MA3002. Matemáticas Avanzadas para Ingeniería: Transformada Z Inversa. Departamento de Matemáticas. X 1 (z) MFP. Ejemplo 1. Ejemplo 2.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MA3002. Matemáticas Avanzadas para Ingeniería: Transformada Z Inversa. Departamento de Matemáticas. X 1 (z) MFP. Ejemplo 1. Ejemplo 2."

Transcripción

1 MA3002

2 Inversa La transformada Z inversa una función variable compleja X () se fine como x(n) = 2 π i C X () n d don la integral se calcula sobre una curva cerrada simple C postivamente orientada que encierra el origen y que cae en la región convergencia (ROC) X (). A pesar la finición, es más conveniente calcular la transformada Z inversa buscando la señales que tienen como transformada Z a la expresión X (). Veremos tales métodos.

3 Método Fracciones Parciales En la mayoría las aplicaciones el problema consiste en terminar la transformada Z inversa una función racional X (). Es cir, la división entre dos polinomios. El Método Fracciones Parciales la expresión se convierte en una combinación lineal transformadas funciones básicas como δ(n), a n u(n) y n a n u(n). De ser posible tal scomposición, entonces es sencillo encontrar la transformada inversa mediante la aplicación una tabla. En muchos casos, será más conveniente primero sarrollar X ()/ en fracciones parciales, y spués spejar X () multiplicando por. Ello porque el caballito batalla es Z {a n u(n)} = /( a) y cuando multipliquemos por los factores lineales quedarán a modo.

4 Método Rápido Fracciones Parciales I Es práctico que recuer el método rápido el cálculo fracciones parciales en el caso términos lineales NO REPETIDOS: En el sarrollo fracciones parciales cuando = a NO es un cero Q() P() ( a) Q() = A a + R() Q() el valor A pue calcularse en forma inpendiente R() mediante la fórmula A = P(a) Q(a)

5 Método Rápido Fracciones Parciales II Es también práctico que recuer el método rápido el cálculo fracciones parciales en el caso términos lineales REPETIDOS: En el sarrollo fracciones parciales cuando = a NO es un cero Q() P() ( a) 2 Q() = A ( a) 2 + B ( a) + R() Q() el valor A pue calcularse en forma inpendiente R() mediante la fórmula A = P(a) Q(a) mientras que el valor B se calcula como B = P (a) A Q (a) Q(a)

6 Método Rápido Fracciones Parciales III Cuando en el nominador se tiene un cero orn tres: P() ( a) 3 Q() = A ( a) 3 + B ( a) 2 + C ( a) + R() Q() (Se supone que Q(a) 0). Entonces los coeficientes puen calcularse por las fórmulas: A = P(a) Q(a) B = P (a) A Q (a) Q(a) C = P (a) A Q (a) 2 B Q (a) 2! Q(a)

7 Calcule la transformada Z inversa X () = ( 5 )( 4 )

8 Calcule la transformada Z inversa Solución Trabajamos mejor con X () = X () = ( 5 )( 4 ) = A 5 ( 5 )( 4 ) + B 4 = Para a = /5: P() =, Q() = /4, P(a) =, Q(a) = /5 /4 = /20 y así A = 20. Para a = /4: P() =, Q() = /5, P(a) =, Q(a) = /4 /5 = /20 y así B = 20. Así X () = : x(n) = 4 ( 20 ) 5 n n u(n)

9 TI: Fracciones parciales el ejemplo El único inconveniente será que bemos hacer un poco aritmética que el coeficiente en la l nominador sea : por ejemplo, en la primera fracción bemos dividir numerador y nominador entre 4, mientras que en el segundo entre 5.

10 Calcule la transformada Z inversa X () = 2 ( 2 )( + 3 )

11 Calcule la transformada Z inversa Solución Trabajamos mejor con X () Así = X () = ( 2 )( + 3 ) = A 3 X () = x(n) = ( ( 2 )( + 3 ) + B ( 3) ) n ( = ( ) n ) u(n) 3

12 TI: Fracciones parciales el ejemplo 2 El único inconveniente será que bemos hacer un poco aritmética que el coeficiente en la l nominador sea : por ejemplo, en la primera fracción bemos dividir numerador y nominador entre 5, mientras que en el segundo entre 0.

13 Calcule la transformada Z inversa X () = = ( ( + i))( ( i))

14 Calcule la transformada Z inversa X () = Solución Trabajamos mejor con X () Así = = A ( + i) + B ( i) = X () = 2 i (+i) + 2 i x(n) = ( ( + i))( ( i)) 2 i ( + i) + 2 i ( i) ( i) ( 2 i ( + i)n + 2 ) i ( i)n u(n)

15 TI: Fracciones parciales el ejemplo 3 Es un poco más enredado, pero no tanto: bemos pensar la expresión como: p f f 2 En este caso calculamos directamente los coeficientes las fracciones.

16 Calcule la transformada Z inversa X () = = ( 3 )( 4 )

17 Calcule la transformada Z inversa X () = = ( 3 )( 4 ) Solución Trabajamos mejor con X ()/ y aplicamos fracciones parciales: Así X () = A + B 3 + C 4 = X () = ( ( ) n ( ) n ) x(n) = 24 δ(n) u(n) 3 4

18 TI: Fracciones parciales el ejemplo 4 Nuevamente bemos hacer un poco aritmética que el coeficiente en la cada nominador sea : por ejemplo, en la primera fracción bemos dividir numerador y nominador entre 4, mientras que en el segundo entre 3.

19 Calcule la transformada Z inversa X () = 2 ( ) 2 ( ) 3 2

20 Calcule la transformada Z inversa X () = 2 ( ) 2 ( ) 3 2 Solución Trabajamos mejor con X ()/ y aplicamos fracciones parciales: X () = ( ) 2 ( ) = 3 2 A ( 3 B ) 2 + ( ) + 3 Para calcular A y B: tenemos que a = /3, P() = y Q() = /2, por tanto y A = P(a) Q(a) = 3 B = P (a) A Q (a) Q(a) 3 2 = 2 = ( 2)() 6 = 8 C ( 2 )

21 (continuación) Para calcular C: tenemos que a = /2, P() = y Q() = ( /3) 2, por tanto: Así y por tanto ( x(n) = C = 2 ( 2 3) 2 = 8 X () = 2 ( ) n ( ) n 8 3 ( ) n ( ) ) n u(n) 2

22 TI: Fracciones parciales el ejemplo 5 Nuevamente bemos hacer un poco aritmética que el coeficiente en la cada nominador sea : por ejemplo, en la primera fracción bemos dividir numerador y nominador entre 3, el segundo entre 9 (pues el factor es 3 y el exponente es 2) y el tercero entre 2.

23 Calcule la transformada Z inversa X () = ( 3 )

24 Calcule la transformada Z inversa X () = ( 3 ) Trabajamos mejor con X ()/ y aplicamos fracciones parciales: X () = ( 3 ) = A 3 + B 2 + C + D 3 Aplicando los métodos fracciones parciales scritos tenemos que: A = 3, B = 9, C = 30 y D = 30 y por tanto X () = x(n) = 3 δ(n 2) 9 δ(n ) 30 δ(n) + 30 ( ) n u(n) 3

25 TI: Fracciones parciales el ejemplo 6 Nuevamente bemos hacer un poco aritmética que el coeficiente en la cada nominador sea : por ejemplo, en la primera fracción bemos dividir numerador y nominador entre 3.

26 Consire una señal gobernada por la ecuación en diferencias: y(n) = 2 x(n) x(n ) + 3 x(n 2)+ 9 y(n ) y(n 2) con condiciones iniciales y( ) = 3 y y( 2) = 2 una entrada x(n) = u(n), la función escalón unitario.

27 Consire una señal gobernada por la ecuación en diferencias: y(n) = 2 x(n) x(n ) + 3 x(n 2)+ 9 y(n ) y(n 2) con condiciones iniciales y( ) = 3 y y( 2) = 2 una entrada x(n) = u(n), la función escalón unitario. Aplicaremos la transformada Z en ambos miembros utiliando las propiedas: Z {x(n)} = ; Z {x(n )} = ; Z {x(n 2)} = ( ) Z {y(n)} = Y (); Z {y(n )} = y( ) + Y () = 3 + Y () Z {y(n 2)} = y( 2) + y( ) + 2 Y () = Y ()

28 (continuación) Aplicando en ambos miembros la transformada Z y obtenemos Y () = ( ) (3 + Y ()) 20 ( Y ()) Después multiplicar por 2 tenemos: 2 Y () = (2 ( 2 + 3) ) ( ) Y () 20 De don: ( ) Y () = (2 ( 2 + 3) ) 20 Así: Y () = (2 2 +3) ( ) + 20 ( ) 20 ( )

29 (continuación) Factoriando nominadores: Y () = ( ) ( ( ) + 5) 4 don: y(n) = 20 ( ) n ( ) n = 20 ( ) n ( ) n válida, n = 0,, 2,... ( ) ) ( 20 4 ( 5 ( ) n ) ( ) n 4

30 (continuación) y(n) = 20 ( ) n ( ) n = 20 ( ) n ( ) n ( ) n ( ) n 4 Particular Transitoria Con entrada cero Estado estable

31 Capítulo 0 : D. Sundararajan: A practical approach to Signals and Systems John Wiley and Sons.

MA3002. Matemáticas Avanzadas para Ingeniería: Transformada Z. Departamento de Matemáticas. X (z) Z {a n x(n)} Linealidad. Atraso.

MA3002. Matemáticas Avanzadas para Ingeniería: Transformada Z. Departamento de Matemáticas. X (z) Z {a n x(n)} Linealidad. Atraso. {a n u(n)} {n } {a n } { n m=0 } MA3002 {a n u(n)} {n } {a n } { n m=0 } En lo siguiente, representar sucesiones utiliaremos la notación en lugar {x n }; x(i) representará el valor l término i-ésimo la

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Series de Laurent. Departamento de Matemáticas. Singularidad. Sing. Aislada. S. de Laurent.

MA3002. Matemáticas Avanzadas para Ingeniería: Series de Laurent. Departamento de Matemáticas. Singularidad. Sing. Aislada. S. de Laurent. Ejemplos MA3002 Ejemplos Puntos singulares una función Si una función variable compleja ja ser anaĺıtica en un punto z = z o, entonces se dice que este punto es una singularidad o un punto singular la

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Números Complejos. Departamento de Matemáticas. Introducción. Igualdad. Suma y resta.

MA3002. Matemáticas Avanzadas para Ingeniería: Números Complejos. Departamento de Matemáticas. Introducción. Igualdad. Suma y resta. MA300 Propiedas Propiedas Los números complejos simbolizados por C son una generalización los números reales. Una generalización algebraica muy interesante: Toda ecuación polinomial c n z n + c n 1 z n

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Números Complejos. Departamento de Matemáticas. Introducción. Igualdad. Suma y resta.

MA3002. Matemáticas Avanzadas para Ingeniería: Números Complejos. Departamento de Matemáticas. Introducción. Igualdad. Suma y resta. MA3002 Los números complejos simbolizados por C son una generalización los números reales. Una generalización algebraica muy interesante: Toda ecuación polinomial c n z n + c n 1 z n 1 + + c 1 z + c 0

Más detalles

PROBLEMAS PROPUESTOS. TEMAS 5 Y 6 SOLUCIONES

PROBLEMAS PROPUESTOS. TEMAS 5 Y 6 SOLUCIONES Grado en Ingeniería Mecánica Teoría de Sistemas PROBLEMAS PROPUESTOS. TEMAS 5 Y 6 SOLUCIONES Transformada Z. Función de transferencia discreta. Modelado de sistemas discretos. PROBLEMA 1. Sistema discreto

Más detalles

Algebra Lineal: Dependencia Lineal. Departamento de Matemáticas. Intro. Dependencia. Ejemplos a) Resultados. Ejemplos b) MA1019

Algebra Lineal: Dependencia Lineal. Departamento de Matemáticas. Intro. Dependencia. Ejemplos a) Resultados. Ejemplos b) MA1019 Algebra MA119 ducción Otro los conceptos clave en Algebra es el concepto penncia lineal. Este concepto aplica a conjuntos vectores y significa que el conjunto tenga redundancia, es cir, que exista en el

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Números Complejos. Departamento de Matemáticas. Introducción. Igualdad. Suma y resta.

MA3002. Matemáticas Avanzadas para Ingeniería: Números Complejos. Departamento de Matemáticas. Introducción. Igualdad. Suma y resta. MA3002 Los números complejos, simbolizados por C, son una generalización los números reales. Una generalización algebraica muy interesante: Toda ecuación polinomial c n z n + c n 1 z n 1 + + c 1 z + c

Más detalles

SISTEMAS LINEALES. Tema 6. Transformada Z

SISTEMAS LINEALES. Tema 6. Transformada Z SISTEMAS LINEALES Tema 6. Transformada Z 6 de diciembre de 200 F. JAVIER ACEVEDO javier.acevedo@uah.es TEMA 3 Contenidos. Autofunciones de los sistemas LTI discretos. Transformada Z. Región de convergencia

Más detalles

Tema 5. La Transformada Z. Indice:

Tema 5. La Transformada Z. Indice: Indice: La Transformada Z Convergencia de la Transformada Z Propiedades de La Transformada Z La Transformada Z inversa Método de la División Directa Método de Descomposición en Fracciones Parciales. Prof.

Más detalles

Introducción. Algebra Lineal: Dependencia Lineal. Departamento de Matemáticas. Intro. Resultado Clave 2. Ejemplo 1. Ejemplo 2. Operativa.

Introducción. Algebra Lineal: Dependencia Lineal. Departamento de Matemáticas. Intro. Resultado Clave 2. Ejemplo 1. Ejemplo 2. Operativa. ducción Amás los conceptos combinación lineal y espacio generado, otro los conceptos clave en Algebra es el concepto penncia lineal. Este concepto aplica a conjuntos vectores y significa que el conjunto

Más detalles

Infinito más un número Infinito más infinito. Infinito por infinito. OPERACIONES CON INFINITO Sumas con infinito. Productos con infinito

Infinito más un número Infinito más infinito. Infinito por infinito. OPERACIONES CON INFINITO Sumas con infinito. Productos con infinito OPERACIONES CON INFINITO Sumas con infinito Infinito más un número Infinito más infinito Infinito menos infinito Productos con infinito Infinito por un número Infinito por infinito Infinito por cero Cocientes

Más detalles

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 24 de febrero de 2013

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 24 de febrero de 2013 Matemáticas II Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica 4 de febrero de 0. Conteste las siguientes cuestiones: (a) (0. ptos.) Escriba en forma

Más detalles

MA1019. Algebra Lineal: Combinación Lineal y Espacios Generados. Departamento de Matemáticas. Intro. Comb. Lineal. Ejemplo. Notas 1. E.

MA1019. Algebra Lineal: Combinación Lineal y Espacios Generados. Departamento de Matemáticas. Intro. Comb. Lineal. Ejemplo. Notas 1. E. s Algebra MA1019 s ducción Uno los conceptos clave en Algebra Lineal es el concepto combinación lineal: Una combinación lineal es una superposición objetos: imagine que usted tiene dos señales (discretas

Más detalles

Algebra Lineal: Espacios Generados. Departamento de Matemáticas. Intro. E. Generado. Ejemplos. Contención. Ejemplos. Nota.

Algebra Lineal: Espacios Generados. Departamento de Matemáticas. Intro. E. Generado. Ejemplos. Contención. Ejemplos. Nota. Algebra ducción Después combinación lineal, el segundo concepto clave en Algebra Lineal es el concepto espacio generado. Existen dos formas llegar a este concepto. Si en lugar responr si el sistema [A

Más detalles

Sistemas Lineales. Examen de Septiembre Soluciones

Sistemas Lineales. Examen de Septiembre Soluciones Sistemas Lineales Examen de Septiembre 25. Soluciones. (2.5 pt.) La señal y(t) [sinc( t)] 4 puede escribirse como y(t) [sinc( t)] 4 [ ] sin(o πt) 4 o πt [ sin(o πt) ] 4 4 πt 4 [y (t)] 4 4 y (t) y (t) y

Más detalles

Ayudantía Análisis de Señales. Transformada Z

Ayudantía Análisis de Señales. Transformada Z Pontificia Universidad Católica de Chile Escuela de Ingeniería Ayudantía Análisis de Señales Fabián Cádi Transformada Z Consideremos un sistema discreto lineal e invariante, representado por una respuesta

Más detalles

En la Clase 3, se demostró que cualquier señal discreta x[n] puede escribirse en términos de impulsos como sigue:

En la Clase 3, se demostró que cualquier señal discreta x[n] puede escribirse en términos de impulsos como sigue: SISTEMAS LINEALES INVARIANTES EN EL TIEMPO (SISTEMAS LTI) Un sistema lineal invariante en el tiempo, el cual será referido en adelante por la abreviatura en inglés de Linear Time Invariant Systems como

Más detalles

Transformada Z y sus Aplicaciones en Sistemas LTI

Transformada Z y sus Aplicaciones en Sistemas LTI Transformada Z y sus Aplicaciones en Sistemas LTI Qué es la transformada Z? Es una representación para señales en tiempo discreto mediante una serie infinita de números complejos. Es una herramienta muy

Más detalles

Expresiones algebraicas

Expresiones algebraicas Polinomios Expresiones algebraicas Una expresión algebraica es cualquier combinación de números y letras relacionados por operaciones aritméticas: suma, resta, producto, división y potenciación. Ejemplos

Más detalles

Introducción. Algebra Lineal: Dependencia Lineal. Departamento de Matemáticas. Intro. Resultado Clave 3. Ejemplo 1. Ejemplo 2. Operativa.

Introducción. Algebra Lineal: Dependencia Lineal. Departamento de Matemáticas. Intro. Resultado Clave 3. Ejemplo 1. Ejemplo 2. Operativa. ducción Amás los conceptos combinación lineal y espacio generado, otro los conceptos clave en Algebra es el concepto penncia lineal. Este concepto aplica a conjuntos vectores y significa que el conjunto

Más detalles

Algebra Lineal: Combinación Lineal. Departamento de Matemáticas. Intro. Ejemplo 1 Ejemplo 2 Ejemplo 3 Ejemplo 4 Ejemplo 5 Ejemplo 6 MA1010

Algebra Lineal: Combinación Lineal. Departamento de Matemáticas. Intro. Ejemplo 1 Ejemplo 2 Ejemplo 3 Ejemplo 4 Ejemplo 5 Ejemplo 6 MA1010 : Algebra : MA1010 : En esta sección introduciremos el concepto combinación lineal. Este concepto permite reinterpretar lo que significa la solución un sistema ecuaciones lineales. Des nuestro punto vista,

Más detalles

Expresiones algebraicas

Expresiones algebraicas Epresiones algebraicas Matemáticas I 1 Epresiones algebraicas Epresiones algebraicas. Monomios y polinomios. Monomios y polinomios. Una epresión algebraica es una combinación de letras, números y signos

Más detalles

Análisis de Sistemas Lineales. Sistemas Dinámicos y Control Facultad de Ingeniería Universidad Nacional de Colombia

Análisis de Sistemas Lineales. Sistemas Dinámicos y Control Facultad de Ingeniería Universidad Nacional de Colombia Análisis de Sistemas Lineales Sistemas Dinámicos y Control 2001772 Facultad de Ingeniería Universidad Nacional de Colombia Sistemas SISO (Single Input Single Output) Los sistemas de una sola entrada y

Más detalles

EXAMEN DEPARTAMENTAL DE ÁLGEBRA LINEAL MUESTRA FIN TECATE UABC

EXAMEN DEPARTAMENTAL DE ÁLGEBRA LINEAL MUESTRA FIN TECATE UABC EXAMEN DEPARTAMENTAL DE ÁLGEBRA LINEAL MUESTRA FIN TECATE UABC 1. REACTIVO MUESTRA De las opciones que se presentan elije la que corresponde a un ejemplo número complejo. A) 5-0i B) 5-3i C) 5-2k D) 5 2.

Más detalles

; En este término algebraico, tenemos que 3 es el factor numérico y el coeficiente literal.

; En este término algebraico, tenemos que 3 es el factor numérico y el coeficiente literal. Álgebra Término algebraico: es el producto y/o división de una o más variables (factor literal) y un coeficiente o factor numérico. Por ejemplo: el cálculo del área de un triángulo la rapidez media ; En

Más detalles

Algebra Lineal: Dependencia Lineal. Departamento de Matemáticas. Intro. Intro

Algebra Lineal: Dependencia Lineal. Departamento de Matemáticas. Intro. Intro Depenncia En esta presentación revisaremos la causa por la cual un sistema ecuaciones lineales que es consistente tiene solución única. Esto nos permitirá finir el tercer concepto clave en Algebra el concepto

Más detalles

Ma3002. Matemáticas Avanzadas para Ingeniería: Potencias y Raíces de Números Complejos. Departamento de Matemáticas. Introducción.

Ma3002. Matemáticas Avanzadas para Ingeniería: Potencias y Raíces de Números Complejos. Departamento de Matemáticas. Introducción. Raíces Raíces Ma3002 Raíces Raíces Las potencias y las enteras números complejos son muy fáciles calcular cuando el número complejo está en la forma polar. Primeramente, veremos la forma polar un número

Más detalles

Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1. x 5x 2 6 5

Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1. x 5x 2 6 5 Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1 POLINOMIOS Y FRACCIONES ALGEBRAICAS.1 COCIENTE DE POLINOMIOS COCIENTE DE MONOMIOS El cociente de un monomio entre otro monomio de grado igual

Más detalles

Procesamiento Digital de. Ing. Biomédica, Ing. Electrónica e Ing. en Telecomunicaciones Capitulo III Transformada-Z

Procesamiento Digital de. Ing. Biomédica, Ing. Electrónica e Ing. en Telecomunicaciones Capitulo III Transformada-Z Procesamiento Digital de Señales Ing. Biomédica, Ing. Electrónica e Ing. en Telecomunicaciones Capitulo III Transformada-Z D.U. Campos-Delgado Facultad de Ciencias UASLP Enero-Junio/2014 1 CONTENIDO Definición

Más detalles

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím

Más detalles

Algebra Lineal: Combinación Lineal. Departamento de Matemáticas. Intro. Ejemplo 1 Ejemplo 2 Ejemplo 3 Ejemplo 4 Ejemplo 5 Ejemplo 6

Algebra Lineal: Combinación Lineal. Departamento de Matemáticas. Intro. Ejemplo 1 Ejemplo 2 Ejemplo 3 Ejemplo 4 Ejemplo 5 Ejemplo 6 Ejemplo En esta sección introduciremos el concepto combinación lineal. Este concepto permite reinterpretar lo que significa la solución un sistema ecuaciones lineales. Des nuestro punto vista, el concepto

Más detalles

Guía 1: Ejercicios sobre transformada z

Guía 1: Ejercicios sobre transformada z Guía 1: Ejercicios sobre transformada Alumno: Guillermo M. Tabeni Couvert Profesor: Ing. Carlos A. Espinoa J.T.P.: Ing. Daniel R. Graff Cátedra de Ingeniería Industrial Universidad Tecnológica Nacional,

Más detalles

Ejercicios Resueltos

Ejercicios Resueltos Ejercicios Resueltos Ejercicio 1 La función de transferencia de un sistema de control tiene como expresión: Determinar, aplicando el método de Routh, si el sistema es estable. Para comprobar la estabilidad

Más detalles

Matemáticas Avanzadas para Ingeniería: Serie de Taylor. Departamento de Matemáticas. Propiedades. Tma. Taylor. Ejemplos MA3002

Matemáticas Avanzadas para Ingeniería: Serie de Taylor. Departamento de Matemáticas. Propiedades. Tma. Taylor. Ejemplos MA3002 MA3002 Intro Suponga una serie potencias a k (z z o ) k Para un valor z que pertenezca al interior l círculo convergencia dicha serie, el valor ĺımite la serie L es un número complejo perfectamente finido

Más detalles

Señales y Sistemas II (IE 859) Ejemplos de la transformada z inversa

Señales y Sistemas II (IE 859) Ejemplos de la transformada z inversa Ejemplos de la transformada inversa c M. Valenuela 999 00 (8 de febrero de 00) Ejemplo Obtedremos la transformada inversa de X() Potencias positivas de y expansión de X()/ Se expande en fracciones parciales

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Funciones de Variable Compleja. Departamento de Matemáticas. Continuidad. Derivada.

MA3002. Matemáticas Avanzadas para Ingeniería: Funciones de Variable Compleja. Departamento de Matemáticas. Continuidad. Derivada. MA3002 variable compleja Cuando el dominio una función f es un conjunto números complejos y cuando los valores que proporciona la función son también números complejos, diremos que f es una función variable

Más detalles

Índice La División Entera El Máximo Común Divisor Algoritmo de Euclides Ecuaciones Diofánticas Factorización. Aritmética I.

Índice La División Entera El Máximo Común Divisor Algoritmo de Euclides Ecuaciones Diofánticas Factorización. Aritmética I. Leandro Marín Septiembre 2010 Índice La División Entera El Máximo Común Divisor Algoritmo de Euclides Ecuaciones Diofánticas Factorización Los Números Enteros Llamaremos números enteros al conjunto infinito

Más detalles

Algebra Lineal: Valores y Vectores Propios. Departamento de Matemáticas. Intro. Eigenvalues. Multiplicidades

Algebra Lineal: Valores y Vectores Propios. Departamento de Matemáticas. Intro. Eigenvalues. Multiplicidades Algebra ducción Los valores y vectores propios son muy importantes en el análisis sistemas lineales. En esta presentación veremos su finición y cómo se calculan. vectores propios Sea A una matriz cuadrada,

Más detalles

TEMA 2: ÁLGEBRA 1. TEOREMA DEL RESTO Y APLICACIONES

TEMA 2: ÁLGEBRA 1. TEOREMA DEL RESTO Y APLICACIONES TEMA 2: ÁLGEBRA 1. TEOREMA DEL RESTO Y APLICACIONES Dado un polinomio P(x) y un número real a, el resto de la división de P(x) entre (x a) es P(a) (es decir, el resultado de sustituir el valor de x por

Más detalles

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica

Más detalles

Señales y sistemas Otoño 2003 Clase 22

Señales y sistemas Otoño 2003 Clase 22 Señales y sistemas Otoño 2003 Clase 22 2 de diciembre de 2003 1. Propiedades de la ROC de la transformada z. 2. Transformada inversa z. 3. Ejemplos. 4. Propiedades de la transformada z. 5. Funciones de

Más detalles

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3!, x x3

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3!, x x3 Cálculo I (Grado en Ingeniería Informática) Problemas resueltos, - y -4 (tercera parte) Preparado por los profesores de la asignatura: Pablo Fernández, Dragan Vukotić (coordinadores), Luis Guijarro, Kazaros

Más detalles

Integración por fracción parcial -Caso Lineal

Integración por fracción parcial -Caso Lineal * Método de integración por fracción parcial Caso lineal Recordemos que una función racional h es la forma: Px ( ) hx ( ) Qx ( ) Donde P(x) y Q(x) son polinomios y Q(x) no es el polinomio nulo.pues veremos

Más detalles

Fracción: Una fracción consta de dos números enteros dispuestos de esta forma:

Fracción: Una fracción consta de dos números enteros dispuestos de esta forma: TEMAS 3 Y 4: FRACCIONES Y DECIMALES Fracción: Una fracción consta de dos números enteros dispuestos de esta forma: a es el numerador e indica las partes que se toman. b es el denominador e indica las partes

Más detalles

Tema 3: Expresiones algebraicas

Tema 3: Expresiones algebraicas Tema 3: Expresiones algebraicas Monomios y polinomios Un monomio es una expresión algebraica en las que las únicas operaciones que aparecen son la multiplicación y la potenciación de exponente natural.

Más detalles

TEMA: 5 ÁLGEBRA 3º ESO

TEMA: 5 ÁLGEBRA 3º ESO TEMA: 5 ÁLGEBRA 3º ESO 1. MONOMIO Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. Ejemplo: x

Más detalles

3 a + 5 b. 2 x y + y 2

3 a + 5 b. 2 x y + y 2 Es una combinación de números, letras unidos por los signos de las operaciones aritméticas (suma, resta, multiplicación, división y potenciación). Ejemplos: 3 a + 5 b 2 x y + y 2 En una expresión algebraica

Más detalles

Expresión C. numérico Factor literal 9abc 9 abc

Expresión C. numérico Factor literal 9abc 9 abc GUÍA DE REFUERZO DE ÁLGEBRA Un término algebraico es el producto de una o más variables (llamado factor literal) y una constante literal o numérica (llamada coeficiente). Ejemplos: 3xy ; 45 ; m Signo -

Más detalles

2) Halla a y b para que la siguiente función sea continua y derivable en x=1. Calcula la ecuación de la recta tangente en dicho punto:

2) Halla a y b para que la siguiente función sea continua y derivable en x=1. Calcula la ecuación de la recta tangente en dicho punto: CURSO 2-22. 24 de mayo de 2. ) Calcula: sen lím cos - 2) Halla a y b para que la siguiente función sea continua y derivable en =. Calcula la ecuación de la recta tangente en dicho punto: f()= a 2 +b+b

Más detalles

República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación U.E. Colegio Rioclaro Barquisimeto Edo. Lara

República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación U.E. Colegio Rioclaro Barquisimeto Edo. Lara República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación U.E. Colegio Rioclaro Barquisimeto Edo. Lara Profesores: Erwin Falcón y Renzu González Grado: 6to Secciones: A y B Barquisimeto,

Más detalles

Teorema de Cayley-Hamilton

Teorema de Cayley-Hamilton Espacio las Teorema - Algebra Espacio las Teorema - Espacio las Teorema - Veamos algunos resultados sobre transformaciones lineales En particular, el teorema - Espacio las Teorema - las Transformaciones

Más detalles

TEMA: 5 ÁLGEBRA 3º ESO

TEMA: 5 ÁLGEBRA 3º ESO TEMA: 5 ÁLGEBRA º ESO 1. MONOMIO Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. Ejemplo: x

Más detalles

Un i d a d 7. Objetivos. Al inalizar la unidad, el alumno:

Un i d a d 7. Objetivos. Al inalizar la unidad, el alumno: Un i d a d 7 métodos de integraión Objetivos Al inalizar la unidad, el alumno: Utilizará los métodos de sustitución directa en la resolución de integrales. Resolverá integrales de funciones trigonométricas,

Más detalles

Calculo de límites vol.1

Calculo de límites vol.1 Calculo de límites vol.1 Propiedades de los límites Teoría Ejemplos f (x)= p g( x)=q f (x)=2 g( x)= (f (x)+ g(x))= p+q (f (x) g(x))= p q (f (x) g(x))= p q ( f (x) g(x) )= p q si q 0 (k f (x))=k p k R (f

Más detalles

Ecuaciones lineales en una variable. Prof. Anneliesse Sánchez Adaptada por Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo

Ecuaciones lineales en una variable. Prof. Anneliesse Sánchez Adaptada por Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo Ecuaciones lineales en una variable Prof. Anneliesse Sánchez Adaptada por Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo Qué es una ecuación? Una ecuación es una oración que expresa la igualdad

Más detalles

Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo

Polinomios: Definición: Se llama polinomio en x de grado n a una expresión del tipo Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo P (x) = a 0 x n + a 1 x n 1 +... + a n Donde n N (número natural) ; a 0, a 1, a 2,..., a n son coeficientes reales

Más detalles

Veamos ahora el comportamiento de la función parte entera (f(x) = E(x)). Si x se aproxima a 2, a qué valor tiende f(x)?

Veamos ahora el comportamiento de la función parte entera (f(x) = E(x)). Si x se aproxima a 2, a qué valor tiende f(x)? LÍMITES Y CONTINUIDAD DE FUNCIONES. C O N C E P T O D E L Í M I T E D E U N A F U N C I Ó N E N U N P U N T O Consideremos la función f(x)x², cuya gráfica es una parábola. Si x se aproxima a, a qué valor

Más detalles

La forma de una ecuación de primer grado puede ser de la siguiente:

La forma de una ecuación de primer grado puede ser de la siguiente: Primer Grado La forma de una ecuación de primer grado puede ser de la siguiente: a b a b a b a b La solución de una inecuación no va a ser un número concreto, sino un intervalo, es por lo que, debemos

Más detalles

NÚMEROS REALES---AGUERRERO

NÚMEROS REALES---AGUERRERO Contenido NÚMEROS REALES... 2 IGUALDAD Y SUS PROPIEDADES... 4 NÚMEROS MÚLTIPLOS, COMPUESTOS Y PRIMOS... 4 NÚMEROS PRIMOS... 5 DESCOMPOSICIÓN DE UN NÚMERO EN SUS FACTORES PRIMOS... 7 MÁXIMO COMÚN DIVISOR...

Más detalles

El coeficiente del monomio es el número que aparece multiplicando a las variables. PARTE LITERAL

El coeficiente del monomio es el número que aparece multiplicando a las variables. PARTE LITERAL TEMA 0 ÁLGEBRA Y FRACCIONES ALGEBRAICAS - 1. MONOMIO Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente

Más detalles

SISTEMAS DE ECUACIONES LINEALES MÉTODO DE LA MATRIZ INVERSA

SISTEMAS DE ECUACIONES LINEALES MÉTODO DE LA MATRIZ INVERSA MÉTODO DE LA MATRIZ INVERSA Índice Presentación... 3 Método de la matriz inversa... 4 Observaciones... 5 Ejemplo I.I... 6 Ejemplo I.II... 7 Ejemplo II... 8 Sistemas compatibles indeterminados... 9 Método

Más detalles

Matemáticas Avanzadas para Ingeniería: Funciones extendidas. Departamento de Matemáticas. Intro. e z. ln(z) sen(z) MA3002

Matemáticas Avanzadas para Ingeniería: Funciones extendidas. Departamento de Matemáticas. Intro. e z. ln(z) sen(z) MA3002 MA3002 En esta sección veremos cómo se extienn las funciones que ya conocemos números reales pero ahora al plano complejo. La función exponencial Sea z = x + y i un número complejo. Se fine la función

Más detalles

LÍMITES. Ing. Ronny Altuve

LÍMITES. Ing. Ronny Altuve UNIVERSIDAD ALONSO DE OJEDA FACULTAD DE CIENCIAS ADMINISTRATIVAS Unidad Curricular: Matemática II LÍMITES Elaborado por: Ing. Ronny Altuve Ciudad Ojeda, Enero de 2016 INDICADOR DE LOGRO Aplicar la definición

Más detalles

3.1 Polinomios Polinomio: Expresión algebraica formada por la suma y/o resta de varios monomios.

3.1 Polinomios Polinomio: Expresión algebraica formada por la suma y/o resta de varios monomios. Tema : Polinomios, Ecuaciones y Sistemas de ecuaciones..1 Polinomios Polinomio: Expresión algebraica formada por la suma y/o resta de varios monomios. Ejemplo: P(x) = x 4 x + x + 5 Terminología: Ejemplo:

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Funciones extendidas. Departamento de Matemáticas. Intro. Exponencial. Nota 1. Logaritmo.

MA3002. Matemáticas Avanzadas para Ingeniería: Funciones extendidas. Departamento de Matemáticas. Intro. Exponencial. Nota 1. Logaritmo. MA3002 En esta sección veremos cómo se extienn las funciones que ya conocemos números reales pero ahora al plano complejo. En lo que sigue, las funciones cuyo nombre está en letra azul son funciones variable

Más detalles

DIVISIBILIDAD. - DIVISOR DE UN NÚMERO: Un número es divisor de un número dado, cuando al dividir el número entre el divisor, nos da resultado exacto.

DIVISIBILIDAD. - DIVISOR DE UN NÚMERO: Un número es divisor de un número dado, cuando al dividir el número entre el divisor, nos da resultado exacto. DIVISIBILIDAD La divisibilidad es la parte de las matemáticas que nos enseña la relación entre los números, sus múltiplos y divisores. Lo primero que hemos de conocer es por tanto qué es un múltiplo o

Más detalles

TEMA 3. POLINOMIOS Y FRACCIONES ALGEBRAICAS. Ficha 1. P x

TEMA 3. POLINOMIOS Y FRACCIONES ALGEBRAICAS. Ficha 1. P x Ficha. Dados los siguientes polinomios, ordenarlos en orden decreciente, indicar cuál es su grado, decir cuántos términos tiene, señalar cuál es el término independiente, calcular su valor numérico para

Más detalles

Sistemas Lineales. Examen de Junio SOluciones

Sistemas Lineales. Examen de Junio SOluciones . Considere la señal xt) sinπt) Sistemas Lineales Examen de Junio 22. SOluciones a) Obtenga su transformada de Fourier, X), y represéntela para 7π. b) Calcule la potencia y la energía de xt). c) Considere

Más detalles

TEMA 4: ECUACIONES Y SISTEMAS DE ECUACIONES

TEMA 4: ECUACIONES Y SISTEMAS DE ECUACIONES TEMA 4: ECUACIONES Y SISTEMAS DE ECUACIONES 1. ECUACIONES. Una ecuación es una igualdad entre dos expresiones algebraicas. Las variables en este caso se denominan incógnitas. Las soluciones de una ecuación

Más detalles

FUNCIONES REALES DE UNA VARIABLE CONCEPTOS FUNDAMENTALES

FUNCIONES REALES DE UNA VARIABLE CONCEPTOS FUNDAMENTALES FUNCIONES REALES DE UNA VARIABLE Índice Presentación... 3 Conjunto de los números reales... 4 Los intervalos... 6 Las potencias... 7 Los polinomios... 8 La factorización de polinomios (I)... 9 La factorización

Más detalles

lím 2) (1,3p) Halla m y n para que sea derivable la función: x 2-5x+m si x 1 -x 2 +nx si x>1 sen x y=arc tg 1+cos x x 1-x 2 dx

lím 2) (1,3p) Halla m y n para que sea derivable la función: x 2-5x+m si x 1 -x 2 +nx si x>1 sen x y=arc tg 1+cos x x 1-x 2 dx CURSO -. 5 de mayo de. ) (,p) Calcula: ln x lím x (+senx) sen x ) (,3p) Halla m y n para que sea derivable la función: f(x) x -5x+m si x -x +nx si x> 3) (,3p) Deriva y simplifica la función: 4) (,p) Halla:

Más detalles

Asignatura: SISTEMAS LINEALES. Horas/Semana:4 Teoría + 0 Laboratorio. Objetivos

Asignatura: SISTEMAS LINEALES. Horas/Semana:4 Teoría + 0 Laboratorio. Objetivos Asignatura: SISTEMAS LINEALES Curso académico: 2007/2008 Código: 590000804 Créditos: 6 Curso: 2 Horas/Semana:4 Teoría + 0 Laboratorio Departamento: ICS Objetivos 1() Para todas las titulaciones OBJETIVOS

Más detalles

Operatoria con Potencias y Raíces

Operatoria con Potencias y Raíces PreUnAB Clase # 3 Junio 2014 Definición Se llama potencia a una expresiń de la forma, donde a es la base y n es el exponente. Potencia de Exponente Entero a n = a a a... a Cuando el exponente es un número

Más detalles

TEMA III. Análisis de sistemas LIT mediante transformadas.

TEMA III. Análisis de sistemas LIT mediante transformadas. TEA III Análisis de sistemas LIT mediante transformadas. Representación de ecuaciones en diferencias lineales con coeficientes constantes mediante diagramas de bloque y diagramas de flujo de señal 20/0/2002

Más detalles

ysecumple 1 = = =0 = 3 ± 5 2 = 1 = Ã = 2 = 2

ysecumple 1 = = =0 = 3 ± 5 2 = 1 = Ã = 2 = 2 Matemáticas II Grado en Ingeniería Eléctrica/Grado en Ingeniería Electrónica y Automática Convocatoria febrero 06. Resuelva en C la ecuación siguiente: 3+cos() 0 Solución: Usamos la definición de cos en

Más detalles

La derivada como razón de cambio instantánea

La derivada como razón de cambio instantánea La derivada como razón de cambio instantánea Observa que la razón de cambio instantánea es un límite: y(t + t) y(t) lim lim t 0 t t 0 t Cuando calculamos la razón de cambio promedio, geométricamente estamos

Más detalles

Tema 2 Algebra. Expresiones algebraicas Índice

Tema 2 Algebra. Expresiones algebraicas Índice Tema 2 Algebra. Expresiones algebraicas Índice 1. Expresiones algebraicas comunes... 2 2. Valor numérico de una expresión algebraica... 2 3. Tipos de expresiones algebraicas... 2 4. Monomios... 2 4.1.

Más detalles

OPERACIONES CON MONOMIOS Y POLINOMIOS. Suma de monomios

OPERACIONES CON MONOMIOS Y POLINOMIOS. Suma de monomios OPERACIONES CON MONOMIOS Y POLINOMIOS Suma de monomios Sólo podemos sumar monomios semejantes. La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de

Más detalles

Resumen anual de Matemática 1ª Convocatoria: jueves 24 de noviembre, 2016 Octavo nivel 2ª Convocatoria: miércoles 1 de febrero, 2017 broyi.jimdo.

Resumen anual de Matemática 1ª Convocatoria: jueves 24 de noviembre, 2016 Octavo nivel 2ª Convocatoria: miércoles 1 de febrero, 2017 broyi.jimdo. Resumen anual de Matemática 1ª Convocatoria: jueves 4 de noviembre, 016 Octavo nivel ª Convocatoria: miércoles 1 de febrero, 017 broyi.jimdo.com Contenidos Los números... Objetivo 1... El conjunto de los

Más detalles

Chapter Audio Summary for McDougal Littell Pre-Algebra

Chapter Audio Summary for McDougal Littell Pre-Algebra Chapter Audio Summary for McDougal Littell Pre-Algebra Chapter 5 Rational Numbers and Equations En el capítulo 5 aprendiste a escribir, comparar y ordenar números racionales. Después aprendiste a sumar

Más detalles

LÍMITES. Ing. Ronny Altuve

LÍMITES. Ing. Ronny Altuve UNIVERSIDAD ALONSO DE OJEDA FACULTAD DE CIENCIAS ADMINISTRATIVAS Unidad Curricular: Matemática II LÍMITES Elaborado por: Ing. Ronny Altuve Ciudad Ojeda, septiembre 2016 INDICADOR DE LOGRO Aplicar la definición

Más detalles

Sistemas Lineales. Tema 5. La Transformada Z. h[k]z k. = z n (

Sistemas Lineales. Tema 5. La Transformada Z. h[k]z k. = z n ( La transformada Z Sistemas Lineales Tema 5. La Transformada Z Las señales exponenciales discretas de la forma z n con z = re jω son autosoluciones de los sistemas LTI. Para una entrada x[n] = z0 n la salida

Más detalles

Tema 10: Cálculo integral

Tema 10: Cálculo integral Tema 10: Cálculo integral 1. Introducción El matemático inglés Isaac Barrow (1630-1677) fue el precursor del cálculo de integrales definidas, enunciando la regla que lleva su nombre y que conecta la integral

Más detalles

Integral indefinida. Integral indefinida es el conjunto de las infinitas primitivas que puede tener una función.

Integral indefinida. Integral indefinida es el conjunto de las infinitas primitivas que puede tener una función. Integral indefinida 1. Integración Integrar es el proceso recíproco del de derivar, es decir, dada una función f(x), busca aquellas funciones F(x) que al ser derivadas conducen a f(x). Se dice, entonces,

Más detalles

Matemáticas números reales

Matemáticas números reales Matemáticas números reales Definición El conjunto de los números reales toda clase de números que pueden localizarse en la recta. Son el resultado de la ampliación del conjunto de los números naturales

Más detalles

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3! + x5

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3! + x5 Cálculo I (Grado en Ingeniería Informática Problemas resueltos, -, -4 y 4-5 (tercera parte Preparado por los profesores de la asignatura: Pablo Fernández, Dragan Vukotić, Luis Guijarro (coordinadores,

Más detalles

FRACCIONES. Profesora: Charo Ferreira

FRACCIONES. Profesora: Charo Ferreira FRACCIONES - Definición: La fracción puede tener varias interpretaciones, todas ellas aplicables y correctas: 1. Fracción es una expresión que indica una cantidad que expresa una o varias unidades no completas.

Más detalles

Definición 1.2. Sea (K, +, ) un dominio de integridad. Un polinomio de grado n sobre K es una expresión de la forma

Definición 1.2. Sea (K, +, ) un dominio de integridad. Un polinomio de grado n sobre K es una expresión de la forma Polinomios Definición 1.1. Un conjunto K junto con dos operaciones definidas en él que denotaremos por + : K K K : K K K para las cuales se cumplen las siguientes propiedades: Asociatividad Conmutatividad

Más detalles

1º BACH MATEMÁTICAS I

1º BACH MATEMÁTICAS I 1º BACH MATEMÁTICAS I Ecuaciones, inecuaciones y sistemas Trigonometría Vectores Nº complejos Geometría Funciones. Límites. Continuidad. Derivadas Repaso en casa Potencias Radicales. Racionalización. (pag.

Más detalles

Descripción y Objetivos Etapas del proyecto Presentación del producto Balance final Conclusiones generales. Universidad Técnica Federico Santa María

Descripción y Objetivos Etapas del proyecto Presentación del producto Balance final Conclusiones generales. Universidad Técnica Federico Santa María f s = 22050 x[n] n y[n] n x n x[n] C C D D L y n = L x n L C x n + sign x n 1 C D, x n < D, x n D x[n] n y[n] n x n x[n] D D u y 1 n = a x n 1,6 x n 1,6 x n + sign x n D 1 D a k = 2,5 D 0,997 D c L, x

Más detalles

Teorema de Chauchy-Goursat

Teorema de Chauchy-Goursat hauchy- hauchy- MA3002 Tma auchy hauchy- Tipos Un dominio D se dice simplemente conexo si cualquier contorno cerrado que esté en D pue encogerse hasta un punto sin abandonar D: ualquier contorno cerrado

Más detalles

1 Repaso. Cálculo I. 1 o Matemáticas. Curso 2002/2003. Cálculo de Primitivas. (5x 6) f(x) 1 2 f (x) dx, que es inmediata: + 1 x 1

1 Repaso. Cálculo I. 1 o Matemáticas. Curso 2002/2003. Cálculo de Primitivas. (5x 6) f(x) 1 2 f (x) dx, que es inmediata: + 1 x 1 Cálculo I. o Matemáticas. Curso /. Cálculo de Primitivas Repaso (5 6) d = 5 (5 6) 5 d = 5 (5 6) + C. Nota: Si f() = 5 6 su derivada es 5. En la primera igualdad multiplicamos y dividimos por 5. Así tenemos

Más detalles

El polinomio. es divisible por x + 1, y. Comprobar utilizando el valor numérico, que el polinomio calcula con una división otro factor del polinomio.

El polinomio. es divisible por x + 1, y. Comprobar utilizando el valor numérico, que el polinomio calcula con una división otro factor del polinomio. 1 P() 8 El polinomio es el producto de tres factores, siendo dos de ellos los correspondientes a las raíces =1 = - Halla mediante dos divisiones consecutivas por el método de Ruffini el tercer factor Comprobar

Más detalles

du = ln u + NOTA: En las integrales 11, 12, 17 y 18 α significa la raíz cuadrada positiva de α 2. Escribimos

du = ln u + NOTA: En las integrales 11, 12, 17 y 18 α significa la raíz cuadrada positiva de α 2. Escribimos CÁLCULO I CÁLCULO DE PRIMITIVAS: Integrales Inmediatas 3 5 7 9 3 5 7 u m du = um+ + C, m m + du = ln u + C u u du = u + C 4 a u du = au + C, a > 0, a ln a sen u du = cos u + C 6 cos u du = sen u + C cos

Más detalles

EJERCICIOS. 7.3 Valor de un polinomio para x = a. Por lo tanto: para determinar expresiones

EJERCICIOS. 7.3 Valor de un polinomio para x = a. Por lo tanto: para determinar expresiones or lo tanto: para determinar epresiones a que sean divisores de un polinomio con coeficientes enteros, se deben asignar valores al número a que dividan al término independiente. Apliquemos este resultado

Más detalles

TEMARIO PRESENTACIÓN 7 MÓDULO I 17 EXPRESIONES ALGEBRAICAS 19

TEMARIO PRESENTACIÓN 7 MÓDULO I 17 EXPRESIONES ALGEBRAICAS 19 TEMARIO PRESENTACIÓN 7 MÓDULO I 17 EXPRESIONES ALGEBRAICAS 19 Introducción 19 Lenguaje común y lenguaje algebraico 22 Actividad 1 (Lenguaje común y lenguaje algebraico) 23 Actividad 2 (Lenguaje común y

Más detalles

Relación de ejercicios 5

Relación de ejercicios 5 Relación de ejercicios 5 Ecuaciones Diferenciales y Cálculo Numérico Grado en Ingeniería de Tecnologías de Telecomunicación Mayo de 2017 Ejercicio 51 Halla un intervalo, para el cero más próximo al origen,

Más detalles

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma. FICHAS REPASO º ESO OPERACIONES CON NÚMEROS ENTEROS El valor absoluto de un número entero es el número natural que resulta al prescindir del signo. Por ejemplo, el valor absoluto de es y el valor absoluto

Más detalles