices
OLIMPÍADA JUVENIL DE MATEMÁTICA 2013 CANGURO MATEMÁTICO PRIMER AÑO
OLIMPÍADA JUVENIL DE MATEMÁTICA 2013 CANGURO MATEMÁTICO PRIMER AÑO RESPONDE LA PRUEBA EN LA HOJA DE RESPUESTA ANEXA 1. Se introducen los números 2, 0, 1, 3 en una máquina de sumar, como se muestra en la
UNIDAD 13. POLÍGONOS REGULARES Y CIRCUNFERENCIA ESQUEMA DE LA UNIDAD FICHA DE TRABAJO A FICHA DE TRABAJO B SOLUCIONES
UNIDAD 13. POLÍGONOS REGULARES Y CIRCUNFERENCIA ESQUEMA DE LA UNIDAD FICHA DE TRABAJO A FICHA DE TRABAJO B SOLUCIONES 13 POLÍGONOS REGULARES Y CIRCUNFERENCIA ESQUEMA DE LA UNIDAD Nombre y apellidos:...
MATEMÁTICAS (GEOMETRÍA)
COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS (GEOMETRÍA) GRADO:7 O DOCENTE: Nubia E. Niño C. FECHA: 8 / 07 / 15 Guía Didáctica 3-2 Desempeños: * Reconoce y clasifica
Mª Rosa Villegas Pérez
Mª Rosa Villegas Pérez FIGURAS PLANAS G.T. Elaboración de Materiales y Recursos Didácticos en un Centro TIC. Polígonos.- / 14 POLÍGONOS Un polígono es una figura plana y cerrada formada al unir tres o
Enlace con el hogar no. 22 H Hoja de ejercicios
For use after Unit Three, Session 2. NOMBRE FECHA Enlace con el hogar no. 22 H Hoja de ejercicios Rompecabezas de figuras 1 Utiliza una regla y un lapicero para dividir cada polígono de abajo en 2 figuras
SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE
Pág. 1 PÁGINA 246 REFLEXIONA En la inauguración de la Casa de la Cultura observamos, entre otras, las siguientes figuras: Todas ellas son polígonos. Cuáles crees que son regulares? Explica por qué crees
26.º OLIMPIADA NACIONAL JUVENIL DE MATEMÁTICA CUARTA RONDA DEPARTAMENTAL NIVEL 1 13 de setiembre de 2014
CUARTA RONDA DEPARTAMENTAL NIVEL 1 Nombre y Apellido:............................................... Colegio:............................. Grado:...... Sección:..... Ciudad:................................
10- Los poliedros. Aprende a reconocer los poliedros en nuestro entorno; identifica sus elementos y aprende a clasificarlos.
Aprende a reconocer los poliedros en nuestro entorno; identifica sus elementos y aprende a clasificarlos. Impreso por Juan Carlos Vila Vilariño Centro PASTORIZA (Nº 3) Sumario 1 Los poliedros... 3 1.1
Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones. 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides.
Cuerpos Geométricos. 100 Ejercicios para practicar con soluciones 1 Indica cuáles de las siguientes figuras son prismas y cuáles son pirámides. a) b) c) Prisma es un poliedro que tiene por caras dos bases
EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9?
Seminario Universitario Matemática EJERCICIOS MÓDULO 4 Geometría plana 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? ) Cuántos lados tiene un polígono en el cual la suma de
CUERPOS GEOMÉTRICOS (CONCEPTOS BÁSICOS)
CUERPOS GEOMÉTRICOS (CONCEPTOS BÁSICOS) Los cuerpos geométricos ocupan un lugar en el espacio. Hay cuerpos de forma regular, en los que pueden medirse 3 dimensiones: largo, ancho y alto. Con estas se puede
Un ángulo mide y otro Cuánto mide la suma de estos ángulos?
Los Ángulos Qué es un ángulo y su notación? Son dos rayos cualesquiera que determinan dos regiones del plano. Su notación: Para nombrar los ángulos, utilizaremos los símbolos
ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS
ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS Ejercicio 1 De la función se sabe que tiene un máximo en, y que su gráfica corta al eje OX en el punto de abscisa y tiene un punto de inflexión en el punto
Hay tres juegos, que se juegan utilizando las mismas fichas y tablero, pero con distintas estrategias, y complejidad:
Serie 302 del Pacru Idiomas y más información Si esta información no está en su idioma, visite la página web www.pacru.com, seleccione el idioma que quiere e imprima las reglas. En este folleto tiene toda
MECANO. Alumno: Fecha. 28 cm. 22 cm. 8 tiras. 6 cm 4 cm 20 cm. 8 tiras. 8 cm. 16 cm. 4 cm 3 cm 3 cm 14 cm. 12 cm. 7 cm 4 cm
4R 2A 4 cm 4 cm 4 cm 4 cm 4 cm 4 cm 4 cm 4 cm 32 cm 4 cm 6 cm 4 cm 4 cm 6 cm 4 cm 28 cm V2 B2 4 cm 7 cm 7 cm 4 cm 22 cm 4 cm 6 cm 8 tiras 6 cm 4 cm 20 cm B1 2R 18 cm 16 cm 8 tiras A 4 cm 3 cm 3 cm 4 cm
GUÍA DE APRENDIZAJE 2 BÁSICO Educación Matemática
GUÍA DE APRENDIZAJE 2 BÁSICO Educación Matemática Nombre alumno(a) Aprendizajes Esperados Describen cuadrados, rectángulos y triángulos, considerando número de lados y de vértices, medida de sus lados
2.- Escribe la lectura o escritura de las siguientes fracciones:
EDUCACIÓN PREESCOLAR 04PJN0020V EDUCACIÓN PRIMARIA Decroly más que un colegio 04PPR0034O EDUCACION SECUNDARIA 04PES0050Z MARATON DE MATEMÁTICAS 1.- Una fracción está compuesta por un numerador y un denominador.
Polígonos regulares, el triángulo de Sierpinski y teselados
Sesión 3 Polígonos regulares, el triángulo de Sierpinski y teselados PROPÓSITOS Plantear y resolver problemas que involucren el análisis de características y propiedades de diversas figuras planas. MATERIALES
ÁLGEBRA Algunas soluciones a la Práctica 2
ÁLGEBRA Algunas soluciones a la Práctica Combinatoria (Curso 009 010) 7. Sea A un conjunto con n elementos. Cuántos subconjuntos tiene el conjunto A?. Probar que el número de subconjuntos de cardinal par
Tema 2: Determinantes
Tema 2: Determinantes 1. Introducción En este tema vamos a asignar a cada matriz cuadrada de orden, un número real que llamaremos su determinante y escribiremos. Vamos a ver cómo se calcula. Consideremos
ELEMENTOS Y CLASES DE ÁNGULOS
Apellidos: Curso: Grupo: Nombre: Fecha: ELEMENTOS Y CLASES DE ÁNGULOS Dos rectas que se cortan forman 4 regiones llamadas ángulos. Las partes de un ángulo son: los lados: son las semirrectas que lo forman.
Se denomina mosaico a un recubrimiento del plano mediante piezas llamadas teselas sin dejar huecos y sin solapamiento.
Qué entendemos por Mosaico? Se denomina mosaico a un recubrimiento del plano mediante piezas llamadas teselas sin dejar huecos y sin solapamiento. En otro lenguaje, formar un mosaico es embaldosar una
11. MOSAICOS. El ángulo interior de un polígono regular de n lados es
11. MOSAICOS Cuando una o varias piezas recubren un plano sin solaparse tenemos un recubrimiento o mosaico. Los mosaicos más sencillos son los que solo utilizan una pieza de una única forma y tamaño. Aun
Olimpiada Internacional de Matemáticas Fórmula de la Unidad / El Tercer Milenio Año 2016/2017 Primera ronda Problemas para el grado R5
Problemas para el grado R5 1. Muestre cómo dividir esta figura en tres partes iguales. (Dos partes son llamadas iguales o congruentes si es posible que una parte cubra a la otra con una coincidencia total;
Problemas geométricos
Problemas geométricos Contenidos 1. Figuras planas Triángulos Paralelogramos Trapecios Trapezoides Polígonos regulares Círculos, sectores y segmentos 2. Cuerpos geométricos Prismas Pirámides Troncos de
2.5 Líneas paralelas y la suma del ángulo de un triángulo
2.5 Líneas paralelas y la suma del ángulo de un triángulo En la sección 2.4 observaste algunas propiedades de ángulos formados por líneas intersecadas. Ahora veremos el caso de líneas que no se intersecan.
1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas.
MYP (MIDDLE YEARS PROGRAMME) 2015-2016 Fecha 30/03/2016 APUNTES DE GEOMETRÍA 1º ESO 1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas. Un punto es una posición en el espacio, adimensional,
OLIMPÍADA JUVENIL DE MATEMÁTICA 2009 CANGURO MATEMÁTICO PRUEBA PRELIMINAR SÉPTIMO GRADO
OLIMPÍADA JUVENIL DE MATEMÁTICA 2009 CANGURO MATEMÁTICO PRUEBA PRELIMINAR SÉPTIMO GRADO RESPONDE LA PRUEBA EN LA HOJA DE RESPUESTA ANEXA 1. Cuál de los siguientes números es par? A 2009 B 2 + 0 + 0 + 9
RECURSOS DIDÁCTICOS: MATERIALES EN GENERAL
Pág. 1 Libro de espejos Se pueden utilizar espejos corrientes, o mejor aún, de un material comercializado de las mismas características, pero que no es de cristal, para mirar en lugar de para mirarse.
ÁNGULOS. 2. En el triángulo ABC, el ángulo B se obtiene aumentando en 50% el ángulo A o también reduciendo en 25% el ángulo C. Cuál es la medida de B?
ENTRENAMIENTO COMPETENCIA COTORRA 2015 GEOMETRÍA (PROBLEMAS INTRODUCTORIOS) IIS AMIR MADRID GARZÓN Enero / 2015 ÁNGULOS 1. Cuántos ángulos hay en la siguiente figura? a) 13 b) 14 c) 21 d) 18 2. En el triángulo
Ejercicio nº 1.-Clasifica los siguientes triángulos atendiendo a sus lados y sus ángulos: Ejercicio nº 2.-Dibuja un triángulo obtusángulo e isósceles.
FICHA REFUERZO TEMA 12: FIGURAS PLANAS Y ESPACIALES CURSO: 1 FECHA: NOMBRE Y APELLIDOS: Ejercicio nº 1.-Clasifica los siguientes triángulos atendiendo a sus lados y sus ángulos: Ejercicio nº 2.-Dibuja
Sorprende por sus propiedades, y por lo inesperado de los resultados que se obtienen al cortarla convenientemente.
CON UNA TIRA DE PAPEL CINTA DE MÖBIUS Una tira de Möbius se hace fácilmente con una tira lisa de papel corriente: primero se da media vuelta a la tira y después se unen los extremos para obtener un anillo
INSTITUCION EDUCATIVA DIVERSIFICADO DE CHIA TALLER DE VOLUMENES Y POLIEDROS
Sep. 18 de 2015 Señores Estudiantes grados Novenos El siguiente trabajo ya lo estamos realizando en clase, pero los datos que a continuación aparecen son refuerzo para terminar las figuras geométricas
UNIDAD 11 Matemáticas
UNIDAD 11 AR 1 Nombra estos ángulos según sus aberturas: A^ B^ C^ D^............ 2 Observa y colorea. De rojo y azul, dos ángulos adyacentes. De verde, dos ángulos opuestos por el vértice. De amarillo
IES EL PILES SELECTIVIDAD OVIEDO DPTO. MATEMÁTICAS Geometría
P.A.U. de. (Oviedo). (junio 994) Dados los puntos A (,0, ), B (,, ), C (,6, a), se pide: i) hallar para qué valores del parámetro a están alineados, ii) hallar si existen valores de a para los cuales A,
MYP (MIDDLE YEARS PROGRAMME)
MYP (MIDDLE YEARS PROGRAMME) 2014-2015 Fecha 19/05/2015 APUNTES DE GEOMETRÍA 2º ESO 1. EL TEOREMA DE PITÁGORAS El teorema de Pitágoras establece que en todo triángulo rectángulo, el cuadrado de la hipotenusa
Examen Eliminatorio Estatal de la Olimpiada Mexicana de Matemáticas 2010.
Examen Eliminatorio Estatal de la Olimpiada Mexicana de Matemáticas 2010. Instrucciones: En la hoja de las respuestas marca la respuesta que creas correcta. Si marcas más de una respuesta en alguna pregunta
DIVISIBILIDAD Y NÚMEROS PRIMOS I
DIVISIBILIDAD Y NÚMEROS PRIMOS I LUZ MARÍA SÁNCHEZ GARCÍA 1. NÚMEROS PRIMOS Todas las cosas que pueden ser conocidas tienen número, pues no es posible que, sin número, nada pueda ser conocido ni concebido.
RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA
RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA 1.- Figuras Congruentes y Semejantes. Teorema de Thales. Escalas. - Se dice que dos figuras geométricas son congruentes si tienen la misma forma y el mismo
