Técnicas Digitales III
|
|
|
- María Carmen Murillo Salazar
- hace 9 años
- Vistas:
Transcripción
1 Universidad Tecnológica Nacional Facultad Regional San Nicolás Técnicas Digitales III Trabajo Práctico nro. 6 FILTROS con MATLAB Rev.2015
2 Trabajo Práctico 6 OBJETIVO: Conocer las herramientas que este software posee para el diseño de filtros tanto analógicos como digitales para afianzar los conocimientos vistos en clase. Comparar entre distintos filtros digitales y a su vez con su par analógico. Determinar los parámetros de un filtro y observar como podría ayudarnos a encontrar los coeficientes que luego podremos usar al programar un microprocesor.
3 Trabajo Práctico 6 ELEMENTOS: MatLab y la guía suministrada por la cátedra. Esta información está disponible en nuestra web, apartado Prácticos :
4 Trabajo Práctico 6
5 DESARROLLO: Reseña de utilización de MatLab : Signal Processing Toolbox
6
7 Método de ventanas para el diseño de filtros FIR
8 Sección DISEÑO: FILTROS IIR con MATLAB Funciones para determinar los coeficientes del filtro >>[N, Wn] = cheb1ord(wp, Ws, Rp, Rs) >>[B,A] = butter(n,wn) >>[B,A] = butter(n,[w1 W2], stop )
9 Sección DISEÑO: FILTROS FIR con MATLAB Función FIR1 >> B = fir1(n,wn,type,window); >> B = fir1(n,[w1 W2],'stop'); >> B = fir1(n,wn,bartlett(n+1)); >> B = fir1(n,wn,'high',chebwin(n+1,r)); Función FIR2 Función FIRLS >> B = fir2(n,f,m,window); Diseña un filtro FIR utilizando el método del muestreo frecuencial. Se pueden especificar más parámetros en esta función, >> B = firls(n,f,m);
10 Sección DISEÑO: Respuesta frecuencial del filtro y aplicación del mismo a la señal de prueba >> H = freqz(b,a,f,fs) Devuelve el vector H de números complejos, que es la respuesta frecuencial al filtro cuya función de transferencia en z viene dada por B y A. La respuesta frecuencial se evalúa en los puntos especificados por el vector F en Hz, siendo la frecuencia de mustreo Fs Hz. Más opciones en el Help de MATLAB. Aplicación del filtro a la señal de prueba temporal: >> y = filter(b,a,x) >> y = filtfilt(b,a,x)
11 Diseño 1A Ejemplo de Diseño de un Filtro de paso bajo usando las fórmulas anteriores: En el siguiente ejemplo vemos la respuesta típica de un filtro pasa bajos que diseñaremos a continuación:
12 Se pretende diseñar un Filtro de paso bajo para extraer una señal de 1000Hz que ha contaminado una señal de 1 Vpp de 2000 Hz. Las señales fueron muestreadas con una fm=8khz. clear all; %**********Diseño del filtro********** [N,Wn]=buttord(1500/(8000/2), 1700/(8000/2), 0.5, 60); %Nos dá el orden y frec. De corte del filtro %[num,den]=butter(12,1500/4000); %Calcula los coeficientes del numerador y denominador del filtro. [num,den]=butter(n,wn); w=0:pi/255:pi; %Hacemos variar la frecuencia entre 0 y pi. Barrido figure(1) Hlp=freqz(num,den,w); %Calcula la respuesta en frecuencia del filtro para ls Fs elegida. semilogy(w/pi,abs(hlp)) %Escala logaritmica de amplitud grid H = 20*log10(abs(Hlp)); figure(2) plot(w/pi,h) axis([ ]); ylabel('ganancia en db'); xlabel('frecuencia normalizada: w/pi'); pause; %**********imulación del diseño********* %Definicion frec. de muestreo y barrido temporal para las señales a simular fm = 8000; tm = inv(fm); N = 8000; t = 0:tm:tm*(N-1);
13 Continuación diseño ejemplo 1: x=sin(2*pi*2000*t); xr=sin(2*pi*1000*t); y=x+xr; subplot(311) plot(t,y) % Crea la señal de entrada del tipo sinosoidal de 1000Hz % Crea la señal de entrada del tipo sinosoidal de 2000Hz %Señal suma de senoides del problema %Dibuja Señal original %Para Calculo FFT NFFT = 2^nextpow2(N); Y = fft(y,nfft)/n; f = fm/2*linspace(0,1,nfft/2+1); % Next power of 2 from length of y subplot(312) plot(f,2*abs(y(1:nfft/2+1))) % Muestra la FFT de la señal de entrada title('espectro de Amplitud y(t)') xlabel('frecuencia (Hz)') ylabel(' Y(f) ') pause;
14 Continuación diseño ejemplo 1: figure(4); Sal=filter(num,den,y) plot(t,sal) figure(5) F = fft(sal,nfft)/n; plot(f,2*abs(f(1:nfft/2+1))) xlabel('f (Hz)SALIDA'); ylabel('amplitud SALIDA'); %Aplica el filtro diseñado a la señal de prueba. %Muestra la señal Filtrada en el tiempo %Muestra el contenido frecuencial de la señal Filtrada.
15 Salidas del ejemplo: Diseño del filtro
16 Salidas del ejemplo: Señales de simulación
17 Salidas del ejemplo: Aplicación del filtro diseñado a la señal de simulación.
18 Enunciado Trabajo Práctico 6 OBJETIVO: Familiarizarse con el diseño de filtros digitales. ELEMENTOS: Se utilizará Matlab y la guía suministrada por la cátedra. DESARROLLO: 1) Explicación del ejemplo del diseño 1A A- Verificar el orden del filtro que necesitaríamos en caso de usar un filtro FIR: [N, f, m, wgt] = remezord([ ], [1 0], [ ], 8000) B- Comprobar el orden utilizando la fórmula en el caso analógico. C- Encontrar el orden del filtro utilizando otros dos métodos de filtros IIR.
19 Enunciado Trabajo Práctico 6 2) Corra el Diseño 1A. A- Cambie algunos parámetros de los coeficientes de la fórmula y vuelva a graficar. B- Pruebe el mismo ejemplo pero a través de un FIR, use el calculado en el item1-a. %Calculamos los coeficientes del filtro, f=remez(n,f,m) w=0:pi/255:pi; %Hacemos variar la frecuencia entre 0 y pi. Barrido figure(1) Hl=freqz(f,1,w); plot(w/pi,abs(hl)) % Graficamos la rta en frec. O podremos hacer bfir1=fir1(n,0.02) H2=freqz(bfir1,1,w); plot(w/pi,abs(h2)) Sal2=filter(bfir1,1,y); plot(t,sal2)
20 Enunciado Trabajo Práctico 6 C- Aumente el orden del filtro FIR y grafique las salidas nuevamente. Observe como cambia la salida del filtro. D- Pruebe conseguir un resultado similar con los IIR. E- Elabore conclusiones de acuerdo a los resultados hallados. 3) Utilización de la función fir2 Esta función nos permite seleccionar la respuesta frecuencial del filtro. Ejemplo, filtro pasa bajo: f = [ ]; m = [ ]; b = fir2(30,f,m); [h,w] = freqz(b,1,128); plot(f,m,w/pi,abs(h)) legend('ideal','diseño fir2') title('comparación entre respuestas en frecuencia') Utilice esta función para aplicarla al diseño 1. Grafique.
21 Enunciado Trabajo Práctico 6 4) Un filtro pasabanda debe tener las siguientes especificaciones: Pasabanda: 5 KHz-8 KHz Parabanda: 4 KHz-10 KHz Rizado de Pasabanda: <1dB Atenuación de Pasabanda: >60dB Frecuencia de Muestreo 22 KHz Diseñar un filtro digital por los siguientes métodos: a. Filtro IIR de Chebyshev I utilizando la transformación bilineal. b. Filtro FIR por el método de Parks-McClellan. c. Filtro FIR por el método de las series de Fourier, eligiendo la ventana espectral más adecuada. 5) Diseñe un filtro pasa-banda de orden N=6 con frecuencia de paso de 300 y 500 Hz, suponiendo que la señal de entrada será muestrada a una frecuencia de 8192 Hz..Represente H(w). Considere que la señal de entrada esta formada por la suma de tres señales sinusoidales de frecuencia 100,400 y 600 Hz respectivamente. Usando la función filter compruebe que a la salida ha desaparecido la componente de 100 y de 600 Hz.
22 Universidad Tecnológica Nacional Facultad Regional San Nicolás Técnicas Digitales III Fin de la presentación Visítenos en:
Taller de Filtros Digitales 2016 Práctica 1
Taller de Filtros Digitales 2016 Práctica 1 1. Objetivo El objetivo de esta práctica es la familiarización con el tratamiento digital de señales: Generación y visualización de señales digitales. Convolución
Análisis de un filtro IIR Butterworth mediante Sptool de Matlab. TEORÍA DE SISTEMAS. ANÁLISIS DE FILTRO IIR BUTTERWORTH (PASABAJOS) 1.
Análisis de un filtro IIR Butterworth mediante Sptool de Matlab. TEORÍA DE SISTEMAS. ANÁLISIS DE FILTRO IIR BUTTERWORTH (PASABAJOS) 1. Filtro ideal: La definición del filtro ideal pasabajos, es un concepto
Sistemas Lineales e Invariantes PRÁCTICA 2
Sistemas Lineales e Invariantes PRÁCTICA 2 (1 sesión) Laboratorio de Señales y Comunicaciones PRÁCTICA 2 Sistemas Lineales e Invariantes 1. Objetivo Los objetivos de esta práctica son: Revisar los sistemas
Práctica 1 INTRODUCCIÓN A MATLAB
UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA FACULTAD DE INGENIERÍA, ARQUITECTURA Y DISEÑO Laboratorio de Procesamiento Digital de Señales Práctica 1 INTRODUCCIÓN A MATLAB OBJETIVO: Que el alumno realice gráficos
TEMA 1. Principios de Teoría de la Señal
Tecnología de Comunicaciones Inalámbrica (TCI) 2012-2013 TEMA 1. Principios de Teoría de la Señal Juan Carlos Crespo [email protected] 1 INTRODUCCIÓN En este capítulo estudiaremos la naturaleza de
PROCESAMIENTO DIGITAL DE SEÑALES PRACTICAS MATLAB/LABVIEW
PROCESAMIENTO DIGITAL DE SEÑALES PRACTICAS MATLAB/LABVIEW DR. DANIEL U. CAMPOS DELGADO PROFESOR-INVESTIGADOR FACULTAD DE CIENCIAS UASLP Noviembre, 2007 I. Procesamiento Digital en MATLAB (Diseño Filtros
PRÁCTICA 6: DISEÑO DE FILTROS FIR
PRÁCTICA 6: DISEÑO DE FILTROS FIR Objetivo Específico: El alumno utilizará herramientas computacionales para el diseño de filtros de respuesta finita al impulso (FIR). Comparará las características que
CAPITULO 5 DESARROLLO DEL PROYECTO
DESARROLLO DEL PROYECTO 5 DESARROLLO DEL PROYECTO 5.1 Introducción Este capítulo tiene la finalidad de explicar la forma en cómo fue desarrollado el demodulador sintonizable de AM utilizando el DSP TMS320C50,
Seminario de Procesamiento Digital de Señales
Seminario de Procesamiento Digital de Señales Unidad 5: Diseño de Filtros Digitales - Parte I Marcelo A. Pérez Departamento Electrónica Universidad Técnica Federico Santa María Contenidos 1 Conceptos Básicos
Problemas de diseño de filtros y sus soluciones
Problemas de diseño de filtros y sus soluciones 1. Diseñe un filtro paso-bajo de Butterworth con una frecuencia de corte fc=10khz y una atenuación mínima de A t =36 db a f r =100Khz. a. Cuánto vale el
DISEÑO E IMPLEMENTACION DE UN FILTRO PASA BANDA. Realizado por Luis Salcedo, Andrés Basto, Rubén martín, Andrés Urrea
DISEÑO E IMPLEMENTACION DE UN FILTRO PASA BANDA Realizado por Luis Salcedo, Andrés Basto, Rubén martín, Andrés Urrea PLANTEAMIENTO DEL PROBLEMA Se nos pide modificar una señal de audio, la mejor manera
PROBLEMAS TEMA 2 TEORÍA DE LA APROXIMACIÓN
PROBLEMAS TEMA TEORÍA DE LA APROXIMACIÓN PROBLEMA : Determinar la función de transferencia de un filtro paso bajo máximamente plano que cumplan las especificaciones de la figura: a) Determinar el orden
SISTEMAS ELECTRÓNICOS DE CONTROL
SISTEMAS ELECTRÓNICOS DE CONTROL PRÁCTICA 4: Diseño de Reguladores PID Discretos Objetivos Conocer los comandos de Matlab para discretizar sistemas continuos. Realizar simulaciones de sistemas discretos
Introducción al Diseño de Filtros Digitales
Introducción al Diseño de Filtros Digitales Diego Milone Procesamiento Digital de Señales Ingeniería Informática FICH-UNL 3 de mayo de 2012 Organización de la clase Introducción Concepto y clasificación
En general, el diseño de cualquier filtro digital es llevado a cabo en 3 pasos:
En general, el diseño de cualquier filtro digital es llevado a cabo en 3 pasos: 1. Especificaciones: Antes de poder diseñar un filtro debemos tener algunas especificaciones, las cuales son determinadas
Diseño de Filtros Digitales (Parte
Diseño de Filtros Digitales (Parte 2) Filtros FIR Secuencias Simétricas Método de las Series de Fourier Método de Muestreo en Frecuencia Métodos Iterativos basados en condiciones óptimas Diseño de Filtros
Teoría de Sistemas y Señales
Departamento de Electrónica Facultad de Ciencias Exactas, Ingeniería y Agrimensura Universidad Nacional de Rosario Teoría de Sistemas y Señales Trabajo Práctico Nº 3 Análisis Frecuencial de Señales Cátedra
Guia de Problemas N o 2. Filtros Analógicos
SAPS: Sistemas de Adquisición y Procesamiento de Señales Departamento Académico de Electrónica Carrera: Bioingeniería 2 do Cuatrimestre 2014 Guia de Problemas N o 2 Filtros Analógicos Tipos de problemas:
Análisis espectral de señales periódicas son Simulink
1 Análisis espectral de señales periódicas son Simulink 2 3 8.1. Captura de un modelo Simulink es un entorno profesional de simulación, lo que quiere decir dos cosas: poco amigable y sus librerías son
Laboratorio 4 Diseño de filtros analógicos en Matlab
10 Laboratorio 4 Diseño de filtros analógicos en Matlab Como ya se ha señalado, existen varios métodos de diseño de filtros analógicos. En esta práctica se revisan estos métodos empleando las funciones
PROBLEMAS TEMA 1 INTRODUCCIÓN. DEFINICIONES BÁSICAS
INTRODUCCIÓN. DEFINICIONES BÁSICAS PROBLEMA 1 Se desea obtener un filtro paso banda que cumpla las especificaciones indicadas en la plantilla de atenuación de la figura a partir de un filtro paso bajo
Muestreo y Reconstrucción
Muestreo y Reconstrucción Guía de ejercicios Ejercicios de cálculo 1. Muestreo. 1.1. Se requiere muestrear una señal analógica senoidal pura de 18kHz. 1.1.1. Determinar la frecuencia de muestreo mínima
Transformada de Fourier
1 Facultad: Ingeniería Escuela: Ingeniería Biomédica Asignatura: Procesamiento de Señales Biomédicas Transformada de Fourier Objetivo 1. Aplicar la DFT para identificar frecuencias dominantes en una señal
Muestreo y Procesamiento Digital
Muestreo y Procesamiento Digital Práctico 5 Muestreo de señales de tiempo continuo Cada ejercicio comienza con un símbolo el cual indica su dificultad de acuerdo a la siguiente escala: básico, medio, avanzado,
Diseño e implementación de Filtros Digitales. Mg. Ing. Luis Romero Dr. Ing. Vicente Mut Dr. Ing. Carlos Soria Año 2011
Diseño e implementación de Filtros Digitales Mg. Ing. Luis Romero Dr. Ing. Vicente Mut Dr. Ing. Carlos Soria Año 2011 Introducción Un buen diseño de un filtro digital y su eficiente implementación en hardware
Filtrado Digital. Lectura 3: Diseño de Filtros FIR
Lectura 3: Diseño de Filtros FIR Diseño de Filtros Objetivo: Obtener una función de transferencia H(z) realizable aproximándola a una respuesta en frecuencia deseable. El diseño de filtros digitales es
PRÁCTICA DE CHATTER CHATTER
PRÁCTICA DE CHATTER CHATTER Problema dinámico debido a la aparición de vibraciones autoinducidas Limita prestaciones de máquina-herramienta, reduce la tasa de material eliminado Consecuencias Pérdida de
FUNDAMENTOS TEÓRICOS
FUNDAMENTOS TEÓRICOS 7 FUNDAMENTOS TEÓRICOS 1.1. FUNDAMENTOS TEÓRICOS: FILTROS La primera pregunta que debemos de hacernos es, qué es un filtro?, pues bien, un filtro es un dispositivo (bien realizado
REPRESENTACION DE SEÑALES Y SISTEMAS
REPRESENTACION DE SEÑALES Y SISTEMAS TRANSFORMADA DE FOURIER La serie de Fourier nos permite obtener una representación en el dominio de la frecuencia de funciones periódicas f(t). La transformada de Fourier
Análisis de Señales en Geofísica
Análisis de Señales en Geofísica 8 Clase Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Argentina Todos los sistemas lineales e invariantes pueden ser pensados como filtros.
FUNDAMENTOS Y APLICACIÓN DEL MUESTREO EN SEÑALES UBICADAS EN LAS BANDAS ALTAS DEL ESPECTRO
Scientia et Technica Año XIV, No 39, Septiembre de 2008. ISSN 0122-170 37 FUNDAMENTOS Y APLICACIÓN DEL MUESTREO EN SEÑALES UBICADAS EN LAS BANDAS ALTAS DEL ESPECTRO Purpose and scope of sampling signal
Implementación de efectos acústicos
Práctica 3: Implementación de efectos acústicos 3.0.- Objetivos Al finalizar esta práctica, el alumno debe ser capaz de: Grabar una señal de voz procesarla en Matlab. Añadir un eco, con diferente amplitud
D. REALIZACIÓN DE LA PRÁCTICA Y PRESENTACIÓN DE RESULTADOS
22 Laboratorio de Tratamiento Digital de Señales D. REALIZACIÓN DE LA PRÁCTICA Y PRESENTACIÓN DE RESULTADOS 1. DISEÑO DE FILTROS IIR 1.1 Diseño de filtros IIR empleando prototipos analógicos En este apartado
Análisis espectral de señales periódicas con FFT
Análisis espectral de señales periódicas con FFT 1 Contenido 7.1 Introducción a la Transformada Discreta de Fourier 3-3 7.2 Uso de la Transformada Discreta de Fourier 3-5 7.3 Método de uso de la FFT 3-8
Practica Laboratorio: Sistemas de comunicaciones. Para esta parte veremos la transformada de Fourier (discreta) mediante MatLab, con el
Practica Laboratorio: Sistemas de comunicaciones Para esta parte veremos la transformada de Fourier (discreta) mediante MatLab, con el comando FFT. Como vamos a trabajar con frecuencias, podremos ahora
Practica No. 4 CONTOL DE POSICION - CONTROL DIGITAL
Practica No. 4 CONTOL DE POSICION - CONTROL DIGITAL Pontificia Universidad Javeriana Facultad de Ingeniería Departamento de Electrónica Laboratorio de Control. Introducción En esta práctica se realiza
Huber Girón Nieto Practica 1 Filtro pasa baja y pasa alta de primer orden
Huber Girón Nieto Practica 1 Filtro pasa baja y pasa alta de primer orden Integración de elementos discretos y filtros Ing. Electrónica y de Comunicaciones Profesor: Nicolás Quiroz Hernández Universidad
PRÁCTICA 2: REPETIDORAS ANALÓGICAS PASABANDA. CARACTERIZACIÓN DEL RUIDO PASABANDA
EC2422. Comunicaciones I Enero Marzo 2006 PRÁCTICA 2: REPETIDORAS ANALÓGICAS PASABANDA. CARACTERIZACIÓN DEL RUIDO PASABANDA 1. Objetivos 1.1) Simular la transmisión de señales moduladas AM y SSB a través
Comunicaciones en Audio y Vídeo. Laboratorio. Práctica 4: Modulaciones Analógicas. Curso 2008/2009
Comunicaciones en Audio y Vídeo Laboratorio Práctica 4: Modulaciones Analógicas Curso 2008/2009 Práctica 4. Modulaciones Analógicas 1 de 8 1 ENTRENADOR DE COMUNICACIONES PROMAX EC-696 EMISOR RECEPTOR El
3. ANÁLISIS DE SEÑALES
3. ANÁLISIS DE SEÑALES 3.1 REGISTRO Y TRATAMIENTO DE SEÑALES Una señal se define como la historia de los valores de aceleración que mide un acelerómetro en determinado tiempo para un punto específico.
PRÁCTICA 1: Sistema de transmisión bandabase de señales de voz. Análisis del ruido.
EC2422. Comunicaciones I Enero-Marzo del 2.009 PRÁCTICA 1: Sistema de transmisión bandabase de señales de voz. Análisis del ruido. 1. Objetivos: 1.1) Simular la transmisión de señales de voz (en banda
Trabajo Práctico Nº 3. Filtrado Analógico
Trabajo Práctico Nº 3 Filtrado Analógico Objetivos: Mediante la realización de este trabajo práctico se pretende que el alumno logre: o Ejercitar los conceptos, métodos y estrategias relacionados a la
3. Señales. Introducción y outline
3. Señales Introducción y outline Outline Señales y Sistemas Discretos: SLIT, Muestreo, análisis tiempo-frecuencia, autocorrelación, espectro, transformada Z, DTFT, DFT, FFT Filtros y Estimación: Filtros
Comenzando a usar MatLab:
Universidad Simón Bolívar Núcleo del Litoral Departamento de Tecnología Industrial TI-2284. Laboratorio de Sistemas de Control PRACTICA 1. INTRODUCCION A MATLAB Introducción: MatLab es una herramienta
Teoría de Sistemas y Señales
Universidad Nacional de Rosario Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ingeniería Electrónica Teoría de Sistemas y Señales Trabajo Práctico Nº 3 Análisis Frecuencial de Señales
Señales y Análisis de Fourier
2 Señales y Análisis de Fourier En esta práctica se pretende revisar parte de la materia del tema 2 de la asignatura desde la perspectiva de un entorno de cálculo numérico y simulación por ordenador. El
Amplitud Modulada con Portadora de Alta Potencia
Amplitud Modulada con Portadora de Alta Potencia Versión 6 Instrucciones En una hoja que sirva de carátula anote los datos siguientes: Nombre de curso Grupo Semestre Nombre del alumno tal como aparece
TEORIA DE CIRCUITOS. CURSO PRÁCTICA 4. RESPUESTA FRECUENCIAL EN REGIMEN PERMANENTE SENOIDAL
1 INGENIERIA TENIA INDUSTRIAL. ELETRONIA INDUSTRIAL TEORIA DE IRUITOS. URSO 2003-2004 PRÁTIA 4. RESPUESTA FREUENIAL EN REGIMEN PERMANENTE SENOIDAL PRIMERA PARTE: SIMULAIÓN EN PSPIE INTRODUIÓN El objetivo
Proyecto final parte 2. Para esta parte veremos la transformada de Fourier (discreta) mediante MatLab, con el
Proyecto final parte 2 Para esta parte veremos la transformada de Fourier (discreta) mediante MatLab, con el comando FFT. Como vamos a trabajar con frecuencias, podremos ahora analizar los sistemas para
ESTUDIO COMPARATIVO SOBRE DISTINTOS TIPOS DE FILTROS FIR IMPLEMENTADOS EN UN DSPIC
ESTUDIO COMPARATIVO SOBRE DISTINTOS TIPOS DE FILTROS FIR IMPLEMENTADOS EN UN DSPIC Autores: Matías L. Martini, Gastón Oviedo Tutor: Ing. Franco M. Salvático ([email protected]) Departamento de Ingeniería
Análisis Espectral mediante DFT PRÁCTICA 4
Análisis Espectral mediante DFT PRÁCTICA 4 (2 sesiones) Laboratorio de Señales y Comunicaciones 3 er curso, Ingeniería Técnica de Telecomunicación Sistemas de Telecomunicación 1 PRÁCTICA 4 Análisis Espectral
Tema: Modulación por amplitud de pulso P.A.M.
Tema: Modulación por amplitud de pulso P.A.M. Sistemas de comunicación II. Guía 1 1 Facultad: Ingeniería Escuela: Electrónica Asignatura: Sistemas de comunicación II Contenidos Modulación por amplitud
Muestreo y Procesamiento Digital
Muestreo y Procesamiento Digital Práctico N+ Problemas surtidos El propósito de este repartido de ejercicios es ayudar en la preparación del examen. Dadas las variadas fuentes de los ejercicios aquí propuestos,
Práctica 2: Periodicidad
Práctica 2: Periodicidad Apellidos, nombre Apellidos, nombre Grupo Puesto Fecha El objetivo de esta práctica es explorar las utilidades de representación gráfica de MATLAB para observar las especiales
Filtros Activos. Teoría. Autor: José Cabrera Peña
Filtros Activos Teoría Autor: José Cabrera Peña Definición y clasificaciones Un filtro es un sistema que permite el paso de señales eléctricas a un rango de frecuencias determinadas e impide el paso del
Práctica 6: Aplicaciones de la TF
Práctica 6: Aplicaciones de la TF Apellidos, nombre Apellidos, nombre Grupo Puesto Fecha El objetivo de esta práctica es mostrar al alumno diversas aplicaciones básicas de la Transformada de Fourier en
Análisis Espectral mediante DFT PRÁCTICA 4
Análisis Espectral mediante DFT PRÁCTICA 4 (2 sesiones) Laboratorio de Señales y Comunicaciones 1 PRÁCTICA 4 Análisis Espectral mediante DFT 1. Objetivo Habitualmente, el análisis de señales y sistemas
PROCESAMIENTO DIGITAL DE SEÑALES SISMICAS EN ENTORNO MATLAB
PROCESAMIENTO DIGITAL DE SEÑALES SISMICAS EN ENTORNO MATLAB César Omar Jiménez Tintaya (Instituto Geofísico del Perú) [email protected] RESUMEN Aplicar el procesamiento digital de señales y el lenguaje
Analizador de Espectro Digital de Frecuencia de Audio. Universidad Tecnológica Nacional Facultad Regional Mendoza
9. MANUAL DE USUARIO 9.1. Requerimientos del sistema Los requerimientos mínimos son: IBM PC compatible con un Pentium II o AMD K6-2 Sistema Operativo Microsoft Windows de 32 bits, que incluye Windows 95/98,
Tema 5: Ruido e interferencias en modulaciones analógicas TEMA 5: RUIDO E INTERFERENCIAS EN MODULACIONES ANALOGICAS
TEMA 5: RUIDO E INTERFERENCIAS EN MODULACIONES ANALOGICAS PROBLEMA 1 En un sistema de modulación en FM, la amplitud de una señal interferente detectada varía proporcionalmente con la frecuencia f i. Mediante
Procesamiento digital de señales de audio
Procesamiento digital de señales de audio Filtros digitales Instituto de Ingeniería Eléctrica, Facultad de Ingeniería Universidad de la República, Uruguay Grupo de Procesamiento de Audio Filtros digitales
transmisión de señales
Introducción al análisis y transmisión de señales La transmisión de información La información se puede transmitir por medio físico al variar alguna de sus propiedad, como el voltaje o la corriente. Este
Unidad Temática 4: Comunicación en Banda Base Analógica
Unidad Temática 4: Comunicación en Banda Base Analógica 1) Qué significa transmitir una señal en banda base? Los sistemas de comunicaciones en los cuales las señales transmitidas no sufren procesos de
TRANSMISIÓN DIGITAL PRÁCTICA 1
TRANSMISIÓN DIGITAL PRÁCTICA Curso 7-8 Transmisión Digital Práctica Introducción Esta primera práctica trata de familiarizar al alumno con el lenguaje de programación Matlab, permitiéndole afrontar materias
Guía 1: Ejercicios sobre transformada z
Guía 1: Ejercicios sobre transformada Alumno: Guillermo M. Tabeni Couvert Profesor: Ing. Carlos A. Espinoa J.T.P.: Ing. Daniel R. Graff Cátedra de Ingeniería Industrial Universidad Tecnológica Nacional,
PRÁCTICA 1 ANÁLISIS DE SEÑALES EN EL DOMINIO DE LA FRECUENCIA: EL ANALIZADOR DE ESPECTROS
PRÁCTICA 1 ANÁLISIS DE SEÑALES EN EL DOMINIO DE LA FRECUENCIA: EL ANALIZADOR DE ESPECTROS 1 Espectro de una señal GSM 2 CONOCIMIENTOS PREVIOS: Estructura de un receptor heterodino, mezcla, factor de ruido,
Análisis Armónico en Matlab. Análisis Estadístico de Datos Climáticos 2013
Análisis Armónico en Matlab Análisis Estadístico de Datos Climáticos 2013 Espectro Fuga Espectral ( spectral leackage ) Serie infinita Serie finita La truncación temporal transforma un espectro ideal formado
UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERÍA ELECTRÓNICA E INFORMÁTICA SÍLABO ASIGNATURA: PROCESAMIENTO DIGITAL DE SEÑALES
SÍLABO ASIGNATURA: PROCESAMIENTO DIGITAL DE SEÑALES CÒDIGO: 8F0047 1. DATOS PERSONALES: 1.1 Departamento Académico : Ingeniería Electrónica e Informática 1.2 Escuela Profesional : Ingeniería Electrónica
Tema: Uso del analizador espectral.
Sistemas de Comunicación I. Guía 1 1 I Facultad: Ingeniería Escuela: Electrónica Asignatura: Sistemas de comunicación Tema: Uso del analizador espectral. Objetivos Conocer el funcionamiento de un Analizador
6 10 3,5 2,0 4,5. PROGRAMA DE CURSO Código Nombre EL Señales y Sistemas I Nombre en Inglés Signals and Systems I SCT
PROGRAMA DE CURSO Código Nombre EL 3005 Señales y Sistemas I Nombre en Inglés Signals and Systems I SCT Unidades Horas de Horas Docencia Horas de Trabajo Docentes Cátedra Auxiliar Personal 6 10 3,5 2,0
Laboratorio 1 Medidas Eléctricas - Curso 2018
Objetivo: Laboratorio 1 Medidas Eléctricas - Curso 2018 El objetivo de esta práctica es familiarizarse con el manejo del osciloscopio y los principios fundamentales de su funcionamiento. Materiales del
CIRCUITOS ELECTRÓNICOS. Práctica nº 1. Software de simulación de circuitos
CIRCUITOS ELECTRÓNICOS Práctica nº 1 Software de simulación de circuitos Trabajo a realizar en la práctica La práctica consiste en introducir al alumno en la utilización de la herramienta software LTspice
EJERCICIOS DE CONTROL POR COMPUTADOR BOLETIN V: SISTEMAS DISCRETOS (I)
C. Determine el valor al que tenderá en régimen permanente la salida ante un escalón de amplitud 3 a la entrada del sistema discreto dado por: z.7 G( z) ( z.5) z C. a) Determinar la región del plano z
TEMA4: Implementación de Filtros Discretos
TEMA4: Implementación de Filtros Discretos Contenidos del tema: El muestreo y sus consecuencias Relaciones entre señales y sus transformadas: Especificaciones de filtros continuos y discretos Aproximaciones
PRÁCTICA 1 ANÁLISIS DE SEÑALES EN EL DOMINIO DE LA FRECUENCIA: EL ANALIZADOR DE ESPECTROS
PRÁCTICA 1 ANÁLISIS DE SEÑALES EN EL DOMINIO DE LA FRECUENCIA: EL ANALIZADOR DE ESPECTROS 1 Espectro de una señal GSM Las señales radiadas son susceptibles de ser interceptadas y analizadas. EJ. Monitorización
GUÍA DE EJERCICIOS No. 3. Las tres emisoras se encuentran a igual distancia del receptor (igual atenuación de señal recibida).
DEPARTAMENTO DE ELECTRONICA TEORIA DE COMUNICACIONES PRIMER SEMESTRE 23 GUÍA DE EJERCICIOS No. 3 1.- Un receptor de AM tiene las siguientes especificaciones: - sensibilidad 5 [µv] (voltaje en antena) para
Parámetros de Sistemas de Comunicaciones Banda Base
Parámetros de Sistemas de Comunicaciones Banda Base Objetivo El alumno identificará los principales parámetros empleados para evaluar el desempeño de un sistema de comunicaciones banda base. Estos parámetros
(2 sesiones) Laboratorio de Señales y Comunicaciones 3 er curso, Ingeniería de Telecomunicación. Javier Ramos y Fernando Díaz de María
Com unic ac iones Analógic as PRÁCTICA 5 (2 sesiones) Laboratorio de Señales y Comunicaciones 3 er curso, Ingeniería de Telecomunicación Javier Ramos y Fernando Díaz de María PRÁCTICA 5 Comunicaciones
Señales y Analisis de Fourier
Señales y Analisis de Fourier Señales y Análisis de Fourier En esta práctica se pretende revisar parte de la materia del tema 2 de la asignatura desde la perspectiva de un entorno de cálculo numérico y
TRANSFORMADA DE FOURIER
TRANSFORMADA DE FOURIER PROFESOR: JORGE ANTONIO POLANÍA PUENTES 1. REPRESENTACION DE FOURIER PARA SEÑALES CONTINUAS a. Señales periódicas en el tiempo continuo: Series de Fourier Una señal continua se
Objetivo En este ejercicio se utilizan diversos IV de NI Elvis para medir las características de filtros pasa bajas, pasa altas y pasa banda.
4 FILTROS CON AMPLIFICAR OPERACIONAL El uso del amplificador operacional con algunos resistores y capacitores se obtiene una amplia variedad de circuitos interesantes, como filtros activos, integradores
PRÁCTICA N 2 ESTUDIO TEMPORAL Y FRECUENCIAL DE SISTEMAS DINÁMICOS DE PRIMER Y SEGUNDO ORDEN
UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO PROGRAMA DE INGENIERÍA QUÍMICA DPTO DE MECÁNICA Y TECNOLOGÍA DE LA PRODUCCIÓN DINÁMICA Y CONTROL DE PROCESOS PRÁCTICA
SIMULACIÓN DE LA MODULACIÓN POR AMPLITUD DE PULSOS (PAM) EN MATLAB
SIMULACIÓN DE LA MODULACIÓN POR AMPLITUD DE PULSOS (PAM) EN MATLAB 1. OBJETIVOS: General: o Implementar en simulink un sistema de bloques que permita simular Modulación por Amplitud de Pulsos (PAM), a
Codificación de audio MPEG. Álvaro Pardo
Codificación de audio MPEG Álvaro Pardo Características del sistema auditivo La sensibilidad del oído es logarítmico respecto a la frecuencia Varía con la frecuencia La discriminación en frecuencia es
Materiales Semiconductores TRABAJO PRÁCTICO Nº 5 Circuitos Rectificadores y Filtrado Analógico
Materiales Semiconductores TRABAJO PRÁCTICO Nº 5 Circuitos Rectificadores y Filtrado Analógico Objetivos: Identificar los parámetros y características fundamentales de los circuitos rectificadores y de
EJERCICIOS ANALITICOS. a a f ( ) R τ de x ( t ) y x ( t ) mostrados en la Figura. Figura 2. Densidad Espectral de Energía de g(t) - ( t)
PONTIFICIA UNIVERSIDAD JAVERIANA- FACULTAD DE INGENIERÍA. DEPARTAMENTO DE ELECTRÓNICA. - SECCIÓN DE COMUNICACIONES. FUNDAMENTOS DE COMUNICACIONES. TALLER NO. 1 TRANSFORMADA DE FOURIER APLICADA A TELE COMUNICACIONES
Transformada Z Filtros recursivos. clase 12
Transformada Z Filtros recursivos clase 12 Temas Introducción a los filtros digitales Clasificación, Caracterización, Parámetros Filtros FIR (Respuesta al impulso finita) Filtros de media móvil, filtros
Instrumentación Electrónica con Microprocesador II: Procesadores Avanzados Acondicionamiento digital de señales
Instrumentación Electrónica con Microprocesador II: Procesadores Avanzados Acondicionamiento digital de señales Marta Ruiz Llata Introducción Sistema de instrumentación: esquema de bloques Transductor
