Curso ON LINE Tema 5 LAS MATRICES
|
|
|
- Trinidad Mendoza Cuenca
- hace 9 años
- Vistas:
Transcripción
1 Curso ON LINE Tema LAS MATRICES Introducción a las matrices. Concepto de matri. Terminología: - Elemento, fila, columna dimensión u orden. Representación algebraica de una matri. Igualdad de matrices. Tipos de matrices. - Matri fila, Matri columna, matri cuadrada (diagonal principal diagonal secundaria), matri rectangular, matri traspuesta, matri nula, matri diagonal, matri escalar, matri unidad, matri triangular, matri simétrica, matri opuesta. Operaciones con matrices. - Suma de dos matrices. - Diferencia de dos matrices. - Suma algebraica de matrices. - Producto de un número por una matri. - Producto de matrices. - Algoritmo con lápi papel. - Matri inversa. - Concepto. - Cálculo de la matri inversa. (A) Aplicando la definición resolviendo el sistema resultante. (B) Método de Gauss-Jordan. (C) Mediante calculadora científica. (D) Mediante calculadora gráfica. Rango de una matri. Forma matricial de un sistema de ecuaciones. Resolución de sistemas de ecuaciones por el método de la matri inversa. Ecuaciones matriciales. Aplicación de las operaciones con matrices como instrumento para el tratamiento de situaciones que manejen datos estructurados en forma de tablas. La matri "input-output" de una Economía. Grafos. Uso manejo de la calculadora científica gráfica. La metodología ClassPad. Prueba Objetiva Escrita
2 Abel Martín "Matrices" Matemáticas TIC Escribe una matri A de dimensión señala cuál es el elemento a BH Escribe una matri B de dimensión señala cuál es el elemento b BH Escribe una matri C de dimensión señala cuál es el elemento c BH Sean las matrices A b c a Qué valores han de tener "a", "b" "c" para que las dos matrices anteriores sean iguales? BH Sean las matrices A Qué valores han de tener "" e "" para que las dos matrices sean iguales?. BH Sean las matrices A Qué valores han de tener "", "", "" para que las dos matrices sean iguales?. BH A la vista de las definiciones escribe diferentes matrices que sirvan de ejemplo para ilustrarlas: Matri fila, matri columna, matri cuadrada (diagonal principal diagonal secundaria), matri rectangular, matri traspuesta, matri nula, matri diagonal, matri escalar, matri unidad, matri triangular, matri simétrica, matri opuesta BH Dada la matri A (a) Cómo es esa matri? (b) Halla la matri opuesta. (c) Halla la matri traspuesta de esta última (d) Cómo son entre sí la matri hallada en el apartado anterior la matri primitiva. (e) Se puede enunciar, en ese sentido, alguna propiedad general? (f) Escribe la matri unidad de iguales dimensiones que la matri A. BH 9 Sean las matrices A 9 Efectúa A B BH Efectúa A B, siendo A B las matrices del ejercicio anterior BH Sean las siguientes matrices, efectúa A B C D A 9 C D BH Sea A, efectúa A BH
3 Curso ON LINE Tema Sean las matrices: A Efectúa (a) A B (b) B A Sean las matrices (a) Efectúa A B Sean A A (b) Efectúa B A a) Efectúa A B b) Efectúa B A Sean A 9 a) Efectúa A B b) Efectúa B A A a) Efectúa A B b) Efectúa B A Sean las matrices A 9 Sean las matrices ( ) a) Efectúa A B b) Efectúa B A Eplica qué condiciones deben verificar dos matrices A B para que se pueda realiar el producto A B. Efectúa, si es posible, la siguiente operación matricial: Sea la matri A, se pide: ( ) Efectúa: A A t I, Siendo I la matri unidad. Dadas las matrices A Efectúa (a) A B (b) A B (c) A B t (d) A B Dadas las matrices A Efectúa las siguientes operaciones matriciales: 9 (a) A B (d) B (g) A B (b) A B (e) A B (h) A B t (c) A (f) A B (i) A t B BH BH BH BH BH BH BH BH BH BH
4 Abel Martín "Matrices" Sean las matrices siguientes: a A C D a (a) Calcula el producto D B (b) Se puede obtener la matri B D? Por qué? (c) Efectúa DC (d) Efectúa D Bt (e) Calcula el valor del parámetro "a" para que se dé la igualdad D A Sean las matrices siguientes: A C a D a (a) Efectúa A B t. En caso de que no se pueda justifica la respuesta. (b) Calcula el producto A B (c) Se puede obtener la matri B A? Por qué? (d) Efectúa AD. En caso de que no se pueda justifica la respuesta. (e) Efectúa AB I. (f) Calcula el valor del parámetro "a" para que se dé la igualdad A C Sean las matrices A 9 Efectúa: (a) A B (b) A - B (c) A B (d) B A (e) A B t Halla la matri inversa de A Halla la matri inversa de A 9 eplica el resultado obtenido. Efectúa el ejercicio anterior con calculadora científica eplica el resultado obtenido. Efectúa el ejercicio anterior con calculadora gráfica eplica el resultado obtenido. Efectúa el ejercicio anterior con calculadora gráfica con prestaciones de álgebra simbólica eplica el resultado obtenido. Halla la matri inversa de eplica el resultado obtenido. por métodos algebraicos BH BH BH BH BH BH BH BH BH Halla la matri inversa de C resultado obtenido por métodos algebraicos eplica el BH Halla la matri inversa de C resultado obtenido 9 por métodos algebraicos eplica el BH Matemáticas TIC
5 Curso ON LINE Tema Halla la matri inversa de A resultado obtenido compruébalo. por métodos algebraicos, eplica el BH Halla la matri inversa de A el resultado obtenido por métodos algebraicos eplica BH Halla la matri inversa de resultado obtenido 9 por métodos algebraicos eplica el BH 9 Halla la matri inversa de C por métodos algebraicos. Dadas A C Se pide realiar las siguientes operaciones con matrices: (a) Obtén: C A B (b) Calcula: C (A B) (c) (C A B) Dada la matri A de dimensiones con elementos a, a, a, a. Calcula su matri inversa comprueba el resultado Dadas las siguientes matrices, halla (C A B) A C Dadas las siguientes matrices, A C (a) Halla D - eplica el resultado obtenido. (b) Obtén: C A B (c) Calcula : C - (A B) - (d) (C A B) - Calcula el rango de la matri A D BH BH BH BH BH. Comenta lo que haces BH Calcula el rango de la matri. Coméntalo. BH
6 Abel Martín "Matrices" Matemáticas TIC Calcula el rango de la matri. Coméntalo. BH Calcula el rango de la siguiente matri: A. Coméntalo BH Calcula el rango de la siguiente matri. Coméntalo. BH Dada la matri M m m, donde "m" es un parámetro real. Determina el rango de M según los distintos valores de m. BH Realia las operaciones que veas a continuación resuelve el ejercicio indicando las propiedades que aplicas: BH 9 Dada la siguiente forma matricial de un sistema de ecuaciones: (a) Efectúa las operaciones indicadas comentando lo que haces. (b) Resuelve por el método de Gauss el sistema de ecuaciones que puedas obtener. (c) Señala el tipo de sistema de que se trata según el número de soluciones que presenta. BH La matri de coeficientes (A) asociada a cierto sistema de ecuaciones lineales así como la de sus términos independientes (B) son las siguientes: A (a) Deducir las ecuaciones del sistema indicando las operaciones matriciales hechas (b) Obtén, si es posible, la inversa de las matrices A B. Raona las respuestas. (c) Calcula el rango de la matri A. BH Resuelve el siguiente sistema por el método de la matri inversa: BH Resuelve el siguiente sistema por el método de la matri inversa: BH
7 Curso ON LINE Tema Resuelve el siguiente sistema por el método de la matri inversa: BH Resuelve el siguiente sistema por el método de la matri inversa: BH Resuelve el siguiente sistema por el método de la matri inversa: 9 BH Dado el siguiente sistema de ecuaciones: (a) Obtén su matri de coeficientes. (b) Resuelve el sistema por el método que quieras BH A B C D E Calcula el valor de la matri X en los siguientes casos: (a) C X D (b) C X D E (c) X C D E (d) C X D X E (e) X C X D - X E I (f) A X C BH Tiene solución la siguiente ecuación matricial B X C?. En caso afirmativo, calcula dicha solución, siendo: C BH 9 Halla la matri X, sabiendo que satisface la siguiente ecuación matricial: A X B siendo: A BH Dada la matri A, encuentra una matri B tal que A BH A a) Calcula una matri X que verifique X - B A B BH
8 Abel Martín "Matrices" Matemáticas TIC Sea M también I la matri identidad de orden (a) Calcula la matri J tal que M J I. (b) Calcula las matrices J, J J 99. BH Dadas las matrices: A C D 9 (a) Resuelve la ecuación matricial A B C X D BH Dadas las matrices A C Resolver la ecuación matricial A X C calculando la matri X. Justifica lo que haces. BH Sean las matrices A (a) Calcula la matri C B A - A t B t (b) Halla la matri X que verifica A B X BH A C Resuelve XA B C BH A C D Resuelve AB CX D BH A Resuelve (a) AX B (b) XA B Por qué sale distinto? BH 9 Resuelve: X X - BH A Resuelve X - B A B BH
LAS MATRICES. OPERACIONES CON MATRICES.
DP. - AS - Matemáticas ISSN: - X www.aulamatematica.com LAS MATRICES. OPERACIONES CON MATRICES. Escribe una matri A de dimensión señala cuál es el elemento a B Escribe una matri B de dimensión señala cuál
ACTIVIDADES SELECTIVIDAD MATRICES
ACTIVIDADES SELECTIVIDAD MATRICES Ejercicio 1 Para qué valores de m tiene solución la ecuación matricial? (b) Resuelve la ecuación matricial dada para. Ejercicio 2 Siendo I la matriz identidad de orden
TEMA 7: MATRICES. OPERACIONES.
TEMA 7: MATRICES. OPERACIONES. 1. MATRICES. TIPOS DE MATRICES. Se llama matriz de orden m x n (m filas y n columnas) a un conjunto de m n elementos, distribuidos en m filas y n columnas y encerrados entre
TEMA 1: MATRICES. x 2. Ejercicio y B =, se pueden encontrar matrices C y D para que existan los productos ACB y BDA?.
TEMA : MATRICES Ejercicio.- 0 2 2 Dadas las matrices A = y B = -2 0 5, calcula BBt AA t. Ejercicio 2.- 0 x 2 Sean las matrices A =, B = y C =, halla x e y para que se 2 y verifique ABC = A t C. Ejercicio
Determina si existe, la matriz X que verifica. propiedades que utilices, los siguientes determinantes:
1. Considera las matrices A=( ) ( ). Determina si existe, la matriz X que verifica.sol ( ) 2. Se sabe que ( ).Calcula, indicando las propiedades que utilices, los siguientes determinantes: a) SOL. a) 24
Es decir, det A = producto de diagonal principal producto de diagonal secundaria. Determinante de una matriz cuadrada de orden 3
1.- DETERMINANTE DE UNA MATRIZ CUADRADA Determinante de una matriz cuadrada de orden 1 Dada una matriz cuadrada de orden 1, A = (a), se define det A = det (a) = a Determinante de una matriz cuadrada de
2. [2014] [EXT-B] Sabiendo que el determinante de la matriz A = es 2, calcula los siguientes determinantes indicando, en
MasMatescom - + m [4] [EXT-A] Considera el siguiente sistema de ecuaciones: m++ -+ +m a) Halla los valores del parámetro m para los que el sistema tiene una única solución b) Halla los valores del parámetro
Ejercicios de Matrices, determinantes y sistemas de ecuaciones lineales. Álgebra 2008
Ejercicios de Matrices, determinantes sistemas de ecuaciones lineales. Álgebra 8 - Dado el sistema de ecuaciones lineales 5 (a) ['5 puntos] Clasifícalo según los valores del parámetro λ. (b) [ punto] Resuélvelo
1. Justifica por qué no es cierta la igualdad: (A + B)$(A B) = A 2 B 2 cuando A y B son dos matrices cuadradas cualesquiera.
º BTO. C.S. Ejercicios de matrices sistemas. Justifica por qué no es cierta la igualdad: (A + B)$(A B) A B cuando A B son dos matrices cuadradas cualesquiera.. Sea A una matriz de dimensión 3%. (a) Existe
BOLETÍN DE MATRICES 2 IES A Sangriña Curso 2016/ Calcula la matriz inversa, si existe, usando el método de Gauss:
*** OBLIGATORIOS *** 1. Efectúa todos los posibles productos: 2. Calcula la matriz inversa, si existe, usando el método de Gauss: 3. Sean y. Encuentra X para que cumpla: 3 X 2 A = 5 B 4. Encuentra dos
Matemáticas aplicadas a las CC.SS. II 2º Bachillerato. La igualdad de matrices 3x3 equivale a 9 ecuaciones escalares: { a 3=5.
Ejercicios resueltos 1. MATRICES 1.1. Introducción 1. Halla el valor de a, b y c para que las matrices A= 2 a 3 7 b 1 0 6 4 5 y B= 2 5 7 5 1 0 c 1 4 5 sean iguales. La igualdad de matrices 3x3 equivale
Tema 1: Matrices. Sistemas de ecuaciones. Determinantes
Tema 1: Matrices. Sistemas de ecuaciones. Determinantes José M. Salazar Octubre de 2016 Tema 1: Matrices. Sistemas de ecuaciones. Determinantes Lección 1. Matrices. Sistemas de ecuaciones. Determinantes
y C= a 0 1
.- CONCEPTO DE MATRIZ Escriba la matriz 2 x 3 en la que a ij = i 4j 2 Calcule, si es posible, los valores de a b para que sean iguales las matrices 3a b 9 b a 7 2b a 7 A= B= a+ b 2 a 3b 3 3 a 3.- OPERACIONES
EJERCICIOS DE MATRICES, DETERMINANTES Y PROBLEMAS. 1. (2001) De las matrices,,,
EJERCICIOS DE MATRICES, DETERMINANTES Y PROBLEMAS SELECTIVIDAD 1. (2001) De las matrices,,, determina cuáles tienen inversa y en los casos en que exista, calcula el determinante de dichas matrices. 2.
Matrices. Ejercicio 1. Dada la matriz A = 2. completa: a 11 =, a 31 =, a 23 =, = 3, = 2, = 7.
Matrices. Contenido. Matrices. Tipos especiales de matrices.. Suma y diferencia de matrices.. Producto por un número..5 Matriz traspuesta y matriz simétrica..6 Producto de matrices. Propiedades.. Matriz
DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES
ALGEBRA DE MATRICES DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES DEFINICIONES 2 Las matrices y los determinantes son herramientas
, calcula: y C = , sabiendo que X y Y son matrices de dimensión 2x3 y A = A = , siendo abc 0.
MasMatescom Colección B Dadas las matrices A - -3, B - - C - - -, calcula: a) A+B-C t ; b) (A+B)C ; c) AB+C ; d) (A-B)(A+C) Resuelve el sistema X + Y A X - 3Y B, sabiendo que X Y son matrices de dimensión
PRUEBAS DE ACCESO A LA UNIVERSIDAD ALGUNOS PROBLEMAS DE MATRICES (CON SOLUCIÓN) a) A = ( 1 0
PRUEBAS DE ACCESO A LA UNIVERSIDAD ALGUNOS PROBLEMAS DE MATRICES (CON SOLUCIÓN) JUNIO 6: OPCIÓN B. Ejercicio. (Puntuación máxima: 3 puntos) Encontrar todas las matrices X cuadradas x que satisfacen la
EJERCICIOS DE SELECTIVIDAD DE ÁLGEBRA
EJERCICIOS DE SELECTIVIDAD DE ÁLGEBRA 2003 (4) Ejercicio 1. Considera los vectores u = (1,1,1), v = (2,2,a) y w = (2,0,0), (a) [1'25 puntos] Halla los valores de a para que los vectores u, v y w sean linealmente
Más ejercicios y soluciones en fisicaymat.wordpress.com MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES
MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES - Considere el sistema 3 5 7 0 3 3 6 0 3 4 6 0 a) Estudie para qué valores del número real a, la única solución del sistema es la nula. b) Resuélvalo, si
RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES
RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES REFLEXIONA Y RESUELVE Resolución de sistemas 2 Ò 2 mediante determinantes A A y Resuelve, aplicando x = x e y =, los siguientes sistemas de ecuaciones: A A
TEMA 1 Álgebra de matrices 4 sesiones. TEMA 2 Determinantes 4 sesiones. TEMA 3 Sistemas de ecuaciones 4 sesiones
1.1. MATEMÁTICAS II TEMPORALIZACIÓN Y SECUENCIACIÓN: TEMA 1 Álgebra de matrices 4 sesiones TEMA 2 Determinantes 4 sesiones TEMA 3 Sistemas de ecuaciones 4 sesiones TEMA 4 Vectores en el espacio 4 sesiones
Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4. Halla los determinantes de las siguientes matrices: Solución:
3 Determinantes. Determinantes de orden 2 y 3 por Sarrus Piensa y calcula 3 6 Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4 8 3 8 6 4 = 24 24 = 0 Aplica la teoría.
EXÁMENES DE ALGEBRA Y GEOMETRÍA MATEMÁTICAS II CURSO
EXÁMENES DE ALGEBRA Y GEOMETRÍA MATEMÁTICAS II CURSO 2016-17 1 2 Ejercicio 1º.- Considera las matrices A 1 1 y B 0 1 1 0 a) (1,25 puntos) Encuentra las matrices X e Y tales que X Y = A T y 2X Y = B. b)
ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente.
ÁLGEBRA DE MATRICES Página 47 REFLEXIONA Y RESUELVE Elección de presidente Ayudándote de la tabla, estudia detalladamente los resultados de la votación, analiza algunas características de los participantes
Tema 1: MATRICES. OPERACIONES CON MATRICES
Tema 1: MATRICES. OPERACIONES CON MATRICES 1. DEFINICIÓN Y TIPO DE MATRICES DEFINICIÓN. Una matriz es un conjunto de números reales dispuestos en filas y columnas. Si en ese conjunto hay m n números escritos
MATEMÁTICAS 2º BACH TECNOL. MATRICES. Profesor: Fernando Ureña Portero MATRICES
CONCEPTO DE MATRIZ Definición: Se denomina matriz A o (a ij ) a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas : Columnas Filas Elemento a ij : Cada uno
1. Las cantidades compradas, en litros, de tres clases de vino, se reflejan en la matriz fila: L = ( )
CAPÍTULO 6. MATRICES Y DETERMINANTES 03 6.3. EJERCICIOS. Las cantidades compradas, en litros, de tres clases de vino, se reflejan en la matriz fila: B T R L = ( 80 50 00 ) donde B=Blanco, T=Tinto yr=rosado,
6. Obtén las matrices A y B que verifiquen el sistema. 7. Encuentra una matriz X que cumpla. siendo. 9. Resuelve la siguiente ecuación matricial:
Ejercicios. Escribe la matriz traspuesta de: 2 3 3 B= 0 4 3 2 4 C= 2 3 2. Se consideran las matrices: 0 3 2 2 2 2 0 2 3 B= 0 4 C=2 4 3 0 2 5 Calcula: 3A, 3A + 2C, A C, C A y A B. 3. Dadas las matrices
MATRICES. 2º Bachillerato. Se llama matriz a una disposición rectangular de números reales, a los cuales se les denomina elementos de la matriz.
Concepto de matriz. Igualdad de matrices MATRICES 2º Bachillerato Concepto de matriz. Igualdad de matrices Concepto de matriz. Igualdad de matrices Se llama matriz a una disposición rectangular de números
Lo rojo sería la diagonal principal.
MATRICES. Son listas o tablas de elementos y que tienen m filas y n columnas. La dimensión de la matriz es el número se filas y de columnas y se escribe así: mxn (siendo m el nº de filas y n el de columnas).
Grado en Ciencias Ambientales. Matemáticas. Curso 10/11.
Grado en Ciencias Ambientales. Matemáticas. Curso 0/. Problemas Tema 2. Matrices y Determinantes. Matrices.. Determinar dos matrices cuadradas de orden 2, X e Y tales que: 2 2X 5Y = 2 ; X + 2Y = 4.2. Calcular
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El alumno contestará a
Sistemas lineales con parámetros
4 Sistemas lineales con parámetros. Teorema de Rouché Piensa y calcula Dado el siguiente sistema en forma matricial, escribe sus ecuaciones: 3 0 y = 0 z + y 3z = 0 y = Aplica la teoría. Escribe los siguientes
Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico.
Tema 1: Matrices El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. 1. Terminología Comenzamos con la definición de matriz
BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES.
BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES. Matrices: Se llama matriz de dimensión m n a un conjunto de números reales dispuestos en m filas y n columnas de la siguiente forma: 11 a 12 a 13... a 1n A= a a 21
Matrices y Sistemas Lineales
Matrices y Sistemas Lineales Álvarez S, Caballero MV y Sánchez M a M salvarez@umes, mvictori@umes, marvega@umes 1 ÍNDICE Matemáticas Cero Índice 1 Definiciones 3 11 Matrices 3 12 Sistemas lineales 5 2
EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES
EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES MATRICES. SISTEMAS DE ECUACIONES LINEALES Matrices ) Dada la matriz M=, prueba que n n M M, n. ) Demuestra la siguiente implicación: Si I A I AA A
Matemáticas. D e t e r m i n a n t e s
Matemáticas D e t e r m i n a n t e s El determinante de una matriz cuadrada es un número que se obtiene a partir de los elementos de la matriz. Su estudio se justifica en cuanto que simplifica la resolución
( ) según los valores del parámetro a. Ejercicio 3. Calcula el valor de los siguientes determinantes teniendo en cuenta estos datos:
MATEMÁTICAS II ÁLGEBRA Y ANÁLISIS ACTIVIDADES PAU Ejercicio. Condera las matrices A = m, B = y C =. (a) Para qué valores de m tiene solución la ecuación matricial A.X + B = C? (b) Resuelve la ecuación
EJERCICIOS DE DETERMINANTES
EJERCICIOS DE 1) Si m n = 5, cuál es el valor de cada uno de estos determinantes? Justifica las p q respuestas: 2) Resuelve las siguientes ecuaciones: 3) Calcula el valor de estos determinantes: 4) Halla
DOCENTE: JESÚS E. BARRIOS P.
DOCENTE: JESÚS E. BARRIOS P. DEFINICIONES Es larga la historia del uso de las matrices para resolver ecuaciones lineales. Un texto matemático chino que proviene del año 300 A. C. a 200 A. C., Nueve capítulos
MATRICES UNIDAD 2. Página 50
UNIDAD MATRICE Página 50 1. A tres amigos, M, N, P, se les pide que contesten a lo siguiente: Crees que alguno de vosotros aprobará la selectividad? Di quiénes. Estas son las respuestas: M opina que él
solucionario matemáticas II
solucionario matemáticas II UNIDADES 8-4 bachillerato 8 Determinantes 4 9 Sistemas de ecuaciones lineales 46 Fin bloque II 0 Vectores 8 Rectas planos en el espacio 68 Propiedades métricas 08 Fin bloque
RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES
3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Página 74 Determinantes de orden 2 Resuelve cada uno de los siguientes sistemas de ecuaciones y calcula el determinante de la matriz de los coeficientes:
Ejercicio 3 de la Opción A del modelo 1 de 2008.
Ejercicio 3 de la Opción A del modelo 1 de 2008. Dado el sistema de ecuaciones lineales x + λy z = 0 2x + y + λz = 0 x + 5y λz = λ +1 [1 5 puntos] Clasifícalo según los valores del parámetro λ. (b) [1
Ejercicios de Matrices, determinantes y sistemas de ecuaciones lineales. Álgebra 2008
Ejercicios de Matrices, determinantes sistemas de ecuaciones lineales. Álgebra 8 - Dado el sistema de ecuaciones lineales 5 (a) ['5 puntos] Clasifícalo según los valores del parámetro λ. (b) [ punto] Resuélvelo
3. A = A = Se dice que dos matrices A y B son semejantes cuando cuando existe una matriz P invertible tal que: AP = PB.
MasMatescom Colección B Resuelve el sistema 5X + 3Y A 3X + Y B, sabiendo que X e Y son matrices cuadradas de orden A 0-4 5 B - - 9 Considera la matriz A 0 3 4-4 -5-3 4 a) Siendo I la matriz identidad 3x3
Se llama adjunto de un elemento de una matriz A, al número resultante de multiplicar por el determinante de la matriz complementaria
T.3: MATRICES Y DETERMINANTES 3.1 Determinantes de segundo orden Se llama determinante de a: 3.2 Determinantes de tercer orden Se llama determinante de a: Ejercicio 1: Halla los determinantes de las siguientes
ÁLGEBRA Y GEOMETRÍA ANALÍTICA Trabajo Práctico Nº 7 Matrices y Determinantes Cursada 2014
ÁLGER Y GEOMETRÍ NLÍTIC Trabajo Práctico Nº 7 Matrices Determinantes Cursada Desarrollo Temático de la Unidad Matrices: Definición. Igualdad de Matrices. Álgebra Matricial: adición de matrices: propiedades.
MATRICES,DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES
Departamento de Matemática Aplicada II EEI ÁLGEBRA Y ESTADÍSTICA Boletín n o 1 (2010-2011 MATRICES,DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES 1 Sean A, B, C, D y E matrices de tamaño 4 5, 4 5, 5 2,
A1.- Determina a y b sabiendo que el sistema de ecuaciones. x + 3y +z = 1 -x + y +2z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas.
A1.- Determina a y b sabiendo que el sistema de ecuaciones x + 3y +z = 1 -x + y +z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas. Para que el sistema tenga, al menos, dos soluciones distintas
Una matriz es un arreglo rectangular de elementos. Por ejemplo:
1 MATRICES CONCEPTOS BÁSICOS Definición: Matriz Una matriz es un arreglo rectangular de elementos. Por ejemplo: es una matriz de 3 x 2 (que se lee 3 por 2 ) pues es un arreglo rectangular de números con
MATRICES OPERACIONES BÁSICAS CON MATRICES
MATRICES OPERACIONES BÁSICAS CON MATRICES ANTECEDENTES En el año 1850, fueron introducidas por J.J. Sylvester El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A.
EJERCICIOS SOBRE MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES
EJERCICIOS SOBRE MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES ) Dadas las matrices 7 A, 4 5 B y 4 C, comprueba las siguientes igualdades: A (B C)(A B) C A (B+C)(A B)+(A C) (A+B) C(A C)+(B C) ) Dadas
TEST DE DETERMINANTES
Página 1 de 7 TEST DE DETERMINANTES 1 Si A es una matriz cuadrada de orden 3 con A = -2, a qué es igual -A? A -2 B 2 C 0 D -6 2 A -144 B 44 C 88 D -31 3 Indicar qué igualdad es falsa: A B C D 4 A -54 B
TEST DE MATRICES. Dadas A = (-3 4 1/2) y B = (1/3 0-2), cuál es el resultado de multiplicar la matriz A por la traspuesta de B?
file://:\mis documentos\u6mattest\u6mattesttodo.htm Página 1 de 7 TEST E MTRIES 1 eterminar la matriz opuesta de la siguiente matriz: 2 Si y son dos matrices de orden 3x2, de qué orden es la matriz resultante
Matrices 1 (Problemas). c
º Bachillerato Matrices 1 (Problemas) 1.- Efectúa las siguientes operaciones con matrices: a) 1 4 5 6 + b) 5 7 9 11 1 1 1 1 1 1 c). 4 d) 6. 1 6 1 18 1 g) 0 0 0 0 a 0 b 0. 0 b 0 0 0 c c 0 0.- Siendo A =
I. Operaciones con matrices usando Mathematica
PRÁCTICA 9: RESOLUCIÓN DE SISTEMAS LINEALES II I. Operaciones con matrices usando Mathematica Introducir matrices en Mathematica: listas y escritura de cuadro. Matrices identidad y diagonales. El programa
Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4. Halla los determinantes de las siguientes matrices: Solución:
3 Determinantes. Determinantes de orden y 3 por Sarrus Piensa y calcula 3 6 Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4 8 3 8 6 4 = 4 4 = 0 Aplica la teoría. Calcula
MATEMÁTICAS 2º BACH CIENCIAS MATRICES. Profesor: Fernando Ureña Portero
La palabra Álgebra proviene del libro Al-jabr wa l muqabalah, del matemático árabe Al-Jowarizmi (siglo IX). Con dicho nombre se designó en occidente en posteriores siglos a la ciencia que aprendieron del
Matrices y Sistemas Lineales
Matrices y Sistemas Lineales Álvarez S, Caballero MV y Sánchez M a M salvarez@umes, mvictori@umes, marvega@umes Índice 1 Definiciones 3 11 Matrices 3 12 Sistemas lineales 6 2 Herramientas 8 21 Operaciones
MATRICES Y DETERMINANTES EJERCICIOS RESUELTOS
Índice Presentación... 3 Operaciones con matrices... 4 Potencias de una matriz... 5 Productos notables de matrices... 6 Determinantes de una matriz... 7 Rango de matriz... 8 Inversa de una matriz... 10
Definición de matriz Una matriz A es un conjunto de números dispuestos en filas y en columnas.
1.- CONCEPTO DE MATRIZ. TIPOS DE MATRICES Definición de matriz Una matriz A es un conjunto de números dispuestos en filas y en columnas. 1 3 4 Por ejemplo, A = es una matriz de 2 filas y 3 columnas 0 5
Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones.
TEMA 1: MATRICES Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento
1. Matrices. Operaciones con matrices
REPASO MUY BÁSICO DE MATRICES. Matrices. Operaciones con matrices.. Introducción Las matrices aparecieron por primera vez hacia el año 850, introducidas por el inglés J. J. Sylvester. Su desarrollo se
CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES
CONCEPTO MATRICES Se llama matriz de orden (dimensión) m n a un conjunto de m n elementos dispuestos en m filas y n columnas Se representa por A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn j=1,2,,n
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
Opción A xcos(x)+b sen(x) Ejercicio 1.- [2 5 puntos] Sabiendo que lím x 0 x 3 es finito, calcula b y el valor del límite. Ejercicio 2.- Sean f : R R y g : R R las funciones definidas mediante f(x) = x(x
COLEGIO INTERNACIONAL TORREQUEBRAD.
CUADERNO DE VERANO MATEMÁTICAS 1º Bachillerato ALUMNO: Problema 1: Dado el sistema de ecuaciones con un parámetro real λ e incógnitas x, y, z se pide: a) Calcular para qué valores de λ el sistema sólo
5.1 Matrices y operaciones DA DB DC. (i) (ii) (iii) 5 CAPÍTULO CINCO Ejercicios propuestos
5 CAPÍTULO CINCO Ejercicios propuestos 5.1 Matrices y operaciones 1. Si A y B son dos matrices cuadradas cualesquiera, entonces: a) Verdadero b) Falso 2. Dada la ecuación matricial, hallar X. 3. a) Determine
Escuela de Matemáticas
Escuela de Matemáticas Universidad de Costa Rica MA-004: Álgebra Lineal Prácticas Sistemas de ecuaciones lineales, Matrices Determinantes MSc Marco Gutiérrez Montenegro 07 Sistemas de ecuaciones lineales
MATRICES 1. Averiguar Si son iguales las siguientes matrices: Dada la matriz A = 131, se pide: 122. , siendo I la matriz unidad de orden 3.
MATRICES Averiguar Si son iguales las siguientes matrices: 5 4 4+ 9+ A = 6 ( )( + ) 3 ( )( ) 5 4 5 4 5 B = + Sea A la matriz de una sola fila ( 5 ) y B la de una sola columna (34 t Escribir los productos
EJERCICIOS PAU MATEMÁTICAS II ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com
MATRICES Y DETERMINANTES 1- Sea m un número real y considere la matriz: 1 0 0 1 2 1 1 a) Determine todos los valores de m para los que la matriz A tiene inversa. b) Determine, si existe, la inversa de
Matrices y Determinantes. Prof. Nilsa I. Toro Catedrática Recinto Universitario de Mayagüez Residencial - AFAMaC
Matrices y Determinantes Prof. Nilsa I. Toro Catedrática Recinto Universitario de Mayagüez Residencial - AFAMaC Origen y Usos Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J.
MATRICES. Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.
MATRICES Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento
UNIVERSIDAD COMPLUTENSE DE MADRID
Principales conceptos que se tendrán en cuenta en la elaboración de las pruebas de Acceso a la Universidad para los estudiantes provenientes del Bachillerato LOGSE de la materia "Matemáticas II" ÁLGEBRA
Tema 2: Determinantes
Tema : Determinantes.- a) Encontrar los valores de λ para los que la matriz λ A = 0 λ λ 0 es invertible b) Para λ = hallar la inversa de A comprobar el resultado c) Resolver el sistema x 0 A = 0 z 0 para
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID. PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) MODELO DE EXAMEN (Curso )
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) MODELO DE EXAMEN (Curso 00-003) MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN INSTRUCCIONES:
INSTRUCCIONES GENERALES Y VALORACIÓN
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Examen-Modelo para el curso 2014-2015 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES
Procedimiento para encontrar la inversa de una matriz cuadrada (Método de Gauss-Jordan).
Ejemplo 19: Demuestre que la matriz A es invertible y escríbala como un producto de matrices elementales. Solución: Para resolver el problema, se reduce A a I y se registran las operaciones elementales
Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5
DETERMINANTES Determinantes Concepto de determinante A cada matriz cuadrada A se le asigna un escalar particular denominado determinante de A, denotado por A o por det (A). A = Determinante de orden uno
MATRICES. Jaime Garrido Oliver
MATRICES Jaime Garrido Oliver ÍNDICE DE CONTENIDOS ÍNDICE DE CONTENIDOS... 2 MATRICES... 3 1.1. INTRODUCCIÓN.... 3 2. TIPOS DE MATRICES... 4 2.1. Matriz Fila, Matriz Columna... 4 2.2. Matrices cuadradas...
Ejercicios finales. Álgebra. 1. Escribir la matriz A de dimensiones 5 x 4 y elementos: Sol:
Álgebra Ejercicios finales 1. Escribir la matriz A de dimensiones 5 x 4 y elementos:. Una fábrica de embutidos comercializa tres tipos de productos: salchichón, chorizo y morcilla. Para su fabricación
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en
CAPÍTULO VIII MATRICES
MTRICES Y DETERMINNTES 23 CPÍTULO VIII MTRICES 8. INTRODUCCIÓN Se da por entendido el concepto de transformación lineal entre dos espacios vectoriales sobre un mismo cuerpo, y se determina la matriz asociada
SISTEMAS DE ECUACIONES. Un sistema de m ecuaciones lineales con n incógnitas, x 1, x 2,, x n es un conjunto de m igualdades de la forma:
TEMA Sistemas de ecuaciones SISTEMAS DE ECUACIONES. DEFINICIÓN SISTEMAS DE ECUACIONES Un sistema de m ecuaciones lineales con n incógnitas,,,, n es un conjunto de m igualdades de la forma: a a an n b a
Índice. Funciones de Maple
INTRODUCCIÓN Con los avances de la tecnología, los cursos de matemáticas en nuestras universidades necesitan el apoyo computacional para la realización de cálculos en diferentes procedimientos, de tal
Matemáticas Física Curso de Temporada Verano Ing. Pablo Marcelo Flores Jara
Matemáticas Física Curso de Temporada Verano 2016 Ing. Pablo Marcelo Flores Jara [email protected] UNIDAD III: INTRODUCCIÓN AL CÁLCULO MATRICIAL Ing. Pablo Marcelo Flores Jara [email protected]
A c) Determinantes. Ejercicio 1. Calcula los siguientes determinantes:
Determinantes 1. Contenido 1.1 Determinantes de orden 1, 2 y 3. 1.2 Menor complementario. Matriz adjunta. 1.3 Propiedades de los determinantes. 1.4 Determinantes de orden n. 1.5 Cálculo de determinantes
Vectores en el plano UNIDAD I: MATRICES. Dirección de un vector. Sentido de un vector
UNIDAD I: MATRICES Vectores en el plano Un vector,, es un segmento con una dirección que va del punto A (origen) al punto B (etremo).un vector es un segmento orientado que va del punto A (origen) al punto
Matrices y determinantes
Matrices y determinantes 1 Ejemplo Cuál es el tamaño de las siguientes matrices? Cuál es el elemento a 21, b 23, c 42? 2 Tipos de matrices Matriz renglón o vector renglón Matriz columna o vector columna
Matrices y Sistemas de Ecuaciones lineales
Matrices y Sistemas de Ecuaciones lineales Llamaremos M m n (K) al conjunto de las matrices A = (a ij ) (i = 1, 2,..., m; j = 1, 2,..., n) donde los elementos a ij pertenecen a un cuerpo K. Las matrices,
TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ...
TEMA : MATRICES Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas a a a... a n a a a... an A... am am am... amn A los números reales a ij se les llama elementos
EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES
EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES DETERMINANTES Y SISTEMAS DE ECUACIONES JUNIO 06/07. a) Calcula el rango de la matriz A según los valores del parámetro a 3 a A = 4 6 8 3 6 9 b)
GUÍA DE LA UNIDAD MATRICES Y DETERMINANTES
Matrices Determ. Inversa Sistemas C ontenidos Idea de matriz. Elementos de una matriz. Diferentes tipos de matrices: matriz unidad, matriz nula, matriz traspuesta, matriz inversa. Operaciones con matrices.
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE)
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) Modelo para Curso 2008-2009 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El alumno contestará
