Guía 1: Ejercicios sobre transformada z

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Guía 1: Ejercicios sobre transformada z"

Transcripción

1 Guía 1: Ejercicios sobre transformada Alumno: Guillermo M. Tabeni Couvert Profesor: Ing. Carlos A. Espinoa J.T.P.: Ing. Daniel R. Graff Cátedra de Ingeniería Industrial Universidad Tecnológica Nacional, F.R.A. 2 de julio de 2007 Objetivo: Realiar distintos ejercicios numéricos de mano y con el uso de Matlab. Ejercicio 1 Para la función Y (), determinar los polos y ceros y ubicarlos dentro del plano. Los teoremas del valor inicial y final son aplicables en dicha función. Por qué? Hallar sus valores. Y () = 0, ( 1)( 2 0, , 208) Para hallar los polos y ceros de Y (), introducimos los comandos: =tf( ); Y=.792*^2/((-1)*(^ *+.208)) ceros,polos,k]=pkdata(y, v ) Vemos que hay un cero doble en el origen, un polo real en 1 y un par de polos complejos conjugados: ceros = 0 0 polos = i i K = Ahora, graficamos el plano con los ceros y polos obtenidos: num,den]=tfdata(y, v ); plane(num,den) grid Por el teorema del valor inicial: Por el teorema del valor final: y(t = 0) = lím Y () = lím y(t ) = lím1 1 1 Y ()] = lím 1 1 0, , , 624 0, 208 0, 792/ = lím 1 1, 416/ + 0, 624/ 2 0, 208/ 3 = 0 0, ( 1)( 2 0, , 208) 0, 792 = lím 1 2 0, , 208 = 1 Estos teoremas son aplicables porque, por definición, existen los límites calculados. Alumno: Guillermo Tabeni, UTN, FRA, /11

2 Ejercicio 2 Obtenga la transformada de la siguiente función donde a es una constante. Grafique y compare en Matlab la función en tiempo continuo y la función en tiempo discreto. x(t) = 1 a (1 e at ) Distribuyendo, tenemos x(t) = 1 a e at a Luego, por la transformada del escalón y la propiedad lineal de la transformada, X() = 1 a(1 1 ) 1 a(1 e ak 1 ) = 1 e ak a(1 1 )(1 e ak 1 ) = 1 1 (1 e ak ] ) a 1 1 (1 + e ak ) + 2 e ak (1) En el Matlab comparamos la respuesta del sistema continuo (en rojo) con la del sistema discreto (aul): num=0 1-exp(-1) 0]; den=1-1-exp(-1) exp(-1)]; t=0:0.2:10; xt=(1-exp(-t)); plot(t,xt, r ) hold; imp(num,den) Alumno: Guillermo Tabeni, UTN, FRA, /11

3 Ejercicio 3 Para la función G() = Y ()/X(), hallar la transformada inversa mediante el método Matlab (comando filter) hasta k = 10. Graficar la secuencia (comando stem). Y () = 0, , , X() = 3 2, , , 8187 Con el siguiente programa graficamos los 10 primeros elementos de la secuencia de Y ()/X(). num= ]; den= ]; X=1 eros(1,10)]; Y=filter(num,den,X); n=0:1:10; stem(n,y); xlabel( k ); Alumno: Guillermo Tabeni, UTN, FRA, /11

4 Ejercicio 4 Para la ecuación en diferencias encontrar la serie en forma recursiva realiando un programa en Matlab. Luego, hallar la transformada Z mediante cálculo de mano y luego, mediante el método de Matlab (comando filter), encontrar la transformada inversa Z hasta k = 30. Verificar ambos gráficos y hallar conclusiones. x(k + 2) = x(k + 1) + x(k), donde x(0) = 0 y x(1) = 1 Las transformadas de x(k + 2), x(k + 1) y x(k) están dadas, respectivamente, por Zx(k + 2)] = 2 X() 2 x(0) x(1) Zx(k + 1)] = X() x(0) Zx(k)] = X() Al tomar las transformadas de ambos miembros de la ecuación en diferencias dada, se obtiene 2 X() = X() + X() donde se han reemplaado las condiciones iniciales dadas. Finalmente, despejando y simplificando, X() = 2 1 (2) que es la transformada buscada. Ahora utilio el siguiente programa para comparar el método manual con el método de Matlab. %Metodo manual x(1)=0; x(2)=1; N=30; for k=1:n-1 x(k+2)=x(k+1)+x(k) end n=0:n; subplot(2,1,2); stem(n,x, r ); title( Metodo manual ); %Metodo Matlab num=0 1 0]; den=1-1 -1]; n=0:1:n; x=1 eros(1,n)]; y=filter(num,den,x); subplot(2,1,1); stem(n,y, b ); title( Metodo Matlab ); Alumno: Guillermo Tabeni, UTN, FRA, /11

5 Ejercicio 5 Encontrar la expresión en forma cerrada de yn] usando el método de la transformada Z. Donde un] representa la función escalón. yn] (5/6)yn 1] + (1/6)yn 2] = (1/5) n un], donde y 1] = 6 e y 2] = 25 Las transformadas de secuencias desplaadas son: Además, la transformada de a n un] es, Zy(n 1)] = Y () 1 + y( 1) Zy(n 2)] = Y () 2 + y( 1) 1 + y( 2) Za n u(n)] = 1 1 (/a) 1 Al tomar las transformadas de ambos miembros de la ecuación en diferencias dada, se obtiene Y () 5 Y () ] + 1 Y () ] 1 = Y () ] = Y () ] = Despejando Y ()/, para luego aplicar el método de inversión por fracciones parciales: Y () = Factoriando el denominador, la función expandida tendrá la forma: Y () = a a a Alumno: Guillermo Tabeni, UTN, FRA, /11

6 donde los coeficientes son: a 1 = a 2 = a 3 = ( 1 2 ) Y () ] ( 1 3 ) Y () ] ( 1 5 ) Y () ] = 1 2 = 1 3 = 1 5 = 3 2 = 2 3 = 1 La descomposición en fracciones parciales podría haberse realiado con Matlab, de la siguiente manera: num=0 11/6-7/6 1/5]; den=1-31/30 1/3-1/30]; R,P,K]=residue(num,den) R = P = K = ] Reemplaando y multiplicando ambos miembros por : Y () = La transformada inversa, resulta: 3/ / y(n) = 3 2 n n n (3) que es la forma cerrada pedida. Con el siguiente programa podemos comparar las secuencias obtenidas con la ecuación de diferencias dada al comieno del problema y la forma cerrada obtenida: %Metodo itarativo - Ecuacion de diferencias y(1)=25; y(2)=6; N=30; u=0 0 ones(1,n+1)]; for n=1:n+1 y(n+2)=(1/5)^(n-1)*u(n+2)+(5/6)*y(n+1)-(1/6)*y(n) end n=-2:n; subplot(2,1,1); stem(n,y); title( Metodo itarativo - Ecuacion de diferencias ); %Metodo iterativo - Expresion en forma cerrada for n=1:n+1 y(n)=3/(2^(n-2))-2/(3^(n-2))+1/(5^(n-3)) end n=-2:n; subplot(2,1,2); stem(n,y, r ); title( Metodo iterativo - Expresion en forma cerrada ); Alumno: Guillermo Tabeni, UTN, FRA, /11

7 Ejercicio 6 Resuelva la siguiente ecuación en diferencias tanto de manera analítica como por computadora con Matlab. La función de entrada uk] = 1 para k = 0, 1, 2,.... x(k + 2) x(k + 1) + 0, 25x(k) = u(k + 2), donde x(0) = 1 y x(1) = 2 Las transformadas de x(k), x(k + 1) y x(k + 2) están dadas, respectivamente, por Además, la transformada de uk + 2] es Zx(k)] = X() Zx(k + 1)] = X() x(0) Zx(k + 2)] = 2 X() 2 x(0) x(1) Zu(k + 2)] = 2 U() 2 u(0) u(1) = ya que u(0) = u(1) = 1. Al tomar las transformadas de ambos miembros de la ecuación en diferencias dada, se obtiene 2 X() 2 2 X() + + 0, 25X() = Despejando X()/, para luego aplicar el método de inversión por fracciones parciales: X() La función expandida tendrá la forma: donde los coeficientes son: = , 25 0, 25 = 2 ( 1)( 1 2 )2 a 1 = a 2 = a 3 = X() = a 1 ( 1 2 )2 + a a 3 1 ( 1 2 )2 X() ] = 1 = { d ( 1 d 2 )2 X() ]} = 1 2 ( 1) X() ] = 4 =1 = 3 Alumno: Guillermo Tabeni, UTN, FRA, /11

8 Reemplaando y multiplicando ambos miembros por : X() = ( ) La transformada inversa, resulta: x(k) = k 2 k 3 2 k + 4 (4) Con el siguiente programa podemos comparar las secuencias obtenidas con la ecuación de diferencias dada al comieno del problema y la forma cerrada obtenida: %Metodo itarativo - Ecuacion de diferencias x(1)=1; x(2)=2; N=30; u=ones(1,n+3)]; for k=1:n-1 x(k+2)=u(k+2)+x(k+1)-0.25*x(k); end k=0:n; subplot(2,1,1); stem(k,x); title( Metodo itarativo - Ecuacion de diferencias ); %Metodo iterativo - Expresion en forma cerrada for k=1:n+1 x(k)=-(k-1)/(2^(k-1))-3/(2^(k-1))+4 end k=0:n; subplot(2,1,2); stem(k,x, r ); title( Metodo iterativo - Expresion en forma cerrada ); Ejercicio 7 Usar el método de la división directa para obtener la transformada inversa. Decidir si el sistema es estable o no. Por qué? Mostrar el diagrama de polos y ceros en el plano. Si el sistema es inestable, implementar la modificación necesaria para que deje de serlo. Alumno: Guillermo Tabeni, UTN, FRA, /11

9 X() = 1 (1 2 ) (1 + 2 ) 2 Primero, expreso X() en polinomios de 1 : Luego, efectuando la división: X() = x / Comparando directamente X() = 0 x(k) k, tenemos x(0) = 0 x(1) = 1 x(2) = 0 x(3) = 3 x(4) = 0 x(5) = 5 x(6) = 0 x(7) = 7 x(8) = 0 x(9) = 9. Como vemos, la secuencia x(n) es alternadamente creciente; por lo tanto, el sistema es inestable. Graficamos los polos y ceros de X() mediante la siguiente secuencia de comandos: num= ]; den= ]; plane(num,den); Alumno: Guillermo Tabeni, UTN, FRA, /11

10 Confirmamos con el diagrama de polos y ceros que el sistema es inestable, ya que posee polos múltiples sobre el círculo unitario (es condición suficiente, pág. 183 del libro de Ogata). Ejercicio 8 Encuentre la transformada inversa Z utiliando el método de expansión en fracciones parciales y con el Matlab (comando residue). X() = 1 (0, 5 1 ) (1 0, 5 1 )(1 0, 8 1 ) Multiplicamos numerador y denominador por 2 y luego, divido ambos miembros por para expresar X()/ en potencias de : X() 0, 5( 2) = ( 0, 5)( 0, 8) La función expandida tendrá la forma: donde los coeficientes son: X() = a 1 0, 5 + a 2 0, 8 + a 3 a 1 = a 2 = a 3 = ( 0, 5) Y () ] = 5 =0,5 ( 0, 8) Y () ] = 2, 5 =0,8 () Y () ] = 2, 5 =0 Reemplaando y multiplicando ambos miembros por : X() = 5 1 0, 5 1 2, 5 2, 5 1 0, 8 1 La descomposición en fracciones parciales podría haberse realiado con Matlab, de la siguiente manera: num=0.5-1]; % En potencias asc. de ^{-1} o desc de den= ]; R,P,K]=residue(num,den) R = P = K = -2.5 Por simple inspección de la tabla, la transformada inversa resulta: x(k) = 5 (0, 5) k 2,5 (0, 8) k 2, 5 δ(k) (5) que es el resultado de la ecuación en diferencias en forma cerrada. Para verificar el resultado, puedo compararlo con el método de Matlab. N=30; delta=1 eros(1,n)] %Metodo iterativo - Expresion en forma cerrada for k=1:n+1 x(k)=5*(0.5)^(k-1)-2.5*(0.8)^(k-1)-2.5*delta(k); Alumno: Guillermo Tabeni, UTN, FRA, /11

11 end k=0:n; subplot(2,1,1); stem(k,x); title( Metodo iterativo - Expresion en forma cerrada ); %Metodo Matlab num=0.5-1]; den= ]; n=0:1:n; x=1 eros(1,n)]; y=filter(num,den,x); subplot(2,1,2); stem(n,y, r ); title( Metodo Matlab ); Alumno: Guillermo Tabeni, UTN, FRA, /11

La Transformada Z se aplica a señales discretas en el dominio del tiempo, con un tiempo de muestreo igual a T.

La Transformada Z se aplica a señales discretas en el dominio del tiempo, con un tiempo de muestreo igual a T. CURSO: PROCESAMIENTO DIGITAL DE SEÑALES PROFESOR: ING. JORGE ANTONIO POLANÍA P. 2. LA TRANSFORMADA Z La Transformada Z se aplica a señales discretas en el dominio del tiempo, con un tiempo de muestreo

Más detalles

Tema 5. La Transformada Z. Indice:

Tema 5. La Transformada Z. Indice: Indice: La Transformada Z Convergencia de la Transformada Z Propiedades de La Transformada Z La Transformada Z inversa Método de la División Directa Método de Descomposición en Fracciones Parciales. Prof.

Más detalles

Ayudantía Análisis de Señales. Transformada Z

Ayudantía Análisis de Señales. Transformada Z Pontificia Universidad Católica de Chile Escuela de Ingeniería Ayudantía Análisis de Señales Fabián Cádi Transformada Z Consideremos un sistema discreto lineal e invariante, representado por una respuesta

Más detalles

PROBLEMAS PROPUESTOS. TEMAS 5 Y 6 SOLUCIONES

PROBLEMAS PROPUESTOS. TEMAS 5 Y 6 SOLUCIONES Grado en Ingeniería Mecánica Teoría de Sistemas PROBLEMAS PROPUESTOS. TEMAS 5 Y 6 SOLUCIONES Transformada Z. Función de transferencia discreta. Modelado de sistemas discretos. PROBLEMA 1. Sistema discreto

Más detalles

Análisis de las respuestas de un SLI de tiempo continúo con MatLab. María del Rosario Vázquez Fuentes. Enero 2017

Análisis de las respuestas de un SLI de tiempo continúo con MatLab. María del Rosario Vázquez Fuentes. Enero 2017 Análisis de las respuestas de un SLI de tiempo continúo con MatLab. María del Rosario Vázquez Fuentes Enero 2017 0 Índice General 1.1. Objetivo de aprendizaje... 2 1.2. Introducción teórica... 2 1.2.1

Más detalles

SISTEMAS LINEALES. Tema 6. Transformada Z

SISTEMAS LINEALES. Tema 6. Transformada Z SISTEMAS LINEALES Tema 6. Transformada Z 6 de diciembre de 200 F. JAVIER ACEVEDO [email protected] TEMA 3 Contenidos. Autofunciones de los sistemas LTI discretos. Transformada Z. Región de convergencia

Más detalles

Regulación y Control de Máquinas Navales Práctica Módulo 1: Modelado de Sistemas Curso

Regulación y Control de Máquinas Navales Práctica Módulo 1: Modelado de Sistemas Curso Regulación y Control de Máquinas Navales Práctica Módulo 1: Modelado de Sistemas Curso 2007-2008 I INTRODUCCIÓN La práctica descrita en este documento pretende familiarizar al alumno con los conceptos

Más detalles

Procesamiento Digital de. Ing. Biomédica, Ing. Electrónica e Ing. en Telecomunicaciones Capitulo III Transformada-Z

Procesamiento Digital de. Ing. Biomédica, Ing. Electrónica e Ing. en Telecomunicaciones Capitulo III Transformada-Z Procesamiento Digital de Señales Ing. Biomédica, Ing. Electrónica e Ing. en Telecomunicaciones Capitulo III Transformada-Z D.U. Campos-Delgado Facultad de Ciencias UASLP Enero-Junio/2014 1 CONTENIDO Definición

Más detalles

PRÁCTICA N 1 INTRODUCCIÒN A MATLAB Y UTILIZACIÓN DE LAS MATEMÁTICAS COMO HERRAMIENTAS PRIMORDIAL EN EL ANÁLISIS DE SISTEMAS DE CONTROL

PRÁCTICA N 1 INTRODUCCIÒN A MATLAB Y UTILIZACIÓN DE LAS MATEMÁTICAS COMO HERRAMIENTAS PRIMORDIAL EN EL ANÁLISIS DE SISTEMAS DE CONTROL UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO PROGRAMA DE INGENIERÍA QUÍMICA DPTO DE MECÁNICA Y TECNOLOGÍA DE LA PRODUCCIÓN LABORATORIO DE DINÁMICA Y CONTROL DE PROCESOS

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA ANALISIS, SITEMAS Y SEÑALES PASOS PARA OBTENER LAS TRANSFORMADAS INVERSAS

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA ANALISIS, SITEMAS Y SEÑALES PASOS PARA OBTENER LAS TRANSFORMADAS INVERSAS UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA ANALISIS, SITEMAS Y SEÑALES PASOS PARA OBTENER LAS TRANSFORMADAS INVERSAS EJEMPLOS DE TRANSFORMADAS ALUMNOS: ANZURES ROBLES JORGE GARCIA LUCIANO

Más detalles

Determinación de la trasformada inversa mediante el uso de las fracciones parciales

Determinación de la trasformada inversa mediante el uso de las fracciones parciales 3.6. Determinación de la trasformada inversa mediante el uso de las fracciones parciales 95 3.6. Determinación de la trasformada inversa mediante el uso de las fracciones parciales Transformadas de Ecuaciones

Más detalles

Transformada Zeta Aplicación: Filtros digitales

Transformada Zeta Aplicación: Filtros digitales Transformada Zeta Aplicación: Filtros digitales Luciano Andrés Cardozo Estudiante de Ingeniería Electrónica Universidad Nacional del Sur, Avda. Alem 1253, B8000CPB Bahía Blanca, Argentina [email protected]

Más detalles

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA LABORATORIO DE INGENIERÍA DE CONTROL PRACTICA N 5 ANÁLISIS DE LA RESPUESTA TRANSITORIA DE SISTEMAS DE PRIMER ORDEN OBJETIVO

Más detalles

( ) ( )( ) ( )( ) ( ) ( )

( ) ( )( ) ( )( ) ( ) ( ) de Laplace. (secc..) 5 Apéndice DI_UIV Más ejercicios de Solución de una ecuación diferencial lineal con condiciones iniciales por medio de la trasformada de Laplace (Secc..).[] Ejemplo DI. Teniendo encontrar

Más detalles

Práctica 4 CONVERSIÓN ENTRE LAS DIFERENTES REPRESENTACIONES DE LOS MODELOS LABORATORIO DE MODELADO DE SISTEMAS

Práctica 4 CONVERSIÓN ENTRE LAS DIFERENTES REPRESENTACIONES DE LOS MODELOS LABORATORIO DE MODELADO DE SISTEMAS Práctica 4 CONVERSIÓN ENTRE LAS DIFERENTES REPRESENTACIONES DE LOS MODELOS LABORATORIO DE MODELADO DE SISTEMAS 13 de marzo de 017 Autor: Rubén Velázquez Cuevas Práctica 4 CONVERSIÓN ENTRE LAS DIFERENTES

Más detalles

Transformada de Laplace - Conceptos Básicos. e -st f(t)dt. L { f (t) } = F(s) =

Transformada de Laplace - Conceptos Básicos. e -st f(t)dt. L { f (t) } = F(s) = Transformada de Laplace - Conceptos Básicos Definición: Sea f (t) una función de t definida para t > 0. La Transformada de Laplace de f(t) se define como: L { f (t) } = F(s) = 0 e -st f(t)dt Algunas Propiedades

Más detalles

Tema 3. Secuencias y transformada z

Tema 3. Secuencias y transformada z Ingeniería de Control Tema 3. Secuencias y transformada z Daniel Rodríguez Ramírez Teodoro Alamo Cantarero Contextualización del tema Conocimientos que se adquieren en este tema: Concepto de secuencia

Más detalles

Señales y Sistemas II (IE 859) Ejemplos de la transformada z inversa

Señales y Sistemas II (IE 859) Ejemplos de la transformada z inversa Ejemplos de la transformada inversa c M. Valenuela 999 00 (8 de febrero de 00) Ejemplo Obtedremos la transformada inversa de X() Potencias positivas de y expansión de X()/ Se expande en fracciones parciales

Más detalles

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 24 de febrero de 2013

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 24 de febrero de 2013 Matemáticas II Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica 4 de febrero de 0. Conteste las siguientes cuestiones: (a) (0. ptos.) Escriba en forma

Más detalles

PROBLEMAS PROPUESTOS. TEMAS 1 A 4 SOLUCIONES

PROBLEMAS PROPUESTOS. TEMAS 1 A 4 SOLUCIONES Grado en Ingeniería Mecánica Teoría de Sistemas PROBLEMAS PROPUESTOS. TEMAS A 4 SOLUCIONES PROBLEMA. Cálculo de transformada de Laplace a) Por aplicación de la definición de la transformada. Aplicando

Más detalles

Análisis de Sistemas Lineales. Sistemas Dinámicos y Control Facultad de Ingeniería Universidad Nacional de Colombia

Análisis de Sistemas Lineales. Sistemas Dinámicos y Control Facultad de Ingeniería Universidad Nacional de Colombia Análisis de Sistemas Lineales Sistemas Dinámicos y Control 2001772 Facultad de Ingeniería Universidad Nacional de Colombia Sistemas SISO (Single Input Single Output) Los sistemas de una sola entrada y

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Transformada Z Inversa. Departamento de Matemáticas. X 1 (z) MFP. Ejemplo 1. Ejemplo 2.

MA3002. Matemáticas Avanzadas para Ingeniería: Transformada Z Inversa. Departamento de Matemáticas. X 1 (z) MFP. Ejemplo 1. Ejemplo 2. MA3002 Inversa La transformada Z inversa una función variable compleja X () se fine como x(n) = 2 π i C X () n d don la integral se calcula sobre una curva cerrada simple C postivamente orientada que encierra

Más detalles

Automatización de Procesos/Sistemas de Control Ing. Biomédica e Ing. Electrónica Capitulo VI Lugar de las Raíces

Automatización de Procesos/Sistemas de Control Ing. Biomédica e Ing. Electrónica Capitulo VI Lugar de las Raíces Automatización de Procesos/Sistemas de Control Ing. Biomédica e Ing. Electrónica Capitulo VI Lugar de las Raíces D.U. Campos-Delgado Facultad de Ciencias UASLP Enero-Junio/2014 1 CONTENIDO Motivación Pasos

Más detalles

S2: Polinomios complejos

S2: Polinomios complejos S: Polinomios complejos Un polinomio complejo de grado n es un polinomio de la forma: p x = a 0 + a 1 x + a x + + a n x n Donde los a i C se llaman coeficientes y a n 0. Observa que como R C los coeficientes

Más detalles

2º INGENIERÍA INDUSTRIAL TEORÍA DE CIRCUITOS Y SISTEMAS

2º INGENIERÍA INDUSTRIAL TEORÍA DE CIRCUITOS Y SISTEMAS º INGENIERÍA INDUSTRIAL TEORÍA DE CIRCUITOS Y SISTEMAS PRÁCTICA 7 SISTEMAS. UTILIDADES MATLAB. TRANSFORMADAS Y ANTITRANSFORMADAS Matlab permite obtener transformadas y antitransformadas de Fourier, Laplace

Más detalles

INECUACIONES LINEALES

INECUACIONES LINEALES INECUACIONES POLINÓMICAS EN UNA VARIABLE Las inecuaciones en general, son desigualdades entre epresiones algebraicas en las que intervienen una o más variables. Cuando las epresiones algebraicas de cada

Más detalles

PRÁCTICAS DE REGULACIÓN AUTOMÁTICA

PRÁCTICAS DE REGULACIÓN AUTOMÁTICA PRÁCTICAS DE REGULACIÓN AUTOMÁTICA Dpto. Ing. Sistemas y Automática Universidad de Sevilla Manuel López Martínez Agradecimientos a Manuel Berenguel Soria Análisis y Control de Sistemas usando MATLAB..

Más detalles

Diseño de Sistemas de Control con GNU Octave

Diseño de Sistemas de Control con GNU Octave Diseño de Sistemas de Control con GNU Octave Abel Alberto Cuadrado Vega 4 de diciembre de 2008 1. Introducción El objetivo de este documento es enumerar las funciones disponibles en Octave para el análisis

Más detalles

Álgebra Lineal Análisis vectorial Cálculo Ecuaciones diferenciales Matemáticas

Más detalles

TÉCNICA DEL LUGAR GEOMÉTRICO DE LAS RAÍCES

TÉCNICA DEL LUGAR GEOMÉTRICO DE LAS RAÍCES DEPARTAMENTO DE ELECTRÓNICA Y AUTOMÁTICA CARRERAS: BIOINGENIERÍA E INGENIERÍA ELECTRÓNICA ÁREA: CONTROL ASIGNATURA: CONTROL II GUIÁ DE APRENDIZAJE Y AUTOEVALUACIÓN Nº TÉCNICA DEL LUGAR GEOMÉTRICO DE LAS

Más detalles

Propiedades de los sistemas (con ecuaciones)

Propiedades de los sistemas (con ecuaciones) Propiedades de los sistemas (con ecuaciones) Linealidad: Para verificar si un sistema es lineal requerimos que le sistema sea homogéneo y aditivo es decir, cumplir con la superposición. Método: Dada una

Más detalles

CAPITULO 8. LA TRANSFORMADA DE LAPLACE La transformada de Laplace

CAPITULO 8. LA TRANSFORMADA DE LAPLACE La transformada de Laplace CAPITULO 8. LA TRANSFORMADA DE LAPLACE 8.1. La transformada de Laplace Definición 1.Sea f (t) una función definida para t 0. Se define la transformada de Laplace de f (t) de la forma, - s es un parámetro

Más detalles

Transformada Z. Temas a tratar. Papel de la TZ. Objetivos. Notas históricas. Repaso conceptos generales

Transformada Z. Temas a tratar. Papel de la TZ. Objetivos. Notas históricas. Repaso conceptos generales Temas a tratar Transformada Z Definición. Relación entre TL y TZ. Relación entre TF y TZ. Mapeos s-. Representación de sistemas de tiempo discreto. Función de transferencia en. Respuesta en frecuencia

Más detalles

PRACTICA 1: GENERACIÓN Y GRAFICACIÓN DE SEÑALES CONTINUAS Y DISCRETAS

PRACTICA 1: GENERACIÓN Y GRAFICACIÓN DE SEÑALES CONTINUAS Y DISCRETAS PRACTICA 1: GENERACIÓN Y GRAFICACIÓN DE SEÑALES CONTINUAS Y DISCRETAS OBJETIVOS 1. Comprender como se simulan señales continuas y discretas en el tiempo usando MATLAB 2. Generar señales exponenciales,

Más detalles

PRÁCTICA N 2 ESTUDIO TEMPORAL Y FRECUENCIAL DE SISTEMAS DINÁMICOS DE PRIMER Y SEGUNDO ORDEN

PRÁCTICA N 2 ESTUDIO TEMPORAL Y FRECUENCIAL DE SISTEMAS DINÁMICOS DE PRIMER Y SEGUNDO ORDEN UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO PROGRAMA DE INGENIERÍA QUÍMICA DPTO DE MECÁNICA Y TECNOLOGÍA DE LA PRODUCCIÓN DINÁMICA Y CONTROL DE PROCESOS PRÁCTICA

Más detalles

Señales y sistemas Otoño 2003 Clase 22

Señales y sistemas Otoño 2003 Clase 22 Señales y sistemas Otoño 2003 Clase 22 2 de diciembre de 2003 1. Propiedades de la ROC de la transformada z. 2. Transformada inversa z. 3. Ejemplos. 4. Propiedades de la transformada z. 5. Funciones de

Más detalles

Tema 5. Análisis de sistemas muestreados

Tema 5. Análisis de sistemas muestreados Ingeniería de Control Tema 5. Análisis de sistemas muestreados Daniel Rodríguez Ramírez Teodoro Alamo Cantarero Contextualización del tema Conocimientos que se adquieren en este tema: Relacionar la estabilidad

Más detalles

Preguntas IE TEC. Total de Puntos: 80 Puntos obtenidos: Porcentaje: Nota:

Preguntas IE TEC. Total de Puntos: 80 Puntos obtenidos: Porcentaje: Nota: IE TEC Nombre: Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica EL-470 Modelos de Sistemas Profesor: Dr. Pablo Alvarado Moya II Semestre, 005 Examen Final Total de Puntos: 80 Puntos

Más detalles

Tutorial para resolver ecuaciones diferenciales usando MATLAB

Tutorial para resolver ecuaciones diferenciales usando MATLAB Tutorial para resolver ecuaciones diferenciales usando MATLAB El presente tutorial tiene como objetivo presentar al estudiante una manera en la que pueden resolver ecuaciones diferenciales usando el software

Más detalles

Integración por fracción parcial -Caso Lineal

Integración por fracción parcial -Caso Lineal * Método de integración por fracción parcial Caso lineal Recordemos que una función racional h es la forma: Px ( ) hx ( ) Qx ( ) Donde P(x) y Q(x) son polinomios y Q(x) no es el polinomio nulo.pues veremos

Más detalles

Facultad: Ingeniería Escuela: Ingeniería Eléctrica Asignatura: Sistemas Eléctricos Lineales II

Facultad: Ingeniería Escuela: Ingeniería Eléctrica Asignatura: Sistemas Eléctricos Lineales II Facultad: Ingeniería Escuela: Ingeniería Eléctrica Asignatura: Sistemas Eléctricos Lineales II Tema: Transformada de Laplace. Contenidos Definición de Transformada de Laplace. Pares de la Transformada

Más detalles

Procesamiento Digital de Señales CE16.10L2. Tema 2. Señales en Tiempo Discreto

Procesamiento Digital de Señales CE16.10L2. Tema 2. Señales en Tiempo Discreto Procesamiento Digital de Señales CE16.10L2 Tema 2. Señales en Tiempo Discreto Sinusoides La función seno y coseno son esencialmente las mismas señales, excepto que están separadas por únicamente un ángulo

Más detalles

CURSO CONTROL APLICADO- MARCELA VALLEJO VALENCIA-ITM RESPUESTA EN EL TIEMPO

CURSO CONTROL APLICADO- MARCELA VALLEJO VALENCIA-ITM RESPUESTA EN EL TIEMPO RESPUESTA EN EL TIEMPO BUENO, YA TENGO UN MODELO MATEMÁTICO. Y AHORA QUÉ? Vamos a analizar el comportamiento del sistema. ENTRADA PLANTA SALIDA NO SE COMO VA A SER. NO LO PUEDO PREDECIR. NO LA PUEDO DESCRIBIR

Más detalles

Control Moderno. Ene.-Jun UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN. Facultad de Ingeniería Mecánica y Eléctrica. Dr. Rodolfo Salinas.

Control Moderno. Ene.-Jun UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN. Facultad de Ingeniería Mecánica y Eléctrica. Dr. Rodolfo Salinas. UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Facultad de Ingeniería Mecánica y Eléctrica Control Moderno Ene.-Jun. 27 Dr. Rodolfo Salinas abril 27 Control Moderno N abril 27 Dr. Rodolfo Salinas Respuesta en el tiempo

Más detalles

PRÁCTICA Nº 1 INTRODUCCIÓN AL ENTORNO DE MATLAB

PRÁCTICA Nº 1 INTRODUCCIÓN AL ENTORNO DE MATLAB UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCSCO DE MIRANDA ÁREA DE TECNOLOGÍA DEPARTAMENTO DE MECÁNCA Y TECNOLOGÍA DE LA PRODUCCIÓN DINÁMICA Y CONTROL DE PROCESOS PRÁCTICA Nº 1 INTRODUCCIÓN AL ENTORNO DE MATLAB

Más detalles

Factorización ecuación identidad condicional término coeficiente monomio binomio trinomio polinomio grado ax3

Factorización ecuación identidad condicional término coeficiente monomio binomio trinomio polinomio grado ax3 Factorización Para entender la operación algebraica llamada factorización es preciso repasar los siguientes conceptos: Cualquier expresión que incluya la relación de igualdad (=) se llama ecuación. Una

Más detalles

Procesamiento Digital de Señales: Ecuaciones Diferenciales y en Diferencias

Procesamiento Digital de Señales: Ecuaciones Diferenciales y en Diferencias Procesamiento Digital de Señales: Ecuaciones Diferenciales y en Diferencias Objetivo Exponer las relaciones de la transformada de Laplace con las ecuaciones diferenciales y lineales de orden n junto con

Más detalles

6.- Lugar Geométrico de la Raíces en Sistemas Discretos

6.- Lugar Geométrico de la Raíces en Sistemas Discretos 6.- Lugar Geométrico de la Raíces en Sistemas Discretos Introducción Como vimos, el diseño de un controlador consiste en colocar los polos y ceros de la función de transferencia del sistema en lazo cerrado,

Más detalles

FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA LABORATORIO DE SISTEMAS DE CONTROL DISCRETO PRÁCTICA N 6 MODELACIÓN E INDENTIFICACIÓN DE UN MOTOR DC

FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA LABORATORIO DE SISTEMAS DE CONTROL DISCRETO PRÁCTICA N 6 MODELACIÓN E INDENTIFICACIÓN DE UN MOTOR DC FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control LABORATORIO DE SISTEMAS DE CONTROL DISCRETO PRÁCTICA N 6 1. TEMA MODELACIÓN E INDENTIFICACIÓN DE UN MOTOR DC 2.

Más detalles

Sistemas Lineales. Examen de Junio SOluciones

Sistemas Lineales. Examen de Junio SOluciones . Considere la señal xt) sinπt) Sistemas Lineales Examen de Junio 22. SOluciones a) Obtenga su transformada de Fourier, X), y represéntela para 7π. b) Calcule la potencia y la energía de xt). c) Considere

Más detalles

Práctica 1 INTRODUCCIÓN A MATLAB

Práctica 1 INTRODUCCIÓN A MATLAB UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA FACULTAD DE INGENIERÍA, ARQUITECTURA Y DISEÑO Laboratorio de Procesamiento Digital de Señales Práctica 1 INTRODUCCIÓN A MATLAB OBJETIVO: Que el alumno realice gráficos

Más detalles

Transformada de Laplace (material de apoyo)

Transformada de Laplace (material de apoyo) Transformada de Laplace (material de apoyo) André Luiz Fonseca de Oliveira Michel Hakas Resumen En este artículo se revisará los conceptos básicos para la utilización de la transformada de Laplace en la

Más detalles

Clasificación de ceros de una función y transformada z.

Clasificación de ceros de una función y transformada z. Capítulo 5 Clasificación de ceros de una función y transformada z. 5.1. Polinomio de Taylor El polinomio de Taylor de grado n de f (z) en z = a está definido por: P n (z) = f (a) + f (a) 1! (z a) + f (a)

Más detalles

3.7. Ejercicios: Sistemas discretos

3.7. Ejercicios: Sistemas discretos 3.7. Ejercicios: Sistemas discretos 57 3.7. Ejercicios: Sistemas discretos Ejercicio 1. Calcule la salida y[n] de cada uno de los siguientes sistemas para la entrada x[n] que se muestra en la figura. (1)

Más detalles

Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo

Polinomios: Definición: Se llama polinomio en x de grado n a una expresión del tipo Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo P (x) = a 0 x n + a 1 x n 1 +... + a n Donde n N (número natural) ; a 0, a 1, a 2,..., a n son coeficientes reales

Más detalles

Instituto de Matemática. Agosto de ) Encuentre experimentalmente los siguientes valores de su calculadora:

Instituto de Matemática. Agosto de ) Encuentre experimentalmente los siguientes valores de su calculadora: Curso de Métodos Numéricos Instituto de Matemática Práctico 1: Errores Agosto de 2005 1) Encuentre experimentalmente los siguientes valores de su calculadora: (a) El valor ɛ mach definido como el minimo

Más detalles

15. LUGAR DE LAS RAICES - CONSTRUCCION

15. LUGAR DE LAS RAICES - CONSTRUCCION 15. LUGAR DE LAS RAICES - CONSTRUCCION 15.1 INTRODUCCION El lugar de las raíces es una construcción gráfica, en el plano imaginario, de las raíces de la ecuación característica de un lazo de control para

Más detalles

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3!, x x3

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3!, x x3 Cálculo I (Grado en Ingeniería Informática) Problemas resueltos, - y -4 (tercera parte) Preparado por los profesores de la asignatura: Pablo Fernández, Dragan Vukotić (coordinadores), Luis Guijarro, Kazaros

Más detalles

En la Clase 3, se demostró que cualquier señal discreta x[n] puede escribirse en términos de impulsos como sigue:

En la Clase 3, se demostró que cualquier señal discreta x[n] puede escribirse en términos de impulsos como sigue: SISTEMAS LINEALES INVARIANTES EN EL TIEMPO (SISTEMAS LTI) Un sistema lineal invariante en el tiempo, el cual será referido en adelante por la abreviatura en inglés de Linear Time Invariant Systems como

Más detalles

ELO 385 Laboratorio de Procesamiento Digital de Señales Laboratorio 4: Filtros digitales Parte I

ELO 385 Laboratorio de Procesamiento Digital de Señales Laboratorio 4: Filtros digitales Parte I 1 ELO 385 Laboratorio de Procesamiento Digital de Señales Laboratorio 4: Filtros digitales Parte I 0. Introducción Este laboratorio está compuesto por dos sesiones en la cuales se estudiarán filtros digitales.

Más detalles

{ẋ t =Ax t Bu t. Modelos en el espacio de estados. y t =Cx t Du t. Objetivos específicos. Materiales y equipo. Introducción Teórica

{ẋ t =Ax t Bu t. Modelos en el espacio de estados. y t =Cx t Du t. Objetivos específicos. Materiales y equipo. Introducción Teórica 1 Facultad: Ingeniería Escuela: Electrónica Asignatura: Control Digital Lugar de Ejecución: Aula 3.24 Instrumentación y Control Modelos en el espacio de estados Objetivos específicos Crear modelos en el

Más detalles

Tema 2. Sistemas Lineales e Invariantes en el Tiempo (Sesión 2)

Tema 2. Sistemas Lineales e Invariantes en el Tiempo (Sesión 2) SISTEMAS LINEALES Tema. Sistemas Lineales e Invariantes en el Tiempo (Sesión ) 4 de octubre de 00 F. JAVIER ACEVEDO [email protected] TEMA Contenidos. Representación de señales discretas en términos

Más detalles

MATEMATICAS ESPECIALES I PRACTICA 9 Singularidades - Series de Laurent - Teorema de los residuos. a n (z z 0 ) n + n 1

MATEMATICAS ESPECIALES I PRACTICA 9 Singularidades - Series de Laurent - Teorema de los residuos. a n (z z 0 ) n + n 1 MATEMATICAS ESPECIALES I - 207 PRACTICA 9 Singularidades - Series de Laurent - Teorema de los residuos Teorema. Sean r y R números reales tales que 0 < r < R

Más detalles

Instituto Tecnológico de Saltillo

Instituto Tecnológico de Saltillo Instituto Tecnológico de Saltillo Departamento de Ciencias Básicas Curso propedéutico Cuadernillo Álgebra y Trigonometría MC Olivia García Calvillo Ing. Alicia Guadalupe del Bosque Martínez Agosto - Diciembre

Más detalles

1. El Teorema de Rolle Generalizado.

1. El Teorema de Rolle Generalizado. Proyecto III: Los Teoremas de Rolle y del valor Medio Objetivos: Profundizar el estudio de algunos teoremas del cálculo diferencial 1 El Teorema de Rolle Generalizado La formulación más común del Teorema

Más detalles

Taller de Filtros Digitales 2016 Práctica 2

Taller de Filtros Digitales 2016 Práctica 2 Taller de Filtros Digitales 2016 Práctica 2 1. Objetivo Familiarizarse con distintas técnicas de diseño de filtros digitales. 2. FIR - Diseño por ventanas Se desea diseñar un filtro pasabanda de fase lineal

Más detalles

Sistemas de Control II Prof. Diego Mauricio Rivera Sistemas de control en tiempo discreto

Sistemas de Control II Prof. Diego Mauricio Rivera Sistemas de control en tiempo discreto Sistemas de Control II Prof. Diego Mauricio Rivera [email protected] Sistemas de control en tiempo discreto Actualizado Marzo 22 de 2017 Contenido Introducción al control digital Señales en un sistema

Más detalles

Carrera Académica UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL TUCUMÁN

Carrera Académica UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL TUCUMÁN UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL TUCUMÁN DEPARTAMENTO: INGENIERÍA EN SISTEMAS DE INFORMACIÓN CARRERA: INGENIERÍA EN SISTEMAS DE INFORMACIÓN ÁREA: MODELO ASIGNATURA: TEORÍA DE CONTROL

Más detalles

Matlab para Análisis Dinámico de Sistemas

Matlab para Análisis Dinámico de Sistemas Matlab para Análisis Dinámico de Sistemas Análisis Dinámico de Sistemas, curso 26-7 7 de noviembre de 26 1. Introducción Para usar las funciones aquí mencionadas se necesita Matlab con el paquete de Control

Más detalles

Funciones polinómicas

Funciones polinómicas Funciones polinómicas Footer Text 4/23/2015 1 Funciones Polinómicas La ecuación general de una función polinómica de grado n con coeficientes reales está dada por f(x) = a n x n + a n-1 x n-1 + + a 1 x

Más detalles

3 y un vector Y 2 que contenga el cálculo de Y2 = 4X

3 y un vector Y 2 que contenga el cálculo de Y2 = 4X Laboratorio 1. Introducción a MATLAB y Simulink. 1. Uso de MATLAB. Manejo de Vectores y Matrices: Usando el editor de MATLAB, escriba el código necesario para generar: a. Vectores (1x1) (3x1) y (1x7),

Más detalles

Sistema de los Números Reales

Sistema de los Números Reales Sistema de los Números Reales El Conjunto de los Números Racionales Ysela Ochoa Tapia Ysela Ochoa Tapia Sistema de los Números Reales / Introducción Los racionales: Q Los números racionales permiten expresar

Más detalles

Determinar el comportamiento transitorio y estacionario del sistema. Especificar e identificar las condiciones de operación

Determinar el comportamiento transitorio y estacionario del sistema. Especificar e identificar las condiciones de operación Análisis de estabilidad Determinar el comportamiento transitorio y estacionario del sistema Especificar e identificar las condiciones de operación El primer paso al analizar un sistema de control es establecer

Más detalles

Problemas para la materia de Cálculo IV

Problemas para la materia de Cálculo IV Universidad Michoacana de San Nicolás de Hidalgo Facultad de Ingeniería Eléctrica Problemas para la materia de álculo IV Febrero de 5 ompilación de problemas propuestos como parte de exámenes parciales

Más detalles

Sistemas Lineales. Tema 5. La Transformada Z. h[k]z k. = z n (

Sistemas Lineales. Tema 5. La Transformada Z. h[k]z k. = z n ( La transformada Z Sistemas Lineales Tema 5. La Transformada Z Las señales exponenciales discretas de la forma z n con z = re jω son autosoluciones de los sistemas LTI. Para una entrada x[n] = z0 n la salida

Más detalles

INSTITUTO TECNOLÓGICO DE MASSACHUSETTS Departamento de Ingeniería Eléctrica e Informática

INSTITUTO TECNOLÓGICO DE MASSACHUSETTS Departamento de Ingeniería Eléctrica e Informática INSTITUTO TECNOLÓGICO DE MASSACHUSETTS Departamento de Ingeniería Eléctrica e Informática 6.003: Señales y sistemas Otoño 2003 Examen final Martes 16 de diciembre de 2003 Instrucciones: El examen consta

Más detalles

DISEÑO DE CONTROLADORES PID EN TIEMPO DISCRETO, Y ANÁLISIS DE RESPUESTA UTILIZANDO HERRAMIENTAS COMPUTACIONALES

DISEÑO DE CONTROLADORES PID EN TIEMPO DISCRETO, Y ANÁLISIS DE RESPUESTA UTILIZANDO HERRAMIENTAS COMPUTACIONALES Universidad de San Carlos de Guatemala Facultad de Ingeniería Escuela de Ingeniería Mecánica Eléctrica DISEÑO DE CONTROLADORES PID EN TIEMPO DISCRETO, Y ANÁLISIS DE RESPUESTA UTILIZANDO HERRAMIENTAS COMPUTACIONALES

Más detalles

Schmeigel Nicolas. Marzo 2014

Schmeigel Nicolas. Marzo 2014 Transformada de Laplace: Intercambiador de calor Schmeigel Nicolas Estudiante de Ingeniería en Sistemas de Computación Universidad Nacional del Sur, Avda. Alem 1253, B8000CPB Bahía Blanca, Argentina [email protected]

Más detalles

Unidad 4 ECUACIONES DE GRADO TRES O SUPERIOR

Unidad 4 ECUACIONES DE GRADO TRES O SUPERIOR Profesor: Blas Torres Suárez. Versión.0 Unidad 4 ECUACIONES DE GRADO TRES O SUPERIOR Competencias a desarrollar: Aplicar el teorema del residuo, para hallar el residuo de un cociente entre un polinomio

Más detalles

Transformada Z Filtros recursivos. clase 12

Transformada Z Filtros recursivos. clase 12 Transformada Z Filtros recursivos clase 12 Temas Introducción a los filtros digitales Clasificación, Caracterización, Parámetros Filtros FIR (Respuesta al impulso finita) Filtros de media móvil, filtros

Más detalles

PROBLEMA 1 *( ) + SOLUCIÓN: Sea la superficie de la parte esférica superior, parametrizada con coordenadas cilíndricas de la siguiente manera:

PROBLEMA 1 *( ) + SOLUCIÓN: Sea la superficie de la parte esférica superior, parametrizada con coordenadas cilíndricas de la siguiente manera: PROBLEMA 1 A una esfera maciza de radio unidad se le hace una perforación cilíndrica siguiendo un eje diametral de la esfera. Suponiendo que el cilindro es circular de radio, con y que el eje que se usa

Más detalles

Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática. Examen de problemas, 13 de junio de 2013.

Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática. Examen de problemas, 13 de junio de 2013. Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática Examen de problemas, 3 de junio de 23..5 ptos. Encuentre en C las singularidades de la siguiente función e indique su tipo:

Más detalles

Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática. Examen de problemas, 5 de septiembre de f (z) = sen z

Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática. Examen de problemas, 5 de septiembre de f (z) = sen z Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática Examen de problemas, 5 de septiembre de 22..5 ptos. Encuentre en C las singularidades de la siguiente función e indique su

Más detalles

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3! + x5

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3! + x5 Cálculo I (Grado en Ingeniería Informática Problemas resueltos, -, -4 y 4-5 (tercera parte Preparado por los profesores de la asignatura: Pablo Fernández, Dragan Vukotić, Luis Guijarro (coordinadores,

Más detalles

Modelado en el dominio de la frecuencia Utilizar la transformada Laplace para representar ecuaciones diferenciales lineales

Modelado en el dominio de la frecuencia Utilizar la transformada Laplace para representar ecuaciones diferenciales lineales 2.3 OBJETIVOS Transformada Laplace (Repaso) Modelado en el dominio de la frecuencia Utilizar la transformada Laplace para representar ecuaciones diferenciales lineales CONTENIDOS Transformada de Laplace

Más detalles

GUIA DE EJERCICIOS MATEMATICA GENERAL POLINOMIOS. Determine, usando las definiciones correspondientes. se cumple:

GUIA DE EJERCICIOS MATEMATICA GENERAL POLINOMIOS. Determine, usando las definiciones correspondientes. se cumple: MATEMATICA GENERAL 00, HERALDO GONZALEZ SERRANO FACULTAD DE CIENCIA DMCC GUIA DE EJERCICIOS MATEMATICA GENERAL POLINOMIOS ) Considere los polinomios p ( ) = 6, ( ) = 6 R y = p ( ) q ( ) = r ( ) c i, p

Más detalles

CAPÍTULO 7: TASAS Y OPERACIONES

CAPÍTULO 7: TASAS Y OPERACIONES CAPÍTULO 7: TASAS Y OPERACIONES Fecha: 6 2014 CPM Educational Program. All rights reserved. Core Connections en español, Curso 2 Fecha: Caja de herramientas 2014 CPM Educational Program. All rights reserved.

Más detalles

Técnicas Avanzadas de Control Memoria de ejercicios

Técnicas Avanzadas de Control Memoria de ejercicios Memoria de ejercicios Curso: 2007/08 Titulación: Ingeniero Técnico Industrial Especialidad: Electrónica Industrial Alumno: Adolfo Hilario Tutor: Adolfo Hilario Caballero Índice general Presentación. 2..

Más detalles

Matemáticas Avanzadas para Ingeniería Resultados sobre Integrales de Contorno en Variable Compleja, problemas resueltos

Matemáticas Avanzadas para Ingeniería Resultados sobre Integrales de Contorno en Variable Compleja, problemas resueltos . alcule la integral indicada: Matemáticas Avanzadas para Ingeniería Resultados sobre Integrales de ontorno en Variable ompleja, problemas resueltos 2+3 i 3 2 i ( 3 3 i + ( 3 + 4 i) z + 3 z 2 ) dz Reporte

Más detalles

Para las ecuaciones diferenciales ordinarias no lineales no existen métodos generales.

Para las ecuaciones diferenciales ordinarias no lineales no existen métodos generales. Unidad IV: Sistemas continuos (continuación) Objetivo específico: Entender ampliamente el fenómeno del comportamiento de los modelos matemáticos para la resolución de problemas enfocados a las ecuaciones

Más detalles