3.7. Ejercicios: Sistemas discretos

Tamaño: px
Comenzar la demostración a partir de la página:

Download "3.7. Ejercicios: Sistemas discretos"

Transcripción

1 3.7. Ejercicios: Sistemas discretos Ejercicios: Sistemas discretos Ejercicio 1. Calcule la salida y[n] de cada uno de los siguientes sistemas para la entrada x[n] que se muestra en la figura. (1) y[n] = x[n 2] (4) y[n] = x[n 1] δ[n 3]. (2) y[n] = x[4 n] (5) y[n] = x [n] ( 1)n x [n]. (3) y[n] = x[2n]. (6) y[n] = x [ n 2]. Ejercicio 2. Determine si cada uno de los sistemas (a)-(e) de la Lista I, con entrada x[n] y salida y[n], satisface las propiedades (1)-(5) de la Lista II. Justifique sus respuestas. Lista I: Sistemas (a) y[n] = x[n]x[n 1] (b) y[n] = x[ n] (c) y[n] = x[n] + nx[n + 1] (d) y[n] = n+4 k=n 2 { x[k] x[n], si x[n] 0, (e) y[n] = 0, si x[n] < 0. Lista II: Propiedades (1) Sin memoria. (2) Invariante en el tiempo (3) Lineal. (4) Causal. (5) Estable. Ejercicio 3. Verifique que una sucesión x[n] absolutamente sumable ( n x[n] = M x < ) tiene energía finita (E = n x[n] 2 < ). Compruebe que la recíproca no es cierta. Ayuda: demuestre primero que si n x[n] = M x, entonces x[n] < N x para todo n. Ejercicio 4. Para el sistema definido por la ecuación a diferencias y[n] = (x[n]) 2 + 1, 1. Calcule la respuesta impulsiva h[n]. 2. Determine n h[n]. 3. Contradice este resultado la condición de estabilidad BIBO? C Ejercicio 5. Dos sistemas discretos H 1 y H 2 se conectan en cascada para formar un nuevo sistema H, como se muestra en la figura. Determine si los siguientes postulados son verdaderos o no. 1. H 1 y H 2 son lineales H es lineal.

2 58 3. Señales y sistemas discretos 2. H 1 y H 2 son invariantes en el tiempo H es invariante en el tiempo. 3. Si H 1 y H 2 son causales H es causal. 4. H 1 y H 2 son lineales e invariantes en el tiempo H es lineal e invariante en el tiempo. 5. H 1 y H 2 son lineales e invariantes en el tiempo H 1 H 2 = H 2 H 1 (el intercambio del orden de la conexión no cambia al sistema compuesto H). 6. Repita el inciso 5 suponiendo que H 1 y H 2 son lineales y variantes en el tiempo. 7. H 1 y H 2 no son lineales H no es lineal. 8. H 1 y H 2 son estables H es estable. 9. Muestre a través de ejemplos que los recíprocos de los incisos 1 a 8 no se verifican en general. Ejercicio 6. Cuando el sistema lineal H se excita con la entrada x 0 [n] = δ[n] la salida es y 0 [n] = h 0 [n] = δ[n] + δ[n 1]. En cambio, si la entrada es x 1 [n] = δ[n 1] la salida resulta y 1 [n] = h 1 [n] = δ[n] δ[n 1]. Calcule, si es posible, 1. la salida y 2 [n] ante una entrada x 2 [n] = aδ[n] + bδ[n 1]; 2. la salida y 3 [n] ante una entrada x 3 [n] = aδ[n 1] + bδ[n 2]. Ejercicio 7. Para el sistema lineal S con respuesta impulsiva h l [n] = a n b l u[n l], con n l 0, y a < 1, b < 1 1. Determine si es invariante en el tiempo. 2. Calcule la respuesta y 1 [n] del sistema ante una entrada escalón x 1 [n] = u[n]. 3. Calcule la salida y 2 [n] cuando se lo excita con una entrada x 2 [n] = u[n 1]. Compare y 2 [n] con y 1 [n]. En cada inciso analice los casos en que (i) a = b y (ii) a = b. Ejercicio 8. Considere tres sistemas con las siguientes relaciones entrada-salida: H 1 : y[n] = x[ n], H 2 : y[n] = ax[n 1] + b x[n] + c x[n + 1], H 3 : y[n] = x[ n], donde a, b, c son números reales. Encuentre la relación entrada-salida para el sistema interconectado. Bajo qué condiciones sobre los números a, b, c, el sistema tiene alguna de las siguientes propiedades?

3 3.7. Ejercicios: Sistemas discretos El sistema interconectado es lineal e invariante en el tiempo. 2. La relación entrada-salida del sistema completo es idéntica a la del Sistema El sistema completo es causal. Ejercicio 9. Considere el sistema de la figura. Suponga que y[n] = 0 para n < Dibuje la señal de salida cuando x[n] = δ[n]. 2. Dibuje la señal de salida cuando x[n] = u[n]. Ejercicio 10. Calcular la suma convolución de x[n] = u[n] u[n 20] con h[n], si: 1. h[n] = δ[n]. 2. h[n] = δ[n 3] 2δ[n 6]. Ejercicio 11. Calcular mediante la convolución discreta la respuesta de un sistema lineal invariante al desplazamiento, en los siguientes casos: 1. Sistema 1: 2. Sistema 2: Ejercicio 12. Ante una entrada x[n], la salida y[n] de un SLIT con respuesta impulsiva h[n] es y[n] = h[m]x[n m] = x[m]h[n m]. m m Para cada uno de los siguientes casos determine explícitamente los extremos de cada sumatoria. Suponga que las señales no son de longitud finita.

4 60 3. Señales y sistemas discretos 1. h[n] y x[n] son anticausales (h[n] = x[n] = 0 para todo n 0). 2. h[n] y x[n] son causales. 3. h[n] es causal y x[n] es anticausal. 4. h[n] es anticausal y x[n] es causal. Ejercicio 13. Sean x[n], con L 1 n U 1 y h[n], con L 2 n U 2 dos señales de duración finita, es decir, x[n] = 0 si n )L 1, U 1 ( y h[n] = 0 si n )L 2, U 2 (. 1. Determine el rango L n U donde la convolución y[n] = x[n] h[n] es no nula en términos de L 1, L 2, U 1, U Demuestre que la salida y[n] está dada por y[n] = mín(u 1,n L 2 ) mín(u 2,n L 1 ) x[k]h[n k] = x[n k]h[k]. k=máx(l 1,n U 2 ) k=máx(l 2,n U 1 ) 3. Verifique sus resultados calculando la convolución de las señales: 1, 2 n 4, 2, 1 n 2, x[n] = 0, caso contrario. h[n] = 0, caso contrario. Ejercicio 14. Calcule la salida del sistema cuya respuesta impulsiva es h[n] = a n u[n] si la señal de entrada x[n] = u[n] u[n 10]. Determine el rango L 1 n L 2 donde la salida y[n] es no nula. Ejercicio 15. Para las señales que se indican a continuación calcule analítica y gráficamente la convolución entre x[n] y h[n]. Revise las soluciones de acuerdo a los resultados del Ejercicio { 1 3n, 0 n 6, x[n] = 0, caso contrario. 2. { α n, 3 n 5, x[n] = 0, caso contrario. { 1, 2 n 2, h[n] = 0, caso contrario. { 1, 0 n 4, h[n] = 0, caso contrario. C Ejercicio 16. Efectúe las siguientes operaciones, y elabore sobre sus resultados: 1. Multiplique los números enteros 131 y Calcule la convolución de las señales {1,3,1} y {1,2,2}. 3. Multiplique los polinomios 1 + 3x + x 2 y 1 + 2x + 2x 2.

5 3.7. Ejercicios: Sistemas discretos Multiplique los números 1.31 y Ejercicio 17. Demuestre que si la entrada a un SLIT discreto es una señal periódica x[n] de período N, la salida ỹ[n] también es periódica con el mismo período N. Ejercicio 18. Si z[n] = x[n] y[n], y w[n] = x[n N 1 ] y[n N 2 ], determine la relación entre z[n] y w[n]. Ejercicio 19. Verifique que la convolución: 1. es conmutativa: x[n] y[n] = y[n] x[n]. Realice una demostración formal. 2. es asociativa (x[n] y[n]) z[n] = x[n] (y[n] z[n]) 3. Estas propiedades se satisfacen sólo si las sucesiones involucradas son estables, es decir que son absolutamente sumables. Como contraejemplo, verifique que la asociatividad no se cumple si x[n] = c = constante, y[n] = u[n], y z[n] = δ[n] δ[n 1]. Ejercicio 20. Determine, si es posible, la respuesta al impulso de los sistemas definidos por las siguientes ecuaciones entrada-salida: 1. y[n] = x[n] x[n 4], el sistema es causal. 2. y[n] = x[n] x[n 4], el sistema no es causal. 3. y[n] = 2x[n] + 4x[n 1] + 2x[n 2], el sistema es causal. 4. y[n] + y[n 1] = x[n 1], el sistema es causal. 5. y[n] + y[n 1] = x[n 1], el sistema no es causal. 6. y[n] 3y[n 1] 4y[n 2] = x[n] + 2x[n 1], el sistema es causal. Ejercicio 21. Para el sistema lineal causal descripto por la ecuación a diferencias de segundo orden y[n] 5y[n 1] + 6y[n 2] = 2x[n 1], 1. Determine la respuesta homogénea del sistema, es decir, las respuestas posibles si x[n] = 0 para todo n. 2. Calcule la respuesta impulsiva del sistema. 3. Calcule la respuesta del sistema si x[n] = u[n].

6 62 3. Señales y sistemas discretos Ejercicio 22. Para el sistema caracterizado por la ecuación a diferencias finitas y[n] = a x[n] + b y[n 1], y[ 1] = Obtenga la respuesta impulsiva h[n] del sistema y exprésela en forma cerrada. Es causal o no? Por qué? 2. Calcule la respuesta a una entrada escalón unitario x[n] = u[n], dando valores a los parámetros a y b de forma tal que la amplitud de la respuesta de estado estacionario sea unitaria ( y ee = lím n y[n] = 1) Ejercicio 23. Para el sistema causal caracterizado por la ecuación a diferencias finitas y[n] = ny[n 1] + x[n], y[ 1] = Determine la respuesta impulsiva h[n] para todo n. 2. El sistema es lineal? 3. El sistema es invariante en el tiempo? 4. El sistema es estable? Ejercicio 24. Analice si el sistema descrito por la ecuación a diferencias finitas y[n] ( 1) n y[n 1] = x[n], con y[ 1] = 0, es: 1. lineal; 2. causal; 3. entrada-salida estable ( BIBO estable); 4. invariante en el tiempo. I Ejercicio 25. Por qué la respuesta impulsiva de un sistema causal debe verificar h[n] = 0 para n < 0? Ejercicio 26. Si x e [n] y x o [n] son las partes par e impar de x[n], demuestre que una señal de energía finita verifica n x[n] 2 = n x e [n] 2 + x o [n] 2. n Ayuda: demuestre primero que 4x e [n]x o [n] = (x[n]) 2 (x[ n]) 2.

7 3.7. Ejercicios: Sistemas discretos 63 Ejercicio 27. La correlación entre dos señales x[n] e y[n] se define como r xy [n] = x[k]y[k l]. k Determine la relación entre la convolución x[n] y[n] y la correlación r xy [n]. M Ejercicio 28. Convolución de dos sucesiones de distinta duración. MATLAB no puede ser utilizado directamente para calcular la convolución de dos señales arbitrarias de longitud infinita. Se provee una función llamada conv que calcula la convolución entre dos sucesiones de duración finita. La función conv asume que las dos sucesiones comienzan en la muestra n = 0, y se invoca mediante y = conv(x,h) El inconveniente es que esta función no soporta información temporal para trabajar correctamente con funciones que comiencen en otro índice distinto de n = 0. El propósito de este ejercicio es solucionar este inconveniente. Implemente una función conv_m que permita tener en cuenta la información temporal de las señales. La función deberá tener como entrada no sólo las sucesiones a convolucionar, sino también un par de vectores que indiquen la extensión temporal de cada una de ellas. Por ejemplo, la sucesión x[ 3] = 1, x[ 2] = 2, x[ 1] = 3, x[0] = 4, x[1] = 3, x[2] = 2 se especificará mediante las sucesiones x = [ ]; nx = [ ]; La función deberá invocarse de la siguiente manera [y,ny] = conv_m(x,nx,h,nh) Pruebe su función efectuando la correlación de las siguientes sucesiones x = [ ]; nx = [-3:3]; h = [ ]; nh = [-1:4]; y revise los resultados de los ejercicios 10, 11, 13, 14 y 15. Ayuda: Los resultados del Ejercicio 13 son de utilidad para calcular correctamente la información temporal de la señal resultado de la convolución (ny en los ejemplos previos). Comentario: Las sucesiones temporales discretas pueden graficarse utilizando el comando stem. Por ejemplo, stem(nx,x) grafica la sucesión temporal x[n]. La entrada x[n], la respuesta impulsiva del sistema h[n], y la salida y[n] se pueden graficar con los siguientes comandos: figure; subplot(3,1,1);stem(nx,x); ylabel( x[n] ); subplot(3,1,2);stem(nh,h); ylabel( h[n] ); subplot(3,1,3);stem(ny,y); ylabel( y[n] ); El tamaño de los círculos puede cambiarse por medio de la propiedad MarkerSize. Por ejemplo: h = stem(ny,y) set(h, MarkerSize,2, MarkerFaceColor, b ) hace que los círculos sean más pequeños, y estén coloreados de azul.

8 64 3. Señales y sistemas discretos

En la Clase 3, se demostró que cualquier señal discreta x[n] puede escribirse en términos de impulsos como sigue:

En la Clase 3, se demostró que cualquier señal discreta x[n] puede escribirse en términos de impulsos como sigue: SISTEMAS LINEALES INVARIANTES EN EL TIEMPO (SISTEMAS LTI) Un sistema lineal invariante en el tiempo, el cual será referido en adelante por la abreviatura en inglés de Linear Time Invariant Systems como

Más detalles

Práctica 3: Convolución

Práctica 3: Convolución Práctica 3: Convolución Grupo Puesto Apellidos, nombre SOLUCIÓN Fecha Apellidos, nombre SOLUCIÓN El objetivo de esta práctica es familiarizar al alumno con la suma de convolución, fundamental en el estudio

Más detalles

Concepto y Definición de Convolución

Concepto y Definición de Convolución Convolución Concepto y Definición de Convolución Propiedades Correlación y Autocorrelación Convolución Discreta 1 Concepto y Definición de Convolución Mediante la convolución calcularemos la respuesta

Más detalles

Tema 2. Sistemas Lineales e Invariantes en el Tiempo (Sesión 2)

Tema 2. Sistemas Lineales e Invariantes en el Tiempo (Sesión 2) SISTEMAS LINEALES Tema. Sistemas Lineales e Invariantes en el Tiempo (Sesión ) 4 de octubre de 00 F. JAVIER ACEVEDO javier.acevedo@uah.es TEMA Contenidos. Representación de señales discretas en términos

Más detalles

Sistemas lineales invariantes en el tiempo

Sistemas lineales invariantes en el tiempo Sistemas lineales invariantes en el tiempo Modulación y Procesamiento de Señales Ernesto López Pablo Zinemanas, Mauricio Ramos {pzinemanas, mramos}@fing.edu.uy Centro Universitario Regional Este Sede Rocha

Más detalles

Tema 2. Introducción a las señales y los sistemas (Sesión 1)

Tema 2. Introducción a las señales y los sistemas (Sesión 1) SISTEMAS LINEALES Tema. Introducción a las señales y los sistemas (Sesión ) 7 de octubre de F. JAVIER ACEVEDO javier.acevedo@uah.es TEMA Contenidos. Representación de señales discretas en términos de impulsos

Más detalles

Sistemas Lineales e Invariantes PRÁCTICA 2

Sistemas Lineales e Invariantes PRÁCTICA 2 Sistemas Lineales e Invariantes PRÁCTICA 2 (1 sesión) Laboratorio de Señales y Comunicaciones PRÁCTICA 2 Sistemas Lineales e Invariantes 1. Objetivo Los objetivos de esta práctica son: Revisar los sistemas

Más detalles

Procesamiento digital de la señal Señales y sistemas de tiempo discreto

Procesamiento digital de la señal Señales y sistemas de tiempo discreto Procesamiento digital de la señal Señales y sistemas de tiempo discreto Alfonso Zozaya Universidad de Carabobo (UC) Departamento de Electrónica y Comunicaciones Valencia, Venezuela, febrero de 2004 A.

Más detalles

Sistemas Discretos LTI

Sistemas Discretos LTI Sistemas Discretos LTI MSc. Bioing Rubén Acevedo racevedo@bioingenieria.edu.ar Bioingeniería I Carrera: Bioingeniería Facultad de Ingeniería - UNER 06 de Abril de 2009 Bioingeniería I Sistemas discretos

Más detalles

Sistemas Lineales e Invariantes en el Tiempo (LTI)

Sistemas Lineales e Invariantes en el Tiempo (LTI) Sistemas Lineales e Invariantes en el Tiempo (LTI) Dr. Ing. Leonardo Rey Vega Señales y Sistemas (66.74 y 86.05) Facultad de Ingeniería Universidad de Buenos Aires Agosto 2013 Señales y Sistemas (66.74

Más detalles

Señales y Sistemas de Variable Discreta

Señales y Sistemas de Variable Discreta Capítulo 2 Señales y Sistemas de Variable Discreta En el capítulo anterior se analizaron señales de la forma x(n) = A cos(ωn + θ) o x(n) = Ae j(ωn+θ). Estas funciones tienen, por sus características y

Más detalles

Problemas del tema 3. Sistemas lineales e invariantes en el tiempo

Problemas del tema 3. Sistemas lineales e invariantes en el tiempo Ingeniería Informática Medios de ransmisión (M) Problemas del tema Sistemas lineales e invariantes en el tiempo Curso 8-9 7//8 Enunciados. Considere el sistema de la figura Retardo de segundo ( ) x(t)

Más detalles

Sistemas continuos. Francisco Carlos Calderón PUJ 2010

Sistemas continuos. Francisco Carlos Calderón PUJ 2010 Sistemas continuos Francisco Carlos Calderón PUJ 2010 Objetivos Definir las propiedades básicas de los sistemas continuos Analizar la respuesta en el tiempo de un SLIT continuo Definición y clasificación

Más detalles

Señales y Sistemas II

Señales y Sistemas II 1 Señales y Sistemas II Módulo I: Señales y Sistemas Discretos Contenido de este módulo 2 1.- Tipos de señales y operaciones básicas 2.- Tipos de sistemas y sus propiedades 3.- Respuesta impulsiva y convolución

Más detalles

SEÑALES, SISTEMAS Y CONVOLUCION SEÑALES

SEÑALES, SISTEMAS Y CONVOLUCION SEÑALES SEÑALES, SISTEMAS Y CONVOLUCION SEÑALES Las señales se procesan para extraer información útil (Procesamiento de Señales) En este curso trataremos señales unidimensionales que poseen como variable independiente

Más detalles

Tema 2. Análisis de Sistemas en Tiempo Continuo

Tema 2. Análisis de Sistemas en Tiempo Continuo Por definición la convolución es el producto integral de dos funciones desde hasta +. Para hallar la convolución de dos funciones gráficamente, se debe dejar una de ellas fija, transponer la otra y desplazarla

Más detalles

Ejercicio 1. Ejercicio 2

Ejercicio 1. Ejercicio 2 Guía de Ejercicios Ejercicio. Calcular los momentos de primer y segundo orden (media y varianza) de una variable aleatoria continua con distribución uniforme entre los límites a y b.. Sabiendo que la función

Más detalles

Propiedades de los sistemas (con ecuaciones)

Propiedades de los sistemas (con ecuaciones) Propiedades de los sistemas (con ecuaciones) Linealidad: Para verificar si un sistema es lineal requerimos que le sistema sea homogéneo y aditivo es decir, cumplir con la superposición. Método: Dada una

Más detalles

SEÑALES Y SISTEMAS Clase 11

SEÑALES Y SISTEMAS Clase 11 SEÑALES Y SISTEMAS Clase 11 Carlos H. Muravchik 12 de Abril de 218 1 / 36 Habíamos visto: Sistemas Lineales. Convolución. Y se vienen: Repaso: Convolución - Propiedades. Estabilidad. Representacion de

Más detalles

Procesamiento Digital de. Ing. Biomédica, Ing. Electrónica e Ing. en Telecomunicaciones Capitulo III Transformada-Z

Procesamiento Digital de. Ing. Biomédica, Ing. Electrónica e Ing. en Telecomunicaciones Capitulo III Transformada-Z Procesamiento Digital de Señales Ing. Biomédica, Ing. Electrónica e Ing. en Telecomunicaciones Capitulo III Transformada-Z D.U. Campos-Delgado Facultad de Ciencias UASLP Enero-Junio/2014 1 CONTENIDO Definición

Más detalles

Muestreo y Procesamiento Digital

Muestreo y Procesamiento Digital Muestreo y Procesamiento Digital Práctico Transformada de Fourier en tiempo discreto Cada ejercicio comienza con un símbolo el cual indica su dificultad de acuerdo a la siguiente escala: básico, medio,

Más detalles

Señales: Tiempo y Frecuencia PRÁCTICA 1

Señales: Tiempo y Frecuencia PRÁCTICA 1 Señales: Tiempo y Frecuencia PRÁCTICA 1 (1 sesión) Laboratorio de Señales y Comunicaciones PRÁCTICA 1 Señales: Tiempo y Frecuencia 1. Objetivo El objetivo de esta primera práctica es revisar: las principales

Más detalles

2. SEÑALES Y SISTEMAS DISCRETOS EN EL TIEMPO. Una señal puede ser definida como una portadora física de información. Por ejemplo,

2. SEÑALES Y SISTEMAS DISCRETOS EN EL TIEMPO. Una señal puede ser definida como una portadora física de información. Por ejemplo, 2. SEÑALES Y SISTEMAS DISCRETOS EN EL TIEMPO Una señal puede ser definida como una portadora física de información. Por ejemplo, las señales de audio son variaciones en la presión del aire llevando consigo

Más detalles

SEÑALES Y SISTEMAS. PROBLEMAS PROPUESTOS. CAPITULO III

SEÑALES Y SISTEMAS. PROBLEMAS PROPUESTOS. CAPITULO III SEÑALES Y SISTEMAS. PROBLEMAS PROPUESTOS. CAPITULO III Problema 1: Dado el siguiente sistema: a) Determine x1(n) cuando x(n) = u(n) - u(n-4) b) Determine x2(n+1) cuando x(n) = Cos0.5nπ 2º Se define z(n)=

Más detalles

Análisis de Sistema FIR - IIR en TD

Análisis de Sistema FIR - IIR en TD Análisis de Sistema FIR - IIR en TD Gloria Mata Hernández 7 de marzo de 2017 Índice general 1.1. Objetivo de aprendizaje..................................... 2 1.2. Introducción............................................

Más detalles

INDICE Capitulo 1. Introducción Capitulo 2. Descripción matemática de señales 2.1. Introducción y objetivos

INDICE Capitulo 1. Introducción Capitulo 2. Descripción matemática de señales 2.1. Introducción y objetivos INDICE Prefacio XIII Capitulo 1. Introducción 1 1.1. Definición de señales y sistemas 1 1.2. Tipos de señales 1 1.3. Ejemplo de una señal y un sistema 8 1.4. Uso de MATLAB 13 Capitulo 2. Descripción matemática

Más detalles

SEÑALES Y SISTEMAS Clase 10

SEÑALES Y SISTEMAS Clase 10 SEÑALES Y SISTEMAS Clase 1 Carlos H. Muravchi 9 de Abril de 18 1 / 6 Habíamos visto: Sistemas en general Generalidades. Propiedades. Invariancia. Linealidad. Y se vienen hoy: Sistemas grales: Causalidad.

Más detalles

Ayudantía Análisis de Señales. Transformada Z

Ayudantía Análisis de Señales. Transformada Z Pontificia Universidad Católica de Chile Escuela de Ingeniería Ayudantía Análisis de Señales Fabián Cádi Transformada Z Consideremos un sistema discreto lineal e invariante, representado por una respuesta

Más detalles

Procesamiento Digital de Señales CE16.10L2. Tema 2. Señales en Tiempo Discreto

Procesamiento Digital de Señales CE16.10L2. Tema 2. Señales en Tiempo Discreto Procesamiento Digital de Señales CE16.10L2 Tema 2. Señales en Tiempo Discreto Sinusoides La función seno y coseno son esencialmente las mismas señales, excepto que están separadas por únicamente un ángulo

Más detalles

Tema 1. Introducción a las señales y los sistemas (Sesión 2)

Tema 1. Introducción a las señales y los sistemas (Sesión 2) SISTEMAS LINEALES Tema. Introducción a las señales y los sistemas (Sesión ) 7 de septiembre de F. JAVIER ACEVEDO javier.acevedo@uah.es TEMA Contenidos. Definiciones. Clasificación de señales. Transformaciones

Más detalles

Convolucion discreta

Convolucion discreta Procesamiento Digital de Señales Licenciatura en Bioinformática FI-UNER discreta 15 de setiembre de 2011 Procesamiento Digital de Señales discreta Septiembre de 2011 1 / 42 Organización 1 Convolución 2

Más detalles

Preguntas IE TEC. Total de Puntos: 80 Puntos obtenidos: Porcentaje: Nota:

Preguntas IE TEC. Total de Puntos: 80 Puntos obtenidos: Porcentaje: Nota: IE TEC Nombre: Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica EL-470 Modelos de Sistemas Profesor: Dr. Pablo Alvarado Moya II Semestre, 005 Examen Final Total de Puntos: 80 Puntos

Más detalles

Sistemas Lineales. Sistemas

Sistemas Lineales. Sistemas Sistemas Lineales Sistemas Un sistema opera con señales en una ó más entradas para producir señales en una ó más salidas. Los representamos mediante diagrama en bloques Señal de entrada ó excitación Señal

Más detalles

Sistemas Lineales. Tema 5. La Transformada Z. h[k]z k. = z n (

Sistemas Lineales. Tema 5. La Transformada Z. h[k]z k. = z n ( La transformada Z Sistemas Lineales Tema 5. La Transformada Z Las señales exponenciales discretas de la forma z n con z = re jω son autosoluciones de los sistemas LTI. Para una entrada x[n] = z0 n la salida

Más detalles

Práctica 4: Series de Fourier

Práctica 4: Series de Fourier Práctica 4: Series de Fourier Apellidos, nombre Apellidos, nombre SOLUCION Grupo Puesto Fecha El objetivo de esta práctica es profundizar en la respuesta de sistemas LTI, comprobar el comportamiento de

Más detalles

Dar una breve semblanza sobre los Filtros Digitales, sus fundamentos y su principales características.

Dar una breve semblanza sobre los Filtros Digitales, sus fundamentos y su principales características. Filtros Digitales Objetivo Dar una breve semblanza sobre los Filtros Digitales, sus fundamentos y su principales características. Revisar la convolución como fundamentos de los filtros digitales junto

Más detalles

Sistemas LTI discretos

Sistemas LTI discretos Procesamiento Digital de Señales Licenciatura en Bioinformática FI-UNER discretos Setiembre de 2010 Procesamiento Digital de Señales discretos Septiembre de 2010 1 / 21 Organización Definición criterios

Más detalles

Sistemas LTI discretos

Sistemas LTI discretos Procesamiento Digital de Señales Licenciatura en Bioinformática FI-UNER discretos 15 de setiembre de 2011 Procesamiento Digital de Señales discretos Septiembre de 2011 1 / 21 Organización Definición criterios

Más detalles

TALLER. Señales y Sistemas. December 9, 2015

TALLER. Señales y Sistemas. December 9, 2015 TALLER Señales y Sistemas December 9, 201 Autores: Basulto Luis V-20.210.88 Daboin Yeitson V-21.28.79 Mendoza Ruben V-24.71.028 Ortega Raymar V-24.104.1 CONTENTS 1 Caracterización de Sistemas 2 1.1 Linealidad.........................................

Más detalles

TEMA III. Análisis de sistemas LIT mediante transformadas.

TEMA III. Análisis de sistemas LIT mediante transformadas. TEA III Análisis de sistemas LIT mediante transformadas. Representación de ecuaciones en diferencias lineales con coeficientes constantes mediante diagramas de bloque y diagramas de flujo de señal 20/0/2002

Más detalles

Primera parte (2.5 puntos, 20 minutos):

Primera parte (2.5 puntos, 20 minutos): TRATAMIENTO DIGITAL DE SEÑALES EXAMEN FINAL 24/06/2013 APELLIDOS NOMBRE DNI NO DE LA VUELTA A ESTA HOJA HASTA QUE SE LO INDIQUE EL PROFESOR MIENTRAS TANTO, LEA ATENTAMENTE LAS INSTRUCCIONES PARA LA REALIZACIÓN

Más detalles

Primera parte (2.5 puntos, 20 minutos):

Primera parte (2.5 puntos, 20 minutos): TRATAMIENTO DIGITAL DE SEÑALES EXAMEN FINAL 24/06/2013 APELLIDOS NOMBRE DNI NO DE LA VUELTA A ESTA HOJA HASTA QUE SE LO INDIQUE EL PROFESOR MIENTRAS TANTO, LEA ATENTAMENTE LAS INSTRUCCIONES PARA LA REALIZACIÓN

Más detalles

Convolucion discreta

Convolucion discreta Procesamiento Digital Señales Licenciatura en Bioinformática FI-UNER discreta Setiembre 2010 Procesamiento Digital Señales discreta Septiembre 2010 1 / 42 Organización 1 2 3 Procesamiento Digital Señales

Más detalles

3 y un vector Y 2 que contenga el cálculo de Y2 = 4X

3 y un vector Y 2 que contenga el cálculo de Y2 = 4X Laboratorio 1. Introducción a MATLAB y Simulink. 1. Uso de MATLAB. Manejo de Vectores y Matrices: Usando el editor de MATLAB, escriba el código necesario para generar: a. Vectores (1x1) (3x1) y (1x7),

Más detalles

Ampliación de Señales y Sistemas

Ampliación de Señales y Sistemas Grados Ing. de Telecomunicación. Universidad Rey Juan Carlos Página 1/6 Ampliación de Señales y Sistemas PRÁCTICA 2: La DFT en Matlab Profesora responsable de esta práctica: Alicia Guerrero Bibliografía:

Más detalles

Tema 5. La Transformada Z. Indice:

Tema 5. La Transformada Z. Indice: Indice: La Transformada Z Convergencia de la Transformada Z Propiedades de La Transformada Z La Transformada Z inversa Método de la División Directa Método de Descomposición en Fracciones Parciales. Prof.

Más detalles

Señales y Sistemas Capítulo 2: Señales

Señales y Sistemas Capítulo 2: Señales y Sistemas Capítulo 2: Señales Sebastián E. Godoy (segodoy@udec.cl) Departamento de Ingeniería Eléctrica Universidad de Concepción, Concepción, Chile Marzo 2015 Marzo 2015 1 / 41 Tabla de Contenidos Señales

Más detalles

Tema 2. Análisis de Sistemas en Tiempo Continuo. Indice:

Tema 2. Análisis de Sistemas en Tiempo Continuo. Indice: Indice: 1. Clasificación de Sistemas en tiempo continuo Lineales y no Lineales Invariante y Variantes en el tiempo Causal y no Causal Estable e Inestables Con y sin Memoria 2. La Convolución La Integral

Más detalles

Formulario. sinc(x) = sin(πx) πx Relación entre senoidales y exponenciales complejas

Formulario. sinc(x) = sin(πx) πx Relación entre senoidales y exponenciales complejas 1 1.1. Repaso matemático Formulario z = x + jy = x 2 + y 2 e jθ = me jθ = m(cos(θ) + j sin(θ)); θ = arctan x y b a e f f = e f(b) e f(a) sinc(x) = sin(πx) πx N 1 n=0 α n = N α = 1 1 α N 1 α α 1 b a δ(x)f(x)dx

Más detalles

SISTEMAS LINEALES. Tema 6. Transformada Z

SISTEMAS LINEALES. Tema 6. Transformada Z SISTEMAS LINEALES Tema 6. Transformada Z 6 de diciembre de 200 F. JAVIER ACEVEDO javier.acevedo@uah.es TEMA 3 Contenidos. Autofunciones de los sistemas LTI discretos. Transformada Z. Región de convergencia

Más detalles

Primera parte (3 puntos, 25 minutos):

Primera parte (3 puntos, 25 minutos): TRATAMIENTO DIGITAL DE SEÑALES EXAMEN FINAL 18/01/2013 APELLIDOS NOMBRE DNI NO DE LA VUELTA A ESTA HOJA HASTA QUE SE LO INDIQUE EL PROFESOR MIENTRAS TANTO, LEA ATENTAMENTE LAS INSTRUCCIONES PARA LA REALIZACIÓN

Más detalles

Transformada Z y sus Aplicaciones en Sistemas LTI

Transformada Z y sus Aplicaciones en Sistemas LTI Transformada Z y sus Aplicaciones en Sistemas LTI Qué es la transformada Z? Es una representación para señales en tiempo discreto mediante una serie infinita de números complejos. Es una herramienta muy

Más detalles

SEÑALES Y SISTEMAS CAPÍTULO UNO. 1.1 Introducción Señales y Clasificación de Señales Señales Periódicas y No Periódicas 6

SEÑALES Y SISTEMAS CAPÍTULO UNO. 1.1 Introducción Señales y Clasificación de Señales Señales Periódicas y No Periódicas 6 CAPÍTULO UNO SEÑALES Y SISTEMAS 1.1 Introducción 1 1.2 Señales y Clasificación de Señales 2 1.3 Señales Periódicas y No Periódicas 6 1.4 Señales de Potencia y de Energía 8 1.5 Transformaciones de la Variable

Más detalles

2012 Capítulo 04. Correlación. MI. Mario Alfredo Ibarra Carrillo Facultad de Ingeniería; Telecomunicaciones 16/03/2011 Ver_09_01_01

2012 Capítulo 04. Correlación. MI. Mario Alfredo Ibarra Carrillo Facultad de Ingeniería; Telecomunicaciones 16/03/2011 Ver_09_01_01 1 2012 Capítulo 04. MI. Mario Alfredo Ibarra Carrillo Facultad de Ingeniería; Telecomunicaciones 16/03/2011 Ver_09_01_01 2 3 4 4.1 en tiempo continuo 5 4.1.1 Definición de la correlación Definición 4.1.

Más detalles

Sistemas Lineales. Examen de Junio SOluciones

Sistemas Lineales. Examen de Junio SOluciones . Considere la señal xt) sinπt) Sistemas Lineales Examen de Junio 22. SOluciones a) Obtenga su transformada de Fourier, X), y represéntela para 7π. b) Calcule la potencia y la energía de xt). c) Considere

Más detalles

C A P I T U L O V ANALISIS EN FRECUENCIA DE SEÑALES Y SISTEMAS DISCRETOS SERIES DE FOURIER PARA SEÑALES DISCRETAS EN TIEMPO:

C A P I T U L O V ANALISIS EN FRECUENCIA DE SEÑALES Y SISTEMAS DISCRETOS SERIES DE FOURIER PARA SEÑALES DISCRETAS EN TIEMPO: C A P I T U L O V ANALISIS EN FRECUENCIA DE SEÑALES Y SISTEMAS DISCRETOS 51- SERIES DE FOURIER PARA SEÑALES DISCRETAS EN TIEMPO: Las mismas motivaciones que nos condujeron al desarrollo de las series y

Más detalles

Transformada z. 5.1 Funciones en tiempo discreto

Transformada z. 5.1 Funciones en tiempo discreto Capítulo 5 Transformada z La transformada z es a los sistemas en tiempo discreto lo que la transformada de Laplace es a los sistemas en tiempo continuo. Ambas representan herramientas para el análisis

Más detalles

Ejercicio 3 Un sistema de control de velocidad de un motor de corriente continua se modela mediante la ecuación

Ejercicio 3 Un sistema de control de velocidad de un motor de corriente continua se modela mediante la ecuación Trabajo práctico Nº 4 Fundamentos de control realimentado - Segundo cuatrimestre 2017 Ejercicio 1 Aplicando el criterio de estabilidad de Routh: i) Determine la cantidad de raíces en el semiplano derecho

Más detalles

Preguntas IE TEC. Total de Puntos: 54 Puntos obtenidos: Porcentaje: Nota:

Preguntas IE TEC. Total de Puntos: 54 Puntos obtenidos: Porcentaje: Nota: IE TEC Nombre: Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica EL-4701 Modelos de Sistemas Profesor: Dr. Pablo Alvarado Moya I Semestre, 006 Examen de Reposición Total de Puntos:

Más detalles

Señales y Sistemas. Señales y Clasificación Sistemas y Clasificación Respuesta al impulso de los sistemas. 5º Curso-Tratamiento Digital de Señal

Señales y Sistemas. Señales y Clasificación Sistemas y Clasificación Respuesta al impulso de los sistemas. 5º Curso-Tratamiento Digital de Señal Señales y Sistemas Señales y Clasificación Sistemas y Clasificación Respuesta al impulso de los sistemas Señales El procesamiento de señales es el objeto de la asignatura, así que no vendría mal comentar

Más detalles

Señales y Sistemas de Tiempo Discreto

Señales y Sistemas de Tiempo Discreto Capítulo Señales y Sistemas de Tiempo Discreto Una señal es cualquier magnitud que sufre variaciones que contienen información de cualquier tipo, matemáticamente se representan por funciones de una o más

Más detalles

3. Señales. Introducción y outline

3. Señales. Introducción y outline 3. Señales Introducción y outline Outline Señales y Sistemas Discretos: SLIT, Muestreo, análisis tiempo-frecuencia, autocorrelación, espectro, transformada Z, DTFT, DFT, FFT Filtros y Estimación: Filtros

Más detalles

Conceptos de Señales

Conceptos de Señales Conceptos de Señales ELO 313 Procesamiento Digital de Señales con Aplicaciones Primer semestre - 2012 Matías Zañartu, Ph.D. Departamento de Electrónica Universidad Técnica Federico Santa María Conceptos

Más detalles

Sistemas en Tiempo Discreto

Sistemas en Tiempo Discreto Sistemas en Tiempo Discreto Dr. Luis Javier Morales Mendoza Procesamiento Digital de Señales Departamento de Maestría DICIS - UG Índice 3.1. Introducción 3.2. Áreas de aplicación de los sistemas discretos

Más detalles

Procesamiento Digital de Señales CE16.10L2. Tema 3. Operaciones en señales en tiempo discreto

Procesamiento Digital de Señales CE16.10L2. Tema 3. Operaciones en señales en tiempo discreto Procesamiento Digital de Señales CE16.10L2 Tema 3. Operaciones en señales en tiempo discreto Operaciones básicas con señales Operación Producto (modulación): Operación de Suma: Operación de Multiplicación:

Más detalles

Maestría en Matemáticas

Maestría en Matemáticas Reactivos Propuestos para Examen de Admisión (ASN) Ingreso en Agosto de 203. Sea R el conjunto de los números reales y S el conjunto de todas las funciones valuadas en los reales con dominio en R. Muestre

Más detalles

FINAL DE ÁLGEBRA Y GEOMETRÍA ANALÍTICA 30 mayo 2006 Tema 1

FINAL DE ÁLGEBRA Y GEOMETRÍA ANALÍTICA 30 mayo 2006 Tema 1 FINAL DE ÁLGEBRA Y GEOMETRÍA ANALÍTICA 0 mayo 006 Tema Apellido y nombres:... 4 5 Calificación final ) Dadas las rectas : x y + z = r : r : ( x, y, z) = (,,) + λ(, ) x z + k = 0 k para que las rectas sean

Más detalles

Práctica 3. Sistemas Lineales Invariantes con el Tiempo

Práctica 3. Sistemas Lineales Invariantes con el Tiempo Universidad Carlos III de Madrid Departamento de Teoría de la Señal y Comunicaciones LABORATORIO DE SISTEMAS Y CIRCUITOS CURSO 2003/2004 Práctica 3. Sistemas Lineales Invariantes con el Tiempo 12 de diciembre

Más detalles

a a a a

a a a a JUNIO 2012 GENERAL 1. Se consideran las matrices: A = 3 1 0 1 3 0 0 0 2 e I 3 = 1 0 0 0 1 0 a) Resuelve la ecuación det (A x I 3 ) = 0. (1 punto) JUNIO 2012 ESPECÍFICA a 1 2 a 1 2. Dado el número real

Más detalles

José Humberto Serrano Devia Página 1

José Humberto Serrano Devia Página 1 Similitudes entre el espacio y las series de Fourier Funciones Ortogonales En esta sección se muestra la forma en que los conceptos vectoriales de producto interno, o producto escalar, y el de ortogonalidad

Más detalles

Problemas de Estructuras de Filtros Digitales.

Problemas de Estructuras de Filtros Digitales. Problemas de Estructuras de Filtros Digitales. Estructuras de Filtros Digitales 1.- En la figura siguiente se representa una realización en la forma acoplada de una función del sistema que presenta una

Más detalles

Ejercicios de Análisis Funcional

Ejercicios de Análisis Funcional Ejercicios de Análisis Funcional Rafael Payá Albert Departamento de Análisis Matemático Universidad de Granada ANÁLISIS FUNCIONAL Relación de Ejercicios N o 1 1. Dar un ejemplo de una distancia en un espacio

Más detalles

ELO 385 Laboratorio de Procesamiento Digital de Señales Laboratorio 5: Transformada Discreta de Fourier Parte I

ELO 385 Laboratorio de Procesamiento Digital de Señales Laboratorio 5: Transformada Discreta de Fourier Parte I 1 ELO 385 Laboratorio de Procesamiento Digital de Señales Laboratorio 5: Transformada Discreta de Fourier Parte I Este laboratorio está compuesto por dos sesiones en la cuales se estudiará la transformada

Más detalles

Análisis de Sistemas Lineales: segunda parte

Análisis de Sistemas Lineales: segunda parte UCV, Facultad de Ingeniería, Escuela de Ingeniería Eléctrica. Análisis de Sistemas Lineales: segunda parte Ebert Brea 7 de marzo de 204 Contenido. Análisis de sistemas en el plano S 2. Análisis de sistemas

Más detalles

Filtrado Digital. Lectura 2: Estructuras Básicas de Filtros Digitales

Filtrado Digital. Lectura 2: Estructuras Básicas de Filtros Digitales Lectura 2: Estructuras Básicas de Filtros Digitales Filtros FIR sencillos Filtro de promedio móvil de 2 puntos (M=1 1er orden): Es el filtro FIR más simple. Note que H(z) tiene un cero en z=-1, y un polo

Más detalles

ICTP Latin-American Advanced Course on FPGADesign for Scientific Instrumentation. 19 November - 7 December, 2012.

ICTP Latin-American Advanced Course on FPGADesign for Scientific Instrumentation. 19 November - 7 December, 2012. 2384-21 ICTP Latin-American Advanced Course on FPGADesign for Scientific Instrumentation 19 ovember - 7 December, 2012 Transformada Z COSTA Diego Esteban Laboratorio de Electronica, Investigacion y Servicios

Más detalles

PRÁCTICA 3: CONVOLUCIÓN Y CORRELACIÓN

PRÁCTICA 3: CONVOLUCIÓN Y CORRELACIÓN PRÁCTICA 3: CONVOLUCIÓN Y CORRELACIÓN Objetivo Específico El alumno utilizará los conceptos de la Convolución discreta y de la Correlación en el procesamiento de señales adquiridas. Introducción Dos operaciones

Más detalles

INGENIERÍA EN MECATRÓNICA PROCESAMIENTO DIGITAL DE SEÑALES CUP-17 RP-CUP 17/REV:00

INGENIERÍA EN MECATRÓNICA PROCESAMIENTO DIGITAL DE SEÑALES CUP-17 RP-CUP 17/REV:00 MANUAL DE LA ASIGNATURA INGENIERÍA EN MECATRÓNICA PROCESAMIENTO DIGITAL DE SEÑALES F-RP RP-CUP CUP-17 17/REV:00 DIRECTORIO Secretario de Educación Pública Dr. Reyes Taméz Guerra. Subsecretario de Educación

Más detalles

Sistemas Lineales. Examen de Septiembre Soluciones

Sistemas Lineales. Examen de Septiembre Soluciones Sistemas Lineales Examen de Septiembre 25. Soluciones. (2.5 pt.) La señal y(t) [sinc( t)] 4 puede escribirse como y(t) [sinc( t)] 4 [ ] sin(o πt) 4 o πt [ sin(o πt) ] 4 4 πt 4 [y (t)] 4 4 y (t) y (t) y

Más detalles

4.5. Ejercicios Ejercicios 15

4.5. Ejercicios Ejercicios 15 .5. Ejercicios 15.5. Ejercicios Ejercicio 1. Determine los coeficientes de la SDF de las siguientes sucesiones periódicas utilizando la definición, y verifique usando MATLAB. Observación: en cada caso,

Más detalles

Lista de ejercicios # 2. Uso de series de potencias y de Frobenius

Lista de ejercicios # 2. Uso de series de potencias y de Frobenius UNIVERSIDAD DE COSTA RICA FCULTAD DE CIENCIAS MA-15 Ecuaciones Diferenciales ESCUELA DE MATEMÁTICA I Ciclo del 217 Lista de ejercicios # 2 Uso de series de potencias y de Frobenius Uso de series alrededor

Más detalles

Tema 1: Interpolación. Cá álculo umérico

Tema 1: Interpolación. Cá álculo umérico Tema : Interpolación Problema Dada una nube de puntos del plano Interpolación polinomial. Polinomios de Lagrange: cota del error. Método de Newton: diferencias divididas y finitas. se pretende encontrar

Más detalles

La Transformada Z se aplica a señales discretas en el dominio del tiempo, con un tiempo de muestreo igual a T.

La Transformada Z se aplica a señales discretas en el dominio del tiempo, con un tiempo de muestreo igual a T. CURSO: PROCESAMIENTO DIGITAL DE SEÑALES PROFESOR: ING. JORGE ANTONIO POLANÍA P. 2. LA TRANSFORMADA Z La Transformada Z se aplica a señales discretas en el dominio del tiempo, con un tiempo de muestreo

Más detalles

Transformada Discreta de Fourier.

Transformada Discreta de Fourier. Transformada Discreta de Fourier. Hasta ahora se ha visto Importancia de la respuesta en frecuencia de un sistema Transformada de Fourier de una señal discreta Tenemos otra forma de caracterizar los sistemas

Más detalles

Tratamiento Digital de Señales

Tratamiento Digital de Señales Departamento de Teoría de la Señal y Communicaciones Tratamiento Digital de Señales Transformada Discreta de Fourier (DFT) Prof.: Manuel Blanco Velasco Sumario Definición e interpretación La DFT como transformación

Más detalles

Sistemas Lineales. Tema 7. Problemas

Sistemas Lineales. Tema 7. Problemas Sistemas Lineales ema 7. Problemas. Se sabe que una señal de valor real x(t) ha sido determinada sólo por sus muestras cuando la frecuencia de muestreo es s = 0 4 π. Para qué valores de se garantiza que

Más detalles

CREDITOS CONCLUSION GLOSARIO INTRODUCCION SEÑALES SISTEMAS SEÑALES C SEÑALES D TIPOS DIFERENCIA

CREDITOS CONCLUSION GLOSARIO INTRODUCCION SEÑALES SISTEMAS SEÑALES C SEÑALES D TIPOS DIFERENCIA CREDITOS CONCLUSION GLOSARIO INTRODUCCION SEÑALES SISTEMAS SEÑALES C SEÑALES D TIPOS DIFERENCIA INTRODUCCION Una señal es cualquier fenómeno que puede ser representado de manera cuantitativa mediante una

Más detalles

Tratamiento Digital de Señales

Tratamiento Digital de Señales Tratamiento Digital de Señales Tema 5: Tipos de Sistemas F. Cruz Roldán Dept. Teoría de la Señal y Comunicaciones Universidad de Alcalá Tratamiento Digital de Señales Ingeniería de Telecomunicación 8 de

Más detalles

Guía 1: Ejercicios sobre transformada z

Guía 1: Ejercicios sobre transformada z Guía 1: Ejercicios sobre transformada Alumno: Guillermo M. Tabeni Couvert Profesor: Ing. Carlos A. Espinoa J.T.P.: Ing. Daniel R. Graff Cátedra de Ingeniería Industrial Universidad Tecnológica Nacional,

Más detalles

ELO 385 Laboratorio de Procesamiento Digital de Señales Laboratorio 4: Filtros digitales Parte I

ELO 385 Laboratorio de Procesamiento Digital de Señales Laboratorio 4: Filtros digitales Parte I 1 ELO 385 Laboratorio de Procesamiento Digital de Señales Laboratorio 4: Filtros digitales Parte I 0. Introducción Este laboratorio está compuesto por dos sesiones en la cuales se estudiarán filtros digitales.

Más detalles

Espacios de señales. 2 Espacios de señales

Espacios de señales. 2 Espacios de señales Procesamiento Digital Señales Licenciatura en Bioinformática FI-UER Agosto Procesamiento Digital Señales Espacio señales Agosto /44 Organización lineal 3 lineales Procesamiento Digital Señales Espacio

Más detalles

ECUACIÓN DE OSCILACIONES. Tomado del texto de Ecuaciones Diferenciales de los Profesores. Norman Mercado. Luis Ignacio Ordoñéz

ECUACIÓN DE OSCILACIONES. Tomado del texto de Ecuaciones Diferenciales de los Profesores. Norman Mercado. Luis Ignacio Ordoñéz ECUACIÓN DE OSCILACIONES Tomado del texto de Ecuaciones Diferenciales de los Profesores Norman Mercado Luis Ignacio Ordoñéz Muchos de los sistemas de ingeniería están regidos por una ecuación diferencial

Más detalles

SEÑALES Y SISTEMAS - AÑO 2017 Práctica 3 Clasificación de Sistemas. Sistemas Lineales (SL). Convolución. Procesos estocásticos a través de SL.

SEÑALES Y SISTEMAS - AÑO 2017 Práctica 3 Clasificación de Sistemas. Sistemas Lineales (SL). Convolución. Procesos estocásticos a través de SL. SEÑALES Y SISTEMAS - AÑO 07 Prácica Clasificación de Sisemas. Sisemas Lineales (SL). Convolución. Procesos esocásicos a ravés de SL.. Invarianza al Desplazamieno Considere el sisema y[n] = x[n ]. a) Deermine

Más detalles

Taller Parcial 3 EDO I e st f (t)dt

Taller Parcial 3 EDO I e st f (t)dt Taller Parcial 3 EDO I-25. TRANSFORMADA DE LAPLACE Dada una función real f (t), su transformada de Laplace es la función real, en variable s, dada por la integral impropia [ T ] L( f ) s : F(s) e st f

Más detalles

PROBLEMA 1 *( ) + SOLUCIÓN: Sea la superficie de la parte esférica superior, parametrizada con coordenadas cilíndricas de la siguiente manera:

PROBLEMA 1 *( ) + SOLUCIÓN: Sea la superficie de la parte esférica superior, parametrizada con coordenadas cilíndricas de la siguiente manera: PROBLEMA 1 A una esfera maciza de radio unidad se le hace una perforación cilíndrica siguiendo un eje diametral de la esfera. Suponiendo que el cilindro es circular de radio, con y que el eje que se usa

Más detalles

Señales y Sistemas. Teoría y problemas. Ignacio Bosch Roig Jorge Gosálbez Ramón Miralles Luis Vergara Domínguez

Señales y Sistemas. Teoría y problemas. Ignacio Bosch Roig Jorge Gosálbez Ramón Miralles Luis Vergara Domínguez Ignacio Bosch Roig Jorge Gosálbez Ramón Miralles Luis Vergara Domínguez Señales y Sistemas Teoría y problemas EDITORIAL UNIVERSITAT POLITÈCNICA DE VALÈNCIA Los contenidos de esta publicación han sido revisados

Más detalles

Transformada Z. Modulación y Procesamiento de Señales Ernesto López Pablo Zinemanas, Mauricio Ramos {pzinemanas,

Transformada Z. Modulación y Procesamiento de Señales Ernesto López Pablo Zinemanas, Mauricio Ramos {pzinemanas, Transformada Z Modulación y Procesamiento de Señales Ernesto López Pablo Zinemanas, Mauricio Ramos {pzinemanas, mramos}@fing.edu.uy Centro Universitario Regional Este Sede Rocha Tecnólogo en Telecomunicaciones

Más detalles

Laboratorio de Procesamiento Digital de Información

Laboratorio de Procesamiento Digital de Información Laboratorio de Procesamiento Digital de Información E7Z - Ingeniería en Computación - 2017 Bibliografía: -Señales y Sistemas A. Oppenheim, A. Willsky. - Signals and Systems S. Haykin, Barry Van Veen. -

Más detalles

UTN FRBA Final de Álgebra y Geometría Analítica 21/05/2013. Apellido y nombre del alumno: Leg.:.. Corrigió: Revisó:...

UTN FRBA Final de Álgebra y Geometría Analítica 21/05/2013. Apellido y nombre del alumno: Leg.:.. Corrigió: Revisó:... UTN FRBA Final de Álgebra y Geometría Analítica 1/05/01 Apellido y nombre del alumno: Leg.:.. Corrigió: Revisó:... La condición para aprobar esta evaluación es tener bien resueltos como mínimo tres ejercicios.

Más detalles