ESPACIOS VECTORIALES
|
|
|
- María Quintero Venegas
- hace 9 años
- Vistas:
Transcripción
1 01 de Junio de 2011 ESPACIOS VECTORIALES (Clase 02) Departamento de Matemática Aplicada Facultad de Ingeniería Universidad Central de Venezuela 1
2 Puntos a tratar 1. Combinación lineal 2. Subespacio vectorial 3. Ejemplos de subespacios 4. Intersección de subespacios 2
3 Combinación lineal Sea V un espacio vectorial real: es combinación lineal de cuando tales que:
4 Puntos a tratar 1. Combinación lineal 2. Subespacio vectorial 3. Ejemplos de subespacios 4. Intersección de subespacios 4
5 Algunos subconjuntos de un espacio vectorial V son a su vez espacios con las operaciones definidas en V. Estos subconjuntos se denominan subespacios. SUBESPACIO VECTORIAL. Subespacio vectorial es un subespacio vectorial de V, si es espacio vectorial con las operaciones definidas en V. Subespacios impropios Subespacios propios: cualquier subespacio vectorial de V distinto de y V. Antes de dar ejemplos de subespacios, es conveniente dar dos resultados que hacen relativamente sencillo determinar si un subconjunto S de V es subespacio vectorial de V.
6 Subespacio vectorial Un subconjunto S no vacío de V es s.v. de V si y sólo si cumple: Un subconjunto S no vacío de V es s.v. de V si y sólo si cumple:
7 Subespacio vectorial En la práctica, para demostrar que S NO es s. v. de V o o Basta con comprobar una de estas tres cosas
8 Puntos a tratar 1. Combinación lineal 2. Subespacio vectorial 3. Ejemplos de subespacios 4. Intersección de subespacios 8
9 Ejemplos de subespacios EJEMPLO 1. El conjunto de los números enteros no tiene estructura de espacio vectorial con las operaciones habituales de suma y producto por un escalar real. El conjunto de todos los números enteros con las operaciones normales de suma y producto por un escalar no tiene estructura de espacio vectorial, ya que el producto no es una operación cerrada = 0.5 escalar entero no entero
10 Ejemplos de subespacios EJEMPLO 2. El conjunto de los polinomios de grado exactamente 2 no tiene estructura de espacio vectorial. El conjunto de los polinomios de grado exactamente 2 no tiene estructura de espacio vectorial, ya que la suma no es una operación cerrada. p(x) = x 2 q(x) = -x 2 +x+1 son polinomios de grado 2, pero su suma es un polinomio de primer grado p(x) + q(x) = x+1
11 Puntos a tratar 1. Combinación lineal 2. Subespacio vectorial 3. Ejemplos de subespacios 4. Intersección de subespacios 11
12 Intersección de subespacios Si S, T son subespacios de V, entonces: 1. S T es subespacio vectorial de V. 2. S T es el mayor de todos los subespacios de V incluidos en S y T. La unión de subespacios de V no es necesariamente un subespacio vectorial de V.
13 Pensamiento de hoy Las simplificaciones excesivas, progresivamente corregidas en el adelanto subsiguiente, representan el recurso más poderoso, si no es el único, hacia el dominio conceptual de lanaturaleza. Ludwig Von Bertalanffy 13
Subespacios Vectoriales
Subespacios Vectoriales Prof. Apuntes del Postgrado en Ingeniería 31 Mayo 2008 Subespacio Definición de Subespacio y Ejemplos. Definición Sea H un subconjunto no vacio de un espacio vectorial V(K). Si
Introducción a los espacios vectoriales
1 / 64 Introducción a los espacios vectoriales Pablo Olaso Redondo Informática Universidad Francisco de Vitoria November 19, 2015 2 / 64 Espacios vectoriales 1 Las 10 propiedades de un espacio vectorial
Álgebra Lineal V: Subespacios Vectoriales.
Álgebra Lineal V: Subespacios Vectoriales. José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: [email protected]
Un subconjunto no vacío H de un espacio vectorial V es un subespacio de V si se cumplen las dos reglas de cerradura:
4 Subespacios 29 b) x 5 [25;5], 5 [;24], z 5 [4;4] Use a 5 2, a 5 / a 5 2 / 2 c) Su propia elección de x,, z /o a 2 a) Elija algunos valores para n m genere tres matrices aleatorias de n m, llamadas X,
Algebra Lineal y Geometría.
Algebra Lineal y Geometría. Unidad n 6: Subespacios Vectoriales. Algebra Lineal y Geometría Esp. Liliana Eva Mata 1 Contenidos. Subespacios Vectoriales. Operaciones con Subespacios: Intersección, unión,
Tema 2: Espacios Vectoriales
Tema 2: Espacios Vectoriales José M. Salazar Octubre de 2016 Tema 2: Espacios Vectoriales Lección 2. Espacios vectoriales. Subespacios vectoriales. Bases. Lección 3. Coordenadas respecto de una base. Ecuaciones.
520142: ALGEBRA y ALGEBRA LINEAL
520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición
Tema 1. Espacios Vectoriales Definición de Espacio Vectorial
Tema 1 Espacios Vectoriales. 1.1. Definición de Espacio Vectorial Notas 1.1.1. Denotaremos por N, Z, Q, R, C, a los conjuntos de los números Naturales, Enteros, Racionales, Reales y Complejos, respectivamente.
CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero
Fundamento Científico del Currículum de Matemáticas en Enseñanza Secundaria CONCEPTOS BÁSICOS DE ESPACIOS VECTORIALES Alumno. Cristina Mª Méndez Suero ESPACIOS VECTORIALES DEFINICIÓN... 1 PROPIEDADES DE
ESPACIOS VECTORIALES
MATEMÁTICA I - - Capítulo 8 ------------------------------------------------------------------------------------ ESPACIOS VECTORIALES.. Espacios Vectoriales y Subespacios... Definición. Un espacio vectorial
ESPACIO VECTORIAL ESPACIO VECTORIAL SUBESPACIO VECTORIAL BASE Y DIMENSIÓN N DE UN
Tema 5.- ESPACIOS VECTORIALES ESPACIO VECTORIAL SUBESPACIO VECTORIAL BASE Y DIMENSIÓN N DE UN ESPACIO VECTORIAL Fundamentos Matemáticosde la Ingeniería 1 Aunque históricamente el primer trabajo de Álgebra
Espacios Vectoriales
Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios
Álgebra Lineal IV: Espacios Vectoriales.
Álgebra Lineal IV: Espacios Vectoriales José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: jrico@salamancaugtomx
Espacios Vectoriales
Leandro Marín Octubre 2010 Índice Definición y Ejemplos Paramétricas vs. Impĺıcitas Bases y Coordenadas Para definir un espacio vectorial tenemos que empezar determinando un cuerpo sobre el que esté definido
Trabajo Práctico N 5: ESPACIOS VECTORIALES
Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio 1: Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique
Espacios vectoriales
Espacios vectoriales [Versión preliminar] Prof. Isabel Arratia Z. Algebra Lineal 1 En el estudio de las matrices y, en particular, de los sistemas de ecuaciones lineales realizamos sumas y multiplicación
EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES
EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES Formas reducidas y escalonada de una matriz SISTEMAS DE ECUACIONES LINEALES ) Encuentre una sucesión de matrices elementales E, E,..., E k tal que
MMAF: Espacios normados y espacios de Banach
MMAF: Espacios normados y espacios de Banach Licenciatura en Estadística R. Álvarez-Nodarse Universidad de Sevilla Curso 2011/2012 Espacios vectoriales Definición Sea V un conjunto de elementos sobre el
ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales
Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales Sea (K, +,.) un cuerpo con característica 0. Podemos pensar K = Q, R o C. Si V es un conjunto cualquiera en el que
y λu = Idea. Podemos sumar vectores y multiplicar por un escalar. El resultado vuelve a ser un vector Definición de espacio vectorial.
Espacios vectoriales Espacios y subespacios R n es el conjunto de todos los vectores columna con n componentes. Además R n es un espacio vectorial. Ejemplo Dados dos vectores de R por ejemplo u = 5 v =
Tema 3: Espacios vectoriales
Tema 3: Espacios vectoriales K denotará un cuerpo. Definición. Se dice que un conjunto no vacio V es un espacio vectorial sobre K o que es un K-espacio vectorial si: 1. En V está definida una operación
Ejercicios del Tema 2: Estructuras algebraicas básicas
Ejercicios del Tema 2: Estructuras algebraicas básicas En los ejercicios 1, 2, 8 y 9 se utilizará que si G = {g 1,...,g n } es un conjunto finito y * una operación interna definida en G, podemos utilizar
Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21
Espacios Vectoriales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Objetivos Al finalizar este tema tendrás que: Saber si unos vectores son independientes.
1. Lección 1 - Espacio Vectorial
1. Lección 1 - Espacio Vectorial Definiremos espacio vectorial como la estructura algebraica consistente en: 1. Grupo abeliano {V, +, } cuyos elementos se denominan vectores. Para que los elementos de
LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS
LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS Sea una estructura formada por un conjunto A, sobre cuyos elementos se ha definido una operación o ley interna, comúnmente denotada por " * ", que
Trabajo Práctico N 5: ESPACIOS VECTORIALES. Ejercicio 1:
6 Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio : Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique
Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21
Algebra Lineal Gustavo Rodríguez Gómez INAOE Verano 2011 Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano 2011 1 / 21 Espacios Vectoriales Espacios Vectoriales INAOE Gustavo Rodríguez Gómez (INAOE)
Problemas de Espacios Vectoriales
Problemas de Espacios Vectoriales 1. Qué condiciones tiene que cumplir un súbconjunto no vacío de un espacio vectorial para que sea un subespacio vectorial de este? Pon un ejemplo. Sean E un espacio vectorial
Espacios Vectoriales
Espacios Vectoriales Departamento de Matemáticas, CSI/ITESM 7 de junio de 28 Índice 5.. Objetivos................................................ 5.2. Motivación...............................................
SESIÓN 4: ESPACIOS VECTORIALES
SESIÓN 4: ESPACIOS VECTORIALES Un espacio vectorial sobre un campo (como el cuerpo de los números reales o los números complejos) es un conjunto no vacío, dotado de dos operaciones para las cuales será
Tutorial MT-b11. Matemática Tutorial Nivel Básico. Inecuaciones e intervalos
12345678901234567890 M ate m ática Tutorial MT-b11 Matemática 2006 Tutorial Nivel Básico Inecuaciones e intervalos Matemática 2006 Tutorial Inecuaciones e intervalos I. Definición y Propiedades de las
ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS.
ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción 1 La lógica es
como el número real que resulta del producto matricial y se nota por:
Espacio euclídeo 2 2. ESPACIO EUCLÍDEO 2.. PRODUCTO ESCALAR En el espacio vectorial se define el producto escalar de dos vectores y como el número real que resulta del producto matricial y se nota por:,
MATEMÁTICAS BÁSICAS. Autoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano
MATEMÁTICAS BÁSICAS Autoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2015 Universidad
Universidad de Jaén Departamento de Matemáticas Ingeniería Técnica en Informática de Gestión.
Universidad de Jaén Departamento de Matemáticas Ingeniería Técnica en Informática de Gestión. Algebra I I Relación de problemas 3. Espacios vectoriales. 1.-Estudiar si los siguientes conjuntos forman o
Tema 3. Espacios vectoriales
Tema 3. Espacios vectoriales Estructura del tema. Definición y propiedades. Ejemplos. Dependencia e independencia lineal. Conceptos de base y dimensión. Coordenadas Subespacios vectoriales. 0.1. Definición
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: ADMINISTRACIÓN
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: ADMINISTRACIÓN PROGRAMA DE LA ASIGNATURA DE: MATEMÁTICAS APLICADAS A LA ADMINISTRACIÓN IDENTIFICACIÓN DE
Objetivos formativos de Álgebra
Objetivos formativos de Álgebra Para cada uno de los temas el alumno debe ser capaz de hacer lo que se indica en cada bloque. Además de los objetivos que se señalan en cada tema, se considera como objetivo
Espacios Vectoriales
Espacios Vectoriales Departamento de Matemáticas, CCIR/ITESM 4 de enero de 2 Índice 3.. Objetivos................................................ 3.2. Motivación...............................................
un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades:
CAPÍTULO 2: ESPACIOS VECTORIALES 2.1- Definición y propiedades. 2.1.1-Definición: espacio vectorial. Sea un cuerpo conmutativo a cuyos elementos denominaremos escalares o números. No es necesario preocuparse
Problemas de Álgebra Lineal Espacios Vectoriales
Problemas de Álgebra Lineal Espacios Vectoriales 1. Estudia cuáles de los siguientes subconjuntos son subespacios de R n para el n que corresponda: i) S 1 = {(x, y, z, t) R 4 x + y + z + t = b} siendo
ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República
ALN Repaso matrices In. Co. Facultad de Ingeniería Universidad de la República Definiciones básicas - Vectores Definiciones básicas - Vectores Construcciones Producto interno: ( x, y n i x y i i ' α Producto
Vector Spaces 4.1 ESPACIOS VECTORIALES Y SUBESPACIOS. 2012 Pearson Education, Inc.
4 Vector Spaces 4. ESPACIOS VECTORIALES Y SUBESPACIOS 0 Pearson Education, Inc. ESPACIOS VECTORIALES Y SUBESPACIOS Definición: Un espacio vectorial es un conjunto no vacío V de objetos, sobre el cual se
Ordenación parcial Conjunto parcialmente ordenado Diagrama de Hasse
Ordenación parcial Un orden parcial es una relación binaria R sobre un conjunto X, que cumple las propiedades: Reflexiva: R es reflexiva sii para todo a A ara Antisimétrica: R es antisimétrica sii para
COLEGIO UNIVERSITARIO CARDENAL CISNEROS. Libro de Ejercicios de Matemáticas Empresariales II
COLEGIO UNIVERSITARIO CARDENAL CISNEROS Libro de Ejercicios de Matemáticas Empresariales II Manuel León Navarro 2 Capítulo 1 Ejercicios lección 1 1. Sea el conjunto de las matrices cuadradas de orden 2
ESPACIO VECTORIAL. Fundamentos Matemáticos II Electrónicos 01,16 Curso 2006-07 1
Tema 1.- ESPACIOS VECTORIALES!ESPACIO VECTORIAL!SUBESPACIO VECTORIAL!BASE Y DIMENSIÓN N DE UN ESPACIO VECTORIAL Fundamentos Matemáticos II Electrónicos 01,16 Curso 2006-07 1 Aunque históricamente el primer
ESPACIOS VECTORIALES. VARIEDADES LINEALES, APLICACIONES ENTRE ESPACIOS VECTORIALES. TEOREMAS DE ISOMORFIA.
ESPACIOS VECTORIALES. VARIEDADES LINEALES, APLICACIONES ENTRE ESPACIOS VECTORIALES. TEOREMAS DE ISOMORFIA. Índice de contenido 1. Espacio vectorial....2 Estructura de espacio vectorial...2 Subespacios
Algebra Lineal Tarea No 9: Espacios vectoriales Maestra Dora Elia Cienfuegos, Enero-Mayo 2017
Algebra Lineal Tarea No 9: Espacios vectoriales Maestra Dora Elia Cienfuegos, Enero-Mayo 2017 Grupo: Matrícula: Nombre: Tipo:-1 1. Suponga que V = R 2 y que se definen las operaciones: y Si Calcule: 1.
Algebra lineal y conjuntos convexos
Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar
Espacios Vectoriales Asturias: Red de Universidades Virtuales Iberoamericanas 1
Espacios Vectoriales 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Espacios Vectoriales... 4 1.1 Definición de espacio vectorial... 4 1.2 Definición de subespacio vectorial...
Álgebra Lineal Ma1010
Álgebra Lineal Ma1010 Líneas y s en el Espacio Departamento de Matemáticas ITESM Líneas y s en el Espacio Álgebra Lineal - p. 1/34 Los conjuntos solución a un sistema de ecuaciones lineales cuando tienen
Contenido Objetivos Ceros de Polinomios. Ceros de Polinomios. Carlos A. Rivera-Morales. Precálculo 2
Carlos A. Rivera-Morales Precálculo 2 Tabla de Contenido 1 Tabla de Contenido 1 2 eros reales : Discutiremos: el Teorema de los de Polinomios : Discutiremos: el Teorema de los de Polinomios uso de la Calculadora
Espacios vectoriales
Espacios vectoriales Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza 1 Concepto de espacio vectorial y propiedades 1.1 Definición Se llama espacio vectorial sobre K (IR o C a toda terna
Guía de estudio Introducción a la teoría de conjuntos Unidad A: Clase 4
Guía de estudio Introducción a la teoría de conjuntos Unidad A: Clase 4 Camilo Ernesto Restrepo Estrada, Félix Ruiz de Villalba, Lina María Grajales Vanegas y Sergio Iván Restrepo Ochoa 1. 3. Teoría de
Espacios topológicos. 3.1 Espacio topológico
Capítulo 3 Espacios topológicos 3.1 Espacio topológico Definición 3.1.1. Un espacio topológico es un par (X, τ), donde X es un conjunto, y τ es una familia de subconjuntos de X que verifica las siguientes
Capítulo 2 Conjuntos. 2.1 Introducción. 2.2 Determinación de conjuntos. Definición:
Capítulo 2 Conjuntos 2.1 Introducción El concepto de conjunto, de singular importancia en la ciencia matemática y objeto de estudio de una de sus disciplinas más recientes, está presente, aunque en forma
Espacios Vectoriales www.math.com.mx
Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel [email protected] MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................
ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS.
ALGEBRA I, ALGEBRA Y TRIGONOMETRIA 520135, 522115 Segundo Semestre CAPITULO 6: POLINOMIOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K
Espacios vectoriales y aplicaciones lineales.
Práctica 2 Espacios vectoriales y aplicaciones lineales. Contenido: Localizar bases de espacios vectoriales. Suma directa. Bases y dimensiones. Cambio de base. Aplicaciones lineales. Matriz asociada en
En matemáticas el concepto de conjunto es considerado primitivo y no se da una definición de este, por lo tanto la palabra CONJUNTO debe aceptarse
En matemáticas el concepto de conjunto es considerado primitivo y no se da una definición de este, por lo tanto la palabra CONJUNTO debe aceptarse lógicamente como un término no definido. Un conjunto se
Espacios Vectoriales, Valores y Vectores Propios
, Valores y Vectores Propios José Juan Rincón Pasaye, División de Estudios de Postgrado FIE-UMSNH Curso Propedéutico de Matemáticas para la Maestría en Ciencias opciones: Sistemas de Control y Sistemas
UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES
UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES En la Sección anterior se abordó contenidos relacionados con las funciones y gráficas, continuamos aprendiendo más sobre funciones; en la presente unidad abordaremos
Polinomios. 1.- Funciones cuadráticas
Polinomios 1.- Funciones cuadráticas Definición 1 (Función polinomial) Sea n un entero no negativo y sean a n, a n 1,..., a, a 1, a 0 número s reales con a n 0. La función se denomina función polinomial
Pregunta 1 Es correcta esta definición? Por qué?
TEORÍA DE CONJUNTOS. En un libro de COU de 1975 puede leerse la siguiente definición de conjunto: Un conjunto es una colección de objetos, cualquiera que sea su naturaleza. Pregunta 1 Es correcta esta
PROGRAMA INSTRUCCIONAL ALGEBRA LINEAL
UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA ESCUELA DE COMPUTACIÓN PROGRAMA INSTRUCCIONAL ALGEBRA LINEAL CÓDIGO ASIGNADO SEMESTRE U. C DENSIDAD HORARIA H.T H.P/H.L H.A THS/SEM
Clase 4 Funciones polinomiales y racionales
Clase 4 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo de 2014 Polinomios Definición Se llama polinomio en x a toda expresión de la forma p(x) = a 0 + a 1x+ +a n
Base y Dimensión de un Espacio Vectorial
Base y Dimensión de un Espacio Vectorial 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Qué es un sistema generador?... 4 2 Base de un espacio vectorial... 4 3 Dimensión de un
NOCIONES PRELIMINARES (*) 1
CONJUNTOS NOCIONES PRELIMINARES (*) 1 Conjunto no es un término definible, pero da idea de una reunión de cosas ( elementos ) que tienen algo en común. En matemática los conjuntos se designan con letras
AMPLIACIÓN DE MATEMÁTICAS
AMPLIACIÓN DE MATEMÁTICAS TEOREMA DE EXTENSIÓN DE KRONECKER. Los polinomios irreducibles sobre un cuerpo no tienen raíces sobre ese cuerpo, salvo que sean de grado uno. Ya hemos visto que Ejemplo 1. x
Una operación interna: Suma Una operación externa: Multiplicación por un escalar
El conjunto R n Es el conjunto de las n-adas formadas por el producto cartesiano RRR.R, donde R es el conjunto de los números reales. Así pues, dos elementos X y Y de R n serán iguales si y solo si tienen
Guía. Álgebra II. Examen parcial III. Transformaciones lineales. Teoremas los más importantes cuyas demostraciones se pueden incluir en el examen
Guía. Álgebra II. Examen parcial III. Transformaciones lineales. Teoremas los más importantes cuyas demostraciones se pueden incluir en el examen 1. Teorema de la representación matricial de una transformación
son dos elementos de Rⁿ, definimos su suma, denotada por
1.1 Definición de un vector en R², R³ y su Interpretación geométrica. 1.2 Introducción a los campos escalares y vectoriales. 1.3 La geometría de las operaciones vectoriales. 1.4 Operaciones con vectores
Algebra Lineal XIII: Operaciones con Transformaciones Lineales.
Algebra Lineal XIII: Operaciones con Transformaciones Lineales. José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato
CONJUNTOS Y SISTEMAS NUMÉRICOS
1. CONJUNTOS. 1.1 Conceptos básicos Medir y contar fueron las primeras actividades matemáticas del hombre y ambas nos conducen a los números. Haciendo marcas, medían el tiempo y el conteo de bienes que
Tema 4: Aplicaciones lineales
Águeda Mata y Miguel Reyes, Dpto de Matemática Aplicada, FI-UPM 1 Tema 4: Aplicaciones lineales Ejercicios 1 Estudia la linealidad de las siguientes aplicaciones: (a) f : R R 3, definida por f(x, y) =
John Venn Matemático y filósofo británico creador de los diagramas de Venn
Georg Cantor Matemático Alemán creador de la teoría de conjuntos John Venn Matemático y filósofo británico creador de los diagramas de Venn August De Morgan Matemático ingles creador de leyes que llevan
Álgebra Lineal VII: Independencia Lineal.
Álgebra Lineal VII: Independencia Lineal José María Rico Martínez Departamento de Ingeniería Mecánica División de Ingenierías, Campus Irapuato-Salamanca Universidad de Guanajuato email: jrico@salamancaugtomx
Teoría de Conjuntos y Conjuntos Numéricos
Teoría de Conjuntos y Conjuntos Numéricos U N I V E R S I D A D D E P U E R T O R I C O E N A R E C I B O D E P A R T A M E N T O DE M A T E M Á T I C A S P R O F A. Y U I T Z A T. H U M A R Á N M A R
TEMARIO PRESENTACIÓN 7 MÓDULO I 17 EXPRESIONES ALGEBRAICAS 19
TEMARIO PRESENTACIÓN 7 MÓDULO I 17 EXPRESIONES ALGEBRAICAS 19 Introducción 19 Lenguaje común y lenguaje algebraico 22 Actividad 1 (Lenguaje común y lenguaje algebraico) 23 Actividad 2 (Lenguaje común y
Espacios generados, dependencia lineal y bases
Espacios generados dependencia lineal y bases Departamento de Matemáticas CCIR/ITESM 14 de enero de 2011 Índice 14.1. Introducción............................................... 1 14.2. Espacio Generado............................................
Tema 2. Espacios Vectoriales. 2.1. Introducción
Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por
PRINCIPIOS DEL MODELAJE DE SISTEMAS
16 de Enero de 2012 PRINCIPIOS DEL MODELAJE DE SISTEMAS (Parte 2) Postgrado de Investigación de Operaciones Facultad de Ingeniería Universidad Central de Venezuela Análisis y Diseño de Sistemas José Luis
Algebra Lineal XI: Funciones y Transformaciones Lineales
Algebra Lineal XI: Funciones y Transformaciones Lineales José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email:
INTERVALOS Y SEMIRRECTAS.
el blog de mate de aida CSI: Inecuaciones pág 1 INTERVALOS Y SEMIRRECTAS La ordenación de números permite definir algunos conjuntos de números que tienen una representación geométrica en la recta real
PAIEP. Complemento Ortogonal
Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP Universidad de Santiago de Chile Complemento Ortogonal Veamos ahora una aplicación de los vectores ortogonales a la caracterización de subespacios
UNIDAD II: TEORÍA DE CONJUNTOS 2.1. INTRODUCCIÓN
UNDD : TEORÍ DE CONJUNTOS 2.1. NTRODUCCÓN Según Georg Cantor un conjunto es la reunión, agrupación o colección de elementos bien definidos que tienen una propiedad en común, concepto que ha penetrado y
Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1
Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1 TEMA 3 ÁLGEBRA 3.1 FACTORIZACIÓN DE POLINOMIOS LA DIVISIBILIDAD EN LOS POLINOMIOS Un polinomio P(x) es divisible por otro polinomio Q(x) cuando el cociente
METODOS DE INTEGRACION IV FRACCIONES PARCIALES
METODOS DE INTEGRACION IV FRACCIONES PARCIALES Una función racional es una función de la forma En la que f(x) y g(x) son polinomios. Si el frado de f(x) es menor que el de g(x), F(x) se denomina fracción
PROBLEMAS RESUELTOS ÁLGEBRA LINEAL Tema 3. Transformaciones Lineales
Tema. Transformaciones Lineales TEMA: TRANSFORMACIÓN LINEAL, NÚCLEO Y RECORRIDO Problema : Sean P el espacio vectorial real de los polinomios de grado menor o igual a dos con coeficientes reales y la transformación
ELEMENTOS DE LA TEORÍA DE CONJUNTOS
ELEMENTOS DE LA TEORÍA DE CONJUNTOS 1 CONJUNTO EJEMPLOS NOTACIÓN NOTACIÓN TABULAR O POR EXTENSIÓN DE UN CONJUNTO Cuando se define el conjunto por la efectiva enumeración de sus elementos separándolos por
Espacios vectoriales reales.
Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre
Ecuaciones de la recta en el espacio
Ecuaciones de la recta en el espacio Ecuación vectorial de la recta Sea P(x 1, y 1 ) es un punto de la recta r y uu su vector director, el vector PPXX tiene igual dirección que uu, luego es igual a uu
FUNCIONES REALES 1º DE BACHILLERATO CURSO
FUNCIONES REALES 1º DE BACHILLERATO CURSO 2007-2008 Funciones reales Definición Clasificación Igual de funciones Dominio Propiedades Monotonía Extremos relativos Acotación. Extremos absolutos Simetría
(Ec.1) 2α + β = b (Ec.4) (Ec.3)
Problema 1. Hallar t R para que el vector x = (3, 8, t) pertenezca al subespacio engendrado por los vectores u = (1, 2, 3) y v = (1, 3, 1). Solución del problema 1. x L{ u, v} si, y sólo si, existen α,
ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE.
ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K (Q,
Cálculo en varias variables
Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad
Números reales Conceptos básicos Algunas propiedades
Números reales Conceptos básicos Algunas propiedades En álgebra es esencial manejar símbolos con objeto de transformar o reducir expresiones algebraicas y resolver ecuaciones algebraicas. Debido a que
