PRÁCTICA I. Ejercicios Teóricos
|
|
|
- Alberto Cristián Valdéz Nieto
- hace 9 años
- Vistas:
Transcripción
1 PRÁCTICA I TEORÍA DE LA DECISIÓN BAYESIANA Ejercicios Teóricos Ejercicio. En el caso de dos categorías, en la regla de decisión de Bayes el error condicional está dado por la ecuación (7). Incluso si las densidades a posteriori son continuas, esta forma de la condicional de errores casi siempre conduce a un integrando discontinuo en el cálculo del error total en la ecuación (5). a) Demostrar que para densidades arbitrarias, podemos usar la ecuación (5) y obtener una cota superior para el error total. P(error x) = 2P(ω x)p(ω 2 x) b) Demostrar que si en la ecuación (5), utilizamos P(error x) = αp(ω x)p(ω 2 x), con α < 2, entonces no podemos garantizar que la integral dé una cota superior para el error. c) Análogamente, demostrar que podemos utilizar y obtener una cota inferior para el error total. d) Demostrar que si P(error x) = P(ω x)p(ω 2 x) P(error x) = βp(ω x)p(ω 2 x) con β >, entonces no podemos garantizar que la integral dé una cota inferior para el error. Ejercicio 2. Si las distribuciones condicionales para las dos categorías en el problema unidimensional son distribuciones de Cauchy tal como se describe en el problema 6. a) por integración explícita, compruebe que las distribuciones están normalizadas. b) Suponiendo que P(ω ) = P(ω 2 ), muestre que P(ω x) = P(ω 2 x) si x = a +a 2 2, es decir, el límite inferior del error de decisión es un punto medio entre los picos de las dos distribuciones, independientemente de b. c) Graficar P(ω x) para el caso de a = 3, a 2 = 5 y b =. d) Cómo se comportan P(ω x) y P(ω 2 x) cuando x y cuando x? Explicar. Ejercicio 3. Use la densidad condicional dada en el problema 6, y asuma la igualdad entre las probabilidades a priori para las categorías. a) Demostrar que la probabilidad de error mínimo está dado por b) Graficar esto como una función de a 2 a. b P(error) = 2 π tan a 2 a 2b c) Cuál es el máximo de P(error) y en qué condiciones ocurre esto? Explicar.
2 Ejercicio 4. Responda con Verdadero o Falso, y justifique: a) En un problema unidimensional con dos categorías y x continua, una transformación monótona de x no modifica la tasa de error de Bayes. b) En un problema bidimensional con dos categorías y x continua, una transformación monótona en x y en x 2 no modifica la tasa de error de Bayes. Ejercicio 5. Supongamos que se sustituye la función de decisión determinista α(x) por la regla aleatorizada, a saber, la probabilidad P(α i x) de tomar la decisión α i dado que se observó x. a) Mostrar que el riesgo resultante viene dado por R = [ a R(α i x)p(α i x) i= ] p(x)dx b) Además, demostrar que R se minimiza para P(α i x) = para la acción α i asociada con el riesgo condicional mínimo R(α i x), lo que demuestra que no obtenemos ningún beneficio haciendo aleatoria la mejor regla de decisión. c) Podemos beneficiarnos aleatorizando una regla subóptima? Explicar. Ejercicio 6. En muchos problemas de clasificación de patrones se tiene la opción de asignar un patrón a una de c clases, o de clasificarlo como irreconocible. Si el costo de hacer esto último no es demasiado alto, puede ser una acción deseable. Sea λ(α i ω j ) = 0 si i = j, i, j =,2,...,c λ r si i = c + en otro caso donde λ r es la pérdida sufrida por la elección de clasificarlo como irreconocible, y es la pérdida incurrida por cometer un error. Mostrar que el riesgo mínimo se obtiene si decidimos ω i si P(ω i x) P(ω j x) para todo j, y si P(ω i x) λ r, caso contrario, clasificar como irreconocible. Qué sucede si λ r = 0? Qué sucede si λ r >?. Ejercicio 7. Considere el problema de clasificación con la opción irreconocible. a) Utilice los resultados del ejercicio 6 para demostrar que las siguientes funciones discriminantes son óptimas para este tipo de problemas: p(x ω i )P(ω i ) si i =,2,...,c c g i (x) = λ r p(x ω j )P(ω j ) si i = c + j= b) Grafique esta función discriminante y las regiones de decisión para el caso del problema unidimensional con dos clases, teniendo p(x ω ) N (,), p(x ω 2 ) N (,),
3 P(ω ) = P(ω 2 ) = 2, y λ r = 4 c) Describa cualitativamente lo que sucede cuando λ r se incrementa de 0 a. d) Repita el procedimiento para el caso p(x ω ) N (,), ( p(x ω 2 ) N 0, ), 4 P(ω ) = 3, P(ω 2) = 2 3, y λ r = 2 Ejercicio 8. Considerar la frontera de decisión de Bayes para el caso de clasificación en dos categorías con d dimensiones. a) Demostrar que para cualquier hipercubo arbitrario de d dimensiones, existen distribuciones normales tales que p(x ω i ) N (µ i,σ i ) y distribuciones apriori P(ω i ), i =,2, que poseen a este hipercubo como frontera de decisión de Bayes. b) Se mantiene esto si las apriori se mantienen fijas y no nulas, por ejemplo, P(ω ) = P(ω 2 ) = 2? Ejercicio 9. Considere (( ) el) problema de clasificación bidimensional en dos categorías con p(x ω ) N (0,I), p(x ω 2 ) N,I, y P(ω ) = P(ω 2 ) = 2 a) Calcular la cota de decisión de Bayes. b) Calcular la cota el error de Bhattacharyya. c) Repita los pasos anteriores con las mismas probabilidades apriori, pero con p(x ω ) N (( ) ( )) 5 4 y p(x ω 2 ) N, 4 5 ( ( , )) Ejercicio 0. Supongamos que en el marco de detección de una señal tenemos dos gaussianas, pero con diferentes varianzas (cf., figura 2.20.), es decir, p(x ω ) N (µ,σ 2 ) y p(x ω 2) N (µ 2,σ 2 2 ), con µ > µ 2 y σ 2 σ2 2. En este caso la curva ROC resultante no sería simétrica. a) Supongamos que en este caso asimétrico se modifica la definición de discriminabilidad por d a = µ 2 µ σ σ 2 Mostrar con un contraejemplo no trivial o análisis que no se puede determinar d a basándonos únicamente en un solo par de casos y falsas tasas de alarma. b) Exponer y explicar todos los valores patológicos para los cuales esta fórmula no da un valor significativo para d a.
4 c) Grafique las curvas ROC para el caso p(x ω ) N (0,) y p(x ω 2 ) N (,2). Ejercicio. Suponiendo que λ 2 > λ y λ 2 > λ 22, mostrar que la función discriminante de riesgo mínimo general para el caso binario independiente descripto en la Sección 2.9. está dado por g(x) = w t x + ω 0, donde w no cambia, y ω 0 = d i= ln p i q i + ln P(ω ) P(ω 2 ) + ln λ 2 λ λ 2 λ 22 Ejercicio 2. La distribución de Poisson para una variable discreta x = 0,,2,... y parámetro real λ es λ λx P(x λ) = e x a) Demostrar que la media de esta distribución es E[x] = λ. b) Demuestre que la varianza de esta distribución es Var[x] = λ. c) La moda de una distribución es el valor de x que tiene la mayor probabilidad. Demostrar que la moda de una distribución de Poisson es el mayor entero que no exceda λ, es decir, la moda es λ. (Si λ es un número entero, tanto λ como λ son modas de la distribución). d) Considere el problema de clasificación en dos categorías igualmente probables con distribuciones de Poisson, pero con diferentes parámetros λ > λ 2. Cuál es la regla de clasificación de Bayes? e) Cuál es la tasa del error de Bayes? Ejercicios Computacionales Ejercicio 3. Es posible que necesite del siguiente procedimiento en los siguientes ejercicios. a) Escriba un procedimiento para generar muestras aleatorias de acuerdo a una distribución normal N d (µ,σ). b) Escriba un procedimiento que calcule la función discriminante (de la forma dada en La ecuación 47) para una distribución normal dada y probabilidad a priori P(ω i ). c) Escriba un procedimiento que calcule la distancia euclídea entre dos puntos arbitrarios. d) Escriba un procedimiento que calcule la distancia de Mahalanobis entre la media µ y un punto arbitrario x, dada la matriz de covarianza Σ. Ejercicio 4. Utilice su clasificador del problema 3 para clasificar las 0 muestras de la tabla del libro de la siguiente manera. Suponga que las distribuciones subyacentes son normales. a) Supongamos que las probabilidades a priori de las dos primeras categorías son iguales (P(ω ) = P(ω 2 ) = 2 y P(ω 3) = 0) y el diseño de un separador para estas dos categorías utilizando sólo el valor de característica x. b) Determinar el error de entrenamiento empírico en sus muestras, es decir, el porcentaje de puntos mal clasificados.
5 c) Utilice la cota de Bhattacharyya para acotar el error que obtendrá en los patrones nuevos, elaborados a partir de las distribuciones. d) Repita todo lo anterior, pero ahora utilice dos características, x y x 2. e) Repita usando las tres características. f) Analice sus resultados. En particular, es siempre posible para un conjunto finito de datos que el error empírico pueda ser mayor al aumentar la dimensión de los datos?. Ejercicio 5. Considerar las tres categorías del ejercicio anterior, y asuma que P(ω i ) = 3. a) Cuál es la distancia de Mahalanobis entre cada uno de los puntos (,2,) t,(5,3,2) t,(0,0,0) t,(,0,0) t y las medias de cada una de las clases. b) Clasificar estos puntos. c) Suponga que P(ω ) = 0.8 y P(ω 2 ) = P(ω 3 ) = 0., y clasifique nuevamente los puntos. Ejercicio 6. Explora cómo hace o no el error empírico para acercarse a la cota de Bhattacharyya de la siguiente manera: a) Escriba un procedimiento que genere muestras de una distribución normal N d (µ,σ). (( ) ) (( ) ) b) Considere p(x ω ) N,I, p(x ω 0 2 ) N,I, con P(ω 0 ) = P(ω 2 ) = 2. Por inspección establezca el límite de decisión de Bayes. c) Generar n = 00 puntos (50 de ω y 50 de ω 2 ) y calcular el error empírico. d) Repita el procedimiento aumentando los valores de n, 00 n 000, en pasos de 00 y grafique los errores empíricos. e) Analice sus resultados. En particular, es siempre posible que el error empírico sea mayor que la cota de Bhattacharyya o Chernoff?.
Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides
Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda
1. La Distribución Normal
1. La Distribución Normal Los espacios muestrales continuos y las variables aleatorias continuas se presentan siempre que se manejan cantidades que se miden en una escala continua; por ejemplo, cuando
Generación de variables aleatorias continuas Método de rechazo
Generación de variables aleatorias continuas Método de rechazo Georgina Flesia FaMAF 18 de abril, 2013 Método de Aceptación y Rechazo Repaso Se desea simular una v. a. X discreta, con probabilidad de masa
Variables aleatorias continuas, TCL y Esperanza Condicional
Variables aleatorias continuas, TCL y Esperanza Condicional FaMAF 17 de marzo, 2011 1 / 37 Poisson P(λ) Número de éxitos en una cantidad grande de ensayos independientes Rango: {0, 1, 2,... } = {0} N Función
Tema 6: Modelos de probabilidad.
Estadística 60 Tema 6: Modelos de probabilidad. 6.1 Modelos discretos. (a) Distribución uniforme discreta: La variable aleatoria X tiene una distribución uniforme discreta de parámetro n,que denoteramos
Unidad 1: Espacio de Probabilidad
Unidad 1: Espacio de Probabilidad 1.1 Espacios de Probabilidad. (1) Breve introducción histórica de las probabilidades (2) Diferencial entre modelos matemáticos deterministicos y probabilísticos (3) Identificar
CÁLCULO DE PROBABILIDADES
CÁLCULO DE PROBABILIDADES Tipo de asignatura: Troncal Anual. Créditos ECTS: 15 I.- INTRODUCCIÓN AL CÁLCULO DE PROBABILIDADES. (16 horas presenciales) Tema 1.- La naturaleza del cálculo de probabilidades.
APRENDIZAJE PROBABILÍSTICO NAIVE BAYES
1 APRENDIZAJE PROBABILÍSTICO NAIVE BAYES Bases de Datos Masivas 9 de Noviembre de 2016 2 Razonamiento Probabilístico Es una herramienta de aprendizaje estadístico. Se trata de razonar en un contexto incierto;
JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas
JUEGO DE BASKETBALL Repaso de Distribuciones de Probabilidad Discretas y Continuas PREGUNTA #1 Qué es una variable aleatoria uniforme discreta? Cómo es su distribución? Qué es una variable aleatoria uniforme
Variables aleatorias
Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando
Unidad Temática 3: Probabilidad y Variables Aleatorias
Unidad Temática 3: Probabilidad y Variables Aleatorias 1) Qué entiende por probabilidad? Cómo lo relaciona con los Sistemas de Comunicaciones? Probabilidad - Definiciones Experimento aleatorio: Un experimento
Modelos de distribuciones discretas y continuas
Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Modelos de distribuciones discretas y continuas Estadística I curso 2008 2009 1. Distribuciones discretas Aquellas
LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL.
LECTURA 1: LA DISTRIBUCIÓN NORMAL GENERAL LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I) TEMA 1: LA DISTRIBUCION NORMAL GENERAL PROPIEDADES 1 INTRODUCCION La distribución de probabilidad continua más importante
Modelado de la aleatoriedad: Distribuciones
Modelado de la aleatoriedad: Distribuciones Begoña Vitoriano Villanueva [email protected] Facultad de CC. Matemáticas Universidad Complutense de Madrid I. Distribuciones Discretas Bernoulli (p) Aplicaciones:
Variables aleatorias
Distribuciones continuas Se dice que una variable aleatoria X tiene una distribución continua, o que X es una variable continua, si existe una función no negativa f, definida sobre los números reales,
Teorema Central del Límite (1)
Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico
Cálculo de Probabilidades II Preguntas Tema 1
Cálculo de Probabilidades II Preguntas Tema 1 1. Suponga que un experimento consiste en lanzar un par de dados, Sea X El número máximo de los puntos obtenidos y Y Suma de los puntos obtenidos. Obtenga
Muestreo de variables aleatorias
Estadística II Universidad de Salamanca Curso 2011/2012 Outline 1 Introducción 2 Distribución de la muestra 3 4 5 Distribuciones de la media y la varianza en poblaciones normales Introducción Tiene como
Cálculo y EstadísTICa. Primer Semestre.
Cálculo y EstadísTICa. Primer Semestre. EstadísTICa Curso Primero Graduado en Geomática y Topografía Escuela Técnica Superior de Ingenieros en Topografía, Geodesia y Cartografía. Universidad Politécnica
( ) DISTRIBUCIÓN UNIFORME (o rectangular) 1 b a. para x > b DISTRIBUCIÓN DE CAUCHY. x ) DISTRIBUCIÓN EXPONENCIAL. α α 2 DISTRIBUCIÓN DE LAPLACE
Estudiamos algunos ejemplos de distribuciones de variables aleatorias continuas. De ellas merecen especial mención las derivadas de la distribución normal (χ, t de Student y F de Snedecor), por su importancia
Tema 8. Fundamentos de Análisis discriminante
Máster en Técnicas Estadísticas Análisis Multivariante. Año 2008 2009. Profesor: César Sánchez Sellero. Tema 8. Fundamentos de Análisis discriminante 8.1. Introducción. Empezamos deniendo el problema discriminante.
TALLER N 4 DE ESTADÍSTICA
UNIVERSIDAD CATÓLICA DEL MAULE FACULTAD DE CIENCIAS BÁSICAS PEDAGOGÍA EN MATEMÁTICA Y COMPUTACIÓN TALLER N 4 DE ESTADÍSTICA Integrante 1 : Victor Córdova Cornejo ([email protected]) Integrante 2 : Rodrigo
INDICE. Prólogo a la Segunda Edición
INDICE Prólogo a la Segunda Edición XV Prefacio XVI Capitulo 1. Análisis de datos de Negocios 1 1.1. Definición de estadística de negocios 1 1.2. Estadística descriptiva r inferencia estadística 1 1.3.
Estadística Aplicada
Estadística Aplicada Distribuciones de Probabilidad Variables aleatorias Toman un valor numérico para cada resultado de un espacio muestral Discretas. Sus valores posibles constituyen un conjunto discreto.
Prueba Integral Lapso /6
Prueba Integral Lapso 2 009-2 76 - /6 Universidad Nacional Abierta Probabilidad y Estadística I (76) Vicerrectorado Académico Cód. Carrera: 06-20 - 508 Fecha: 2-2 - 2 009 MODELO DE RESPUESTAS Objetivos,
GRADO en INGENIERIA de TELECOMUNICACION (Sistemas de comunicaciones, audiovisuales y telemática)
GRADO en INGENIERIA de TELECOMUNICACION (Sistemas de comunicaciones, audiovisuales y telemática) ESTADISTICA 2008-2009 PRACTICA 2. VARIABLES ALEATORIAS OBJETIVOS: Introducción a las variables aleatorias:
Tema 4: Probabilidad y Teoría de Muestras
Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009
Tema 8: Contraste de hipótesis
Tema 8: Contraste de hipótesis 1 En este tema: Conceptos fundamentales: hipótesis nula y alternativa, nivel de significación, error de tipo I y tipo II, p-valor. Contraste de hipótesis e IC. Contraste
Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria
Tema 4: Variables aleatorias discretas Objetivos Dominar el uso de las funciones asociadas a una variable aleatoria discreta para calcular probabilidades. Conocer el signicado y saber calcular la esperanza
VARIABLES ALEATORIAS DISCRETAS
VARIABLES ALEATORIAS DISCRETAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Variables Aleatorias Variables Aleatorias Definición:
Distribuciones de probabilidad bidimensionales o conjuntas
Distribuciones de probabilidad bidimensionales o conjuntas Si disponemos de dos variables aleatorias podemos definir distribuciones bidimensionales de forma semejante al caso unidimensional. Para el caso
Universidad Nacional Abierta Estadística General (745) Vicerrectorado Académico Cód. Carrera: Área de Matemática Fecha:
Integral Lapso 2010-2 745 1/5 Universidad Nacional Abierta Estadística General (745) Vicerrectorado Académico Cód. Carrera: 610-612-613 Fecha: 26-02-2011 OBJ. 2 PTA 1 MODELO DE RESPUESTAS Objetivos 2,
Tema 13: Distribuciones de probabilidad. Estadística
Tema 13: Distribuciones de probabilidad. Estadística 1. Variable aleatoria Una variable aleatoria es una función que asocia a cada elemento del espacio muestral, de un experimento aleatorio, un número
Prof. Eliana Guzmán U. Semestre A-2015
Unidad III. Variables aleatorias Prof. Eliana Guzmán U. Semestre A-2015 Variable Aleatoria Concepto: es una función que asigna un número real, a cada elemento del espacio muestral. Solo los experimentos
CONTRASTE DE HIPÓTESIS
CONTRASTE DE HIPÓTESIS Antonio Morillas A. Morillas: Contraste de hipótesis 1 CONTRASTE DE HIPÓTESIS 1. Introducción 2. Conceptos básicos 3. Región crítica óptima i. Teorema de Neyman-Pearson ii. Región
viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos
Contenido Acerca de los autores.............................. Prefacio.... xvii CAPÍTULO 1 Introducción... 1 Introducción.............................................. 1 1.1 Ideas de la estadística.........................................
INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)
TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de
Ejercicios de Variables Aleatorias
Ejercicios de Variables Aleatorias Elisa M. Molanes-López, Depto. Estadística, UC3M Transformaciones de variables aleatorias Ejercicio. Sea X una v.a. continua con función de densidad dada por: /, si
Variables aleatòries vectorials Els problemes assenyalats amb un (*) se faran a classe. 1.- Los estudiantes de una universidad se clasifican de acuerdo a sus años en la universidad (X) y el número de visitas
Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev
PROBABILIDAD Y ESTADÍSTICA Sesión MODELOS ANALÍTICOS DE FENÓMENOS ALEATORIOS CONTINUOS. Definición de variable aleatoria continua. Función de densidad y acumulatíva. Valor esperado, varianza y desviación
Tema 3. VARIABLES ALEATORIAS.
3..- Introducción. Tema 3. VARIABLES ALEATORIAS. Objetivo: Encontrar modelos matemáticos para el trabajo con probabilidad de sucesos. En particular, se quiere trabajar con funciones reales de variable
III Verano de Probabilidad y Estadística Curso de Procesos de Poisson (Víctor Pérez Abreu) Lista de Ejercicios
III Verano de Probabilidad y Estadística Curso de Procesos de Poisson (Víctor Pérez Abreu) Lista de Ejercicios Esta lista contiene ejercicios y problemas tanto teóricos como de modelación. El objetivo
Probabilidad y Estadística
Probabilidad y Estadística Tema 4 Variables aleatorias Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Describir las características de las variables aleatorias discretas y continuas.
Introducción al Tema 8. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones.
Introducción al Tema 8 1 Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones. V.A. de uso frecuente Tema 7. Modelos probabiĺısticos discretos
MANTENIMIENTO INDUSTRIAL.
REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD ALONSO DE OJEDA FACULTAD DE INGENIERÍA ESCUELA DE INDUSTRIAL MANTENIMIENTO INDUSTRIAL. Realizado por: Ing. Danmelys Perozo UNIDAD II: ESTADÍSTICAS DE FALLAS
Curso de Probabilidad y Estadística
Curso de Probabilidad y Estadística Distribuciones de Probabilidad Dr. José Antonio Camarena Ibarrola [email protected] Universidad Michoacana de San Nicolás de Hidalgo Facultad de Ingeniería Eléctrica
Variables aleatorias bidimensionales discretas
Universidad de San Carlos de Guatemala Facultad de Ingeniería Área de Estadística VARIABLES ALEATORIAS BIDIMENSIONALES Concepto: Sean X e Y variables aleatorias. Una variable aleatoria bidimensional (X,
Teorema de Bayes(6) Nos interesan las probabilidades a posteriori o probabilidades originales de las partes p i :
Teorema de Bayes(5) 75 Gráficamente, tenemos un suceso A en un espacio muestral particionado. Conocemos las probabilidades a priori o probabilidades de las partes sabiendo que ocurrió A: Teorema de Bayes(6)
ECUACIONES DIFERENCIALES DE PRIMER ORDEN
ECUACIONES DIFERENCIALES DE PRIMER ORDEN Sergio Stive Solano 1 Abril de 2013 1 Visita http://sergiosolanosabie.wikispaces.com ECUACIONES DIFERENCIALES DE PRIMER ORDEN Sergio Stive Solano 1 Abril de 2013
Integral de Fourier y espectros continuos
9 2 2 2 Esta expresión se denomina forma de Angulo fase (o forma armónica) de la serie de Fourier. Integral de Fourier y espectros continuos Las series de Fourier son una herramienta útil para representar
Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR
Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis Facultad de Ciencias Sociales, UdelaR Índice 1. Introducción: hipótesis estadística, tipos de hipótesis, prueba de hipótesis 2.
Variables aleatorias unidimensionales
Estadística II Universidad de Salamanca Curso 2011/2012 Outline Variable aleatoria 1 Variable aleatoria 2 3 4 Variable aleatoria Definición Las variables aleatorias son funciones cuyos valores dependen
Primer examen parcial Geometría y Álgebra Lineal 1 2 de mayo de 2015 Respuestas y solución
Primer examen parcial Geometría y Álgebra Lineal 1 2 de mayo de 2015 Respuestas y solución Respuestas a la versión 1: (La versión 1 es aquélla cuyo primer ejercicio dice Un sistema lineal de m ecuaciones
Intersección y suma de subespacios
Intersección y suma de subespacios Objetivos Demostrar que la intersección y la suma de dos subespacios de un espacio vectorial también son sus subespaicios Requisitos Espacio vectorial, subespacio vectorial
Capítulo 6: Variable Aleatoria Bidimensional
Capítulo 6: Variable Aleatoria Bidimensional Cuando introducíamos el concepto de variable aleatoria unidimensional, decíamos que se pretendía modelizar los resultados de un experimento aleatorio en el
Repaso de conceptos de álgebra lineal
MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN Manuel Sánchez-Montañés Luis Lago Ana González Escuela Politécnica Superior Universidad Autónoma de Madrid Repaso
Maestría en Bioinformática Probabilidad y Estadística: Clase 3
Maestría en Bioinformática Probabilidad y Estadística: Clase 3 Gustavo Guerberoff [email protected] Facultad de Ingeniería Universidad de la República Abril de 2010 Contenidos 1 Variables aleatorias
Contrastes de hipótesis. 1: Ideas generales
Contrastes de hipótesis 1: Ideas generales 1 Inferencia Estadística paramétrica población Muestra de individuos Técnicas de muestreo X 1 X 2 X 3.. X n Inferencia Estadística: métodos y procedimientos que
1.1. Distribución exponencial. Definición y propiedades
CONTENIDOS 1.1. Distribución exponencial. Definición y propiedades 1.2. Procesos de conteo 1.3. Procesos de Poisson - Tiempos de espera y entre llegadas - Partición y mezcla de un proceso de Poisson -
3. Determinantes. Propiedades. Depto. de Álgebra, curso
Depto de Álgebra curso 06-07 3 Determinantes Propiedades Ejercicio 3 Use la definición para calcular el valor del determinante de cada una de las siguientes matrices: 3 0 0 α A = 5 4 0 A = 6 A 3 = 0 β
Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:
Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz
Discretas. Continuas
UNIDAD 0. DISTRIBUCIÓN TEÓRICA DE PROBABILIDAD Discretas Binomial Distribución Teórica de Probabilidad Poisson Normal Continuas Normal Estándar 0.1. Una distribución de probabilidad es un despliegue de
Distribuciones Probabilísticas. Curso de Estadística TAE,2005 J.J. Gómez Cadenas
Distribuciones Probabilísticas Curso de Estadística TAE,005 J.J. Gómez Cadenas Distribución Binomial Considerar N observaciones independientes tales que: El resultado de cada experimento es acierto o fallo
TAMAÑO DE MUESTRA EN LA ESTIMACIÓN DE LA MEDIA DE UNA POBLACIÓN
TAMAÑO DE MUESTRA EN LA ESTIMACIÓN DE LA MEDIA DE UNA POBLACIÓN En este artículo, se trata de explicar una metodología estadística sencilla y sobre todo práctica, para la estimación del tamaño de muestra
Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS
Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS Grado en Matemáticas Curso 203-204 . Ecuaciones lineales con coeficientes constantes Ecuaciones de primer orden. Encontrar la solución de los siguientes
Distribuciones de probabilidad
Distribuciones de probabilidad Prof, Dr. Jose Jacobo Zubcoff Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir
UTN FRBA Final de Álgebra y Geometría Analítica 21/05/2013. Apellido y nombre del alumno: Leg.:.. Corrigió: Revisó:...
UTN FRBA Final de Álgebra y Geometría Analítica 1/05/01 Apellido y nombre del alumno: Leg.:.. Corrigió: Revisó:... La condición para aprobar esta evaluación es tener bien resueltos como mínimo tres ejercicios.
Rectas y Planos en el Espacio
Rectas y Planos en el Espacio Rectas y Planos en el Espacio Verónica Briceño V. octubre 2013 En esta Presentación... En esta Presentación veremos: Rectas En esta Presentación... En esta Presentación veremos:
Tema 9: Contraste de hipótesis.
Estadística 84 Tema 9: Contraste de hipótesis. 9.1 Introducción. El objetivo de este tema es proporcionar métodos que permiten decidir si una hipótesis estadística debe o no ser rechazada, en base a los
EJERCICIOS PROPUESTOS: Interpolación
EJERCICIOS PROPUESTOS: Interpolación 1º. Determínese el polinomio de primer grado que en x = 1 toma el valor y en x 1 = toma el valor. Para ello: a) Escríbase el sistema de ecuaciones lineales que proporciona
CUÁL SERIA LA PREDICCION OPTIMA DEL ESTADO DEL TIEMPO AL DIA SIGUIENTE?
TEOREMA DE BAYES Explica como considerar matemáticamente la nueva información en la toma de decisiones. P( AΙB) = P( A B) P( B) = P( A) P( BΙA) P( B) PROBLEMA: En cierto lugar llueve el 40% de los días
Tema 4: Probabilidad y Teoría de Muestras
Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009
Tema 5. Muestreo y distribuciones muestrales
1 Tema 5. Muestreo y distribuciones muestrales En este tema: Muestreo y muestras aleatorias simples. Distribución de la media muestral: Esperanza y varianza. Distribución exacta en el caso normal. Distribución
INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión
INTERPRETACIÓN DE LA REGRESIÓN Este gráfico muestra el salario por hora de 570 individuos. 1 Interpretación de la regresión. regresión Salario-Estudios Source SS df MS Number of obs = 570 ---------+------------------------------
Modelos Estocásticos I Tercer Examen Parcial Respuestas
Modelos Estocásticos I Tercer Examen Parcial Respuestas. a Cuál es la diferencia entre un estado recurrente positivo y uno recurrente nulo? Cómo se define el período de un estado? Demuestre que si el estado
Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste
1 Contraste de hipótesis Tema 3 1. Pasos del contraste de hipótesis 1.1 Hipótesis estadísticas: nula y alternativa 1.2 Supuestos 1.3 Estadístico de contraste 1.4 Regla de decisión: zona de aceptación y
El Algoritmo E-M. José Antonio Camarena Ibarrola
El Algoritmo E-M José Antonio Camarena Ibarrola Introducción Método para encontrar una estimación de máima verosimilitud para un parámetro ѳ de una distribución Ejemplo simple 24 Si tiene las temperaturas
Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana.
Página 1 de 7 DISTRIBUCIÓN NORMAL o campana de Gauss-Laplace Esta distribución es frecuentemente utilizada en las aplicaciones estadísticas. Su propio nombre indica su extendida utilización, justificada
Problemas de VC para EDVC elaborados por C. Mora, Tema 4
Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Ejercicio Determinar las funciones enteras f para las que Solución f( + w) = f()f(w), w C. En primer lugar, f(0) = f(0 + 0) = f(0)f(0) = f(0) 2,
Tema 6. Variables aleatorias continuas
Tema 6. Variables aleatorias continuas Resumen del tema 6.1. Definición de variable aleatoria continua Identificación de una variable aleatoria continua X: es preciso conocer su función de densidad, f(x),
Tema 1. Espacios Vectoriales Definición de Espacio Vectorial
Tema 1 Espacios Vectoriales. 1.1. Definición de Espacio Vectorial Notas 1.1.1. Denotaremos por N, Z, Q, R, C, a los conjuntos de los números Naturales, Enteros, Racionales, Reales y Complejos, respectivamente.
Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás
Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 13 Capítulo 6 Año 5 6.1. Modelo 5 - Opción A Problema 6.1.1 ( puntos) Justificar razonadamente
Métodos Numéricos: Ejercicios resueltos
Métodos Numéricos: Ejercicios resueltos Tema 6: Resolución aproximada de sistemas de ecuaciones lineales Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica
PROBABILIDAD Y ESTADÍSTICA
FACULTAD DE INGENIERÍA U N A M PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro [email protected] T E M A S DEL CURSO 1. Análisis Estadístico de datos muestrales. 2. Fundamentos de la Teoría de la
Matrices, Determinantes y Sistemas Lineales.
12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión
Unidad IV: Distribuciones muestrales
Unidad IV: Distribuciones muestrales 4.1 Función de probabilidad En teoría de la probabilidad, una función de probabilidad (también denominada función de masa de probabilidad) es una función que asocia
Generación de Variables Aleatorias. UCR ECCI CI-1453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides
Generación de Variables Aleatorias UCR ECCI CI-453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción Las variables aleatorias se representan por medio de distribuciones
2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...
Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................
Pruebas de Hipótesis. Diseño Estadístico y Herramientas para la Calidad. Pruebas de Hipótesis. Hipótesis
Diseño Estadístico y Herramientas para la Calidad Pruebas de Hipótesis Expositor: Dr. Juan José Flores Romero [email protected] http://lsc.fie.umich.mx/~juan M. en Calidad Total y Competitividad Pruebas de
Conjunto R 3 y operaciones lineales en R 3
Conjunto R 3 y operaciones lineales en R 3 Objetivos. Definir el conjunto R 3 y operaciones lineales en R 3. Requisitos. Conjunto de los números reales R, propiedades de las operaciones aritméticas en
Clase 3. Procesos estocásticos en Teoría de la señal.
1 Introducción Clase 3. Procesos estocásticos en Teoría de la señal. Como ya se comentó en la clase anterior, el ruido es una señal inherente a cualquier transmisión de telecomunicación. El ruido es una
Tema 2: Análisis Discriminante
Tema 2: Análisis Discriminante P 1 P 2 Problema de clasificación: Ténemos observaciones que corresponden a 2 grupos P_1, P_2. Si nos dan uno nuevo x_0 a que grupo pertenece? Guión 1. Motivación 2. Clasificación
Modelos elección discreta y variable dependiente limitada
Modelos elección discreta y variable dependiente limitada Profesor: Graciela Sanroman Facultad de Ciencias Económicas y Administración Año 2010 Modelos multinomiales Los modelos multinomiales son aquellos
Espacios vectoriales
Espacios vectoriales [Versión preliminar] Prof. Isabel Arratia Z. Algebra Lineal 1 En el estudio de las matrices y, en particular, de los sistemas de ecuaciones lineales realizamos sumas y multiplicación
Cap. 5 : Distribuciones muestrales
Cap. 5 : Distribuciones muestrales Alexandre Blondin Massé Departamento de Informática y Matematica Université du Québec à Chicoutimi 18 de junio del 2015 Modelado de sistemas aleatorios Ingeniería de
