Distribuciones unidimensionales continuas
|
|
|
- Lorena Jiménez San Martín
- hace 8 años
- Vistas:
Transcripción
1 Estadística II Universidad de Salamanca Curso 2011/2012
2 Outline 1 Distribución uniforme continua 2 Estándar 3 Distribución χ 2 de Pearson 4
3 Distribución uniforme continua Definición Es una variable continua cuyos valores se distribuyen uniformemente sobre un intervalo (a, b) X representa la elección de un punto al azar en el intervalo (a, b) X U(a, b)
4 Distribución uniforme continua Función de densidad f X (x) = { 1 b a si a < x < b, ( < a < b < ) 0 en el resto. Características E(X) = a+b 2 = Me Var(X) = (b a)2 12
5 Distribución uniforme continua Propiedades Sea X U(a, b) Y = cx + d U(c.a+d, c.b+d), c > 0 Y = cx + d U(c.b+d, c.a+d), c < 0 Sea X una variable aleatoria continua con función de distribución estrictamente creciente Y = F X (x) U(0, 1)
6 Distribución uniforme continua Example El volumen de precipitaciones estimado para el próximo año en la ciudad de León va a oscilar entre 400 y 500 litros por metro cuadrado. Calcular: 1 La función de densidad 2 La función de distribución 3 La precipitación media esperada
7 Distribución uniforme continua Example 1 2 f X (x) = { si 400 < x < 500, 0 en el resto. 0 x < 400, x 400 F X (x) = < x < 500, 1 x> E(X) = = 450
8 Estándar Definición Esta distribución es sin duda la más importante tanto en el Cálculo de Probabilidades como en la Estadística Definición X N(µ,σ)
9 Estándar Función de densidad f X (x) = 1 2πσ e 1 2 ( x µ σ )2 < x <,σ > 0 Características E(X) = µ = Me = Mo Var(X) = σ 2
10 Estándar Propiedad de la constante Sea X N(µ,σ) Y = k.x N(k.µ, k.σ) Y = X k N(µ k, σ k ) Y = ax + b N(a.µ+b, a.σ)
11 Estándar Propiedad reproductiva Sean X N(µ 1,σ 1 ) y Y N(µ 2,σ 2 ) v.a. continuas independientes X + Y N(µ 1 +µ 2, σ1 2 +σ2 2 ) X Y N(µ 1 µ 2, σ1 2 +σ2 2 ) Sea X i N(µ i,σ i ), i = 1,...,n v.a. continuas independientes n n X i N( µ i, n σi 2) i=1 i=1 i=1
12 Estándar Propiedad reproductiva Sea X i N(µ i,σ i ), i = 1,...,n v.a. continuas independientes n n Y = a i.x i + b N( a i.µ i + b, n a 2 i σ2 i ) i=1 i=1 i=1 n n Y = a i.x i b N( a i.µ i b, n a 2 i σ2 i ) i=1 i=1 i=1
13 Estándar Propiedad reproductiva Sea X i N(µ,σ), i = 1,...,n v.a. continuas independientes e igualmente distribuidas n X i N(n.µ, n.σ 2 ) i=1
14 Estándar Calculo de probabilidades Para calcular probabilidades, No se integra!! se tipifica la variable pasando a la distribución a la N(0, 1) y se busca en sus tablas X N(µ, σ 2 ) Z = X µ σ N(0, 1)
15 Outline Distribución uniforme continua Estándar 1 Distribución uniforme continua 2 Estándar 3 Distribución χ 2 de Pearson 4
16 Estándar Estándar Definición X N(0, 1) Función de densidad f X (x) = 1 2π e 1 2 x2 < x < Características E(X) = 0 = Me = Mo Var(X) = 1
17 Estándar Estándar Función de densidad simétrica, lo que supone: F X (x) = F X ( x) P[X x] = P[X x] P[X x] = P[X x] = F X (x)
18 Estándar Estándar Example P(Z 0, 45) = 0, 6736 P(Z > 1, 24) = 1 p(z 1, 24) = 1 0, 8925 = 0, 1075 P(Z 0, 72) = P(Z > 0, 72) = 1 P(Z 0, 72) = 1 0, 7642 = 0, 2358 P( 1, 76 < Z 0, 5) = P(0, 5 Z 1, 76) = P(Z 1, 76) P(z 0, 5) = 0, , 6915 = 0, 2693 P( Z 1,21) = P(Z 1,21)+P(Z 1,21) = 2.P(Z 1,21) = 2.(1 P(Z 1,21) = 2.(1 0,8869) = 0,2262
19 Estándar Estándar Example P( Z 1,21) = P( 1,21 < Z 1,21) = P(Z 1,21) P(Z 1,21) = P(Z 1,21) P(Z 1,21) = P(Z 1,21) (1 P(Z 1,21) = 2.P(Z 1,21) 1 = 0,7738 Example P[Z z α ] = 0,90 z α = z 90 = 1, 28 P[Z z α ] = 0,15 z α = z 0,85 = 1, 04 P[ Z z α ] = 0,80 z α = z 0,90 = 1, 28 P[ Z z α ] = 0,16 z α = z 0,92 = 1, 41
20 Outline Distribución uniforme continua Distribuciónχ 2 de Pearson 1 Distribución uniforme continua 2 Estándar 3 Distribución χ 2 de Pearson 4
21 Distribución χ 2 de Pearson Distribuciónχ 2 de Pearson Definición Es la suma del cuadrado de n (siendo n el grado de libertad) variables aleatorias independientes normales con distribución N(0, 1). Definición X χ 2 n
22 Distribución χ 2 de Pearson Distribuciónχ 2 de Pearson Función de densidad f X (x) = ( 1 2 ) n 2 γ( n 2 ).x n 2 1.e x 2 Características E(X) = n Var(X) = 2.n
23 Distribución χ 2 de Pearson Propiedad reproductiva Distribuciónχ 2 de Pearson Sean X 1 χ 2 n 1 y X 2 χ 2 n 2 v.a. continuas independientes X 1 + X 2 χ 2 n 1 +n 2 Sea X i χ 2 n i, i = 1,...,k v.a. continuas independientes k X i χ 2 k i=1 n i i=1 Sea X i χ 2 n, i = 1,..., k v.a. continuas independientes k X i χ 2 k.n i=1
24 Distribución χ 2 de Pearson Distribuciónχ 2 de Pearson Propiedad Sean X 1 χ 2 n 1 e Y = X 1 + X 2 χ 2 n v.a. continuas, siendo X 1 y X 2 independientes X 2 χ 2 n n 1
25 Distribución χ 2 de Pearson Distribuciónχ 2 de Pearson Aproximaciones Cuando n > 100, χ 2 n se aproxima a una N(0, 1) X 2 χ 2 n n 1
26 Outline Distribución uniforme continua Distribuciónχ 2 de Pearson 1 Distribución uniforme continua 2 Estándar 3 Distribución χ 2 de Pearson 4
27 Distribuciónχ 2 de Pearson Definición Si X 1, X 2,..., X n son v.a.i.id. con distribución N(0, 1). Entonces: X T = X 2 1,+X X n 2 n Definición T t n
28 Distribuciónχ 2 de Pearson Función de densidad Características E(T) = 0 f X (x) = γ( n+1 2 ) nπγ( n 2 ). Var(T) = n n 2 para n > 2 (1+ x 2 n ) n+1 2
29 Distribuciónχ 2 de Pearson Propiedades Tiene un perfil similar a la N(0, 1) Cuando n > 30 se aproxima a una N(0, 1)
30 Outline Distribución uniforme continua Distribuciónχ 2 de Pearson 1 Distribución uniforme continua 2 Estándar 3 Distribución χ 2 de Pearson 4
31 Distribuciónχ 2 de Pearson Definición Si X 1, X 2,..., X n1 e Y 1, Y 2,...,Y n2 son v.a.i.id. con distribución N(0, 1). Entonces: Definición U = X 2 1 +X X 2 n 1 n 1 Y 2 1 +Y Y 2 n 2 n 2 U F n1,n 2
32 Distribuciónχ 2 de Pearson Función de densidad Características E(U) = n 2 n 2 2 para n 2 > 2 f X (x) = γ( n 1+n 2 n 2 ) γ( n 1 2 )γ( n 2 2 ).n 12 n2 1.n 2 2 Var(T) = 2.n2 2 (n 1+n 2 2) n 1 (n 2 4)(n 2 2) 2 para n 2 > 4
33 Distribuciónχ 2 de Pearson Propiedades t 2 n = F 1,n Si X F n1,n 2 entonces Y = 1 X F n 2,n 1
34 Definición Es una distribución utilizada por variables relacionadas con tiempos de duración (periodo de desempleo, vida de personas, vida de piezas, etc.) o tiempos de espera Notación X E(a)
35 Función de densidad f X (x) = a.e ax x > 0, a > 0 Características E(X) = 1 a Var(X) = 1 a 2
ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ
ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ Probabilidad - Período de retorno y riesgo La probabilidad de ocurrencia de un fenómeno en hidrología puede citarse de varias Formas: El
Introducción al Tema 8. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones.
Introducción al Tema 8 1 Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones. V.A. de uso frecuente Tema 7. Modelos probabiĺısticos discretos
Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid
Probabilidad II Algunas distribuciones notables Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid La distribución normal f (x; µ, σ) = 1 σ 2π e 1 2( x µ σ ) 2, x R, µ R, σ > 0 E(X
Variable Aleatoria Continua. Principales Distribuciones
Variable Aleatoria Continua. Definición de v. a. continua Función de Densidad Función de Distribución Características de las v.a. continuas continuas Ejercicios Definición de v. a. continua Las variables
Distribuciones Continuas de. Probabilidad. Dr. Víctor Aguirre Torres, ITAM. Guión 7.
Distribuciones Continuas de Probabilidad 1 Contenido 1. Ejemplo. 2. Diferencia entre variables aleatorias discretas y continuas. 3. Diferencia de f(x) entre variables aleatorias discretas y continuas.
Curso de Probabilidad y Estadística
Curso de Probabilidad y Estadística Distribuciones de Probabilidad Dr. José Antonio Camarena Ibarrola [email protected] Universidad Michoacana de San Nicolás de Hidalgo Facultad de Ingeniería Eléctrica
Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:
Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz
Modelado de la aleatoriedad: Distribuciones
Modelado de la aleatoriedad: Distribuciones Begoña Vitoriano Villanueva [email protected] Facultad de CC. Matemáticas Universidad Complutense de Madrid I. Distribuciones Discretas Bernoulli (p) Aplicaciones:
Gráficas de funciones de masa de probabilidad y de función de densidad de probabilidad de Distribuciones especiales. x n
Gráficas de funciones de masa de probabilidad y de función de densidad de probabilidad de Distribuciones especiales 1. Función de distribución binomial: Si X distribuye bin ( n, p), entonces f n x x n
Tema 4: Probabilidad y Teoría de Muestras
Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009
Métodos Estadísticos de la Ingeniería Tema 7: Momentos de Variables Aleatorias Grupo B
Métodos Estadísticos de la Ingeniería Tema 7: Momentos de Variables Aleatorias Grupo B Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Marzo 2010 Contenidos...............................................................
Tema 6. Variables aleatorias continuas
Tema 6. Variables aleatorias continuas Resumen del tema 6.1. Definición de variable aleatoria continua Identificación de una variable aleatoria continua X: es preciso conocer su función de densidad, f(x),
Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico
Formulario. Estadística Administrativa Módulo 1. Introducción al análisis estadístico Histogramas El número de intervalos de clase, k, se elige de tal forma que el valor 2 k sea menor (pero el valor más
Cálculo de Probabilidades II Preguntas Tema 1
Cálculo de Probabilidades II Preguntas Tema 1 1. Suponga que un experimento consiste en lanzar un par de dados, Sea X El número máximo de los puntos obtenidos y Y Suma de los puntos obtenidos. Obtenga
Estadística y sus aplicaciones en Ciencias Sociales 2. Modelos de probabilidad
Estadística y sus aplicaciones en Ciencias Sociales 2. Modelos de probabilidad Facultad de Ciencias Sociales Universidad de la República Curso 2016 Índice 2.1. Variables aleatorias: funciones de distribución,
Variables aleatorias unidimensionales
Estadística II Universidad de Salamanca Curso 2011/2012 Outline Variable aleatoria 1 Variable aleatoria 2 3 4 Variable aleatoria Definición Las variables aleatorias son funciones cuyos valores dependen
F (x, y) = no es la función de distribución acumulada de ningún vector aleatorio. b) Mostrar que. { (1 e x )(1 e y ) si x 0, y 0
Probabilidades y Estadística (M) Práctica 5 1 o cuatrimestre 2014 Vectores aleatorios 1. a) Demostrar que la función F (x, y) = 1 e x y si x 0, y 0 0 en caso contrario no es la función de distribución
Distribuciones de probabilidad más usuales
Tema 5 Distribuciones de probabilidad más usuales En este tema se estudiarán algunas de las distribuciones discretas y continuas más comunes, que se pueden aplicar a una gran diversidad de problemas y
Tema 2: Magnitudes aleatorias
Facultad de Economía y Empresa 1 Prácticas Tema.- Magnitudes aleatorias Tema : Magnitudes aleatorias DEMANDA La demanda de cierto artículo es una variable aleatoria con la siguiente distribución: Número
Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides
Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda
LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL.
LECTURA 1: LA DISTRIBUCIÓN NORMAL GENERAL LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I) TEMA 1: LA DISTRIBUCION NORMAL GENERAL PROPIEDADES 1 INTRODUCCION La distribución de probabilidad continua más importante
5 Variables aleatorias contínuas
5 Variables aleatorias contínuas Una variable aleatoria continua puede tomar cualquier valor en un intervalo de números reales.. Función de densidad. La función de densidad de una variable aleatoria continua
Tema 5. Muestreo y distribuciones muestrales
1 Tema 5. Muestreo y distribuciones muestrales En este tema: Muestreo y muestras aleatorias simples. Distribución de la media muestral: Esperanza y varianza. Distribución exacta en el caso normal. Distribución
Tema 8. Muestreo. Indice
Tema 8. Muestreo Indice 1. Población y muestra.... 2 2. Tipos de muestreos.... 3 3. Distribución muestral de las medias.... 4 4. Distribución muestral de las proporciones.... 6 Apuntes realizados por José
Tema 8: Contraste de hipótesis
Tema 8: Contraste de hipótesis 1 En este tema: Conceptos fundamentales: hipótesis nula y alternativa, nivel de significación, error de tipo I y tipo II, p-valor. Contraste de hipótesis e IC. Contraste
VARIABLES ALEATORIAS DISCRETAS
VARIABLES ALEATORIAS DISCRETAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Variables Aleatorias Variables Aleatorias Definición:
Tema 4: Probabilidad y Teoría de Muestras
Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009
X = beneficio del jugador = (ganancia neta) (recursos invertidos) Cuántos euros debo poner yo para que el juego sea justo?
Ejemplo: el valor esperado y los juegos justos. En los juegos de azar es importante la variable aleatoria X = beneficio del jugador = (ganancia neta) (recursos invertidos) El juego consiste en una caja
Algunas Distribuciones Estadísticas Teóricas. c) Relación entre la Distribuciones de Poisson y Exponencial.
Algunas Distribuciones Estadísticas Teóricas Distribución Continuas: a) Distribución Uniforme b) Distribución de Exponencial c) Relación entre la Distribuciones de Poisson y Exponencial. d) Distribución
a. N(19 5, 1 2) P(19 X 21) = P( Z ) = = P = P P = = P P = P = = = El 55 72% no son adecuados.
El diámetro de los tubos de cartón para un envase ha de estar entre 19 y 21mm. La maquina prepara tubos cuyos diámetros están distribuidos como una manual de media 19 5mm y desviación típica 1 2mm. Qué
INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)
TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de
EJERCICIOS RESUELTOS DE ESTADÍSTICA II
EJERCICIOS RESUELTOS DE ESTADÍSTICA II RESUMEN DE EJERCICIOS DADOS EN CLASES PARTE I POR: EILEEN JOHANA ARAGONES GENEY DISTRIBUCIONES DOCENTE: JUAN CARLOS V ERGARA SCHMALBACH ESTIMACIÓN PRUEBAS DE HIPÓTESIS
PROBABILIDAD. Es el conjunto de todos los resultados posibles de un experimento aleatorio. Por ejemplo: Experimento: tirar un dado.
1 PROBABILIDAD EXPERIMENTOS Al fijar las condiciones iniciales para un experimento se da lugar a dos tipos de situaciones: a) Experimentos determinísticos: se conoce el resultado. Por ejemplo: si suelto
Tema 3: Cálculo de Probabilidades Unidad 4: Algunas Distribuciones Notables de Variables Aleatorias
Estadística Tema 3: Cálculo de Probabilidades Unidad 4: Algunas Distribuciones Notables de Variables Aleatorias Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Noviembre 2010
Generación de variables aleatorias continuas Método de rechazo
Generación de variables aleatorias continuas Método de rechazo Georgina Flesia FaMAF 18 de abril, 2013 Método de Aceptación y Rechazo Repaso Se desea simular una v. a. X discreta, con probabilidad de masa
Definición 4.1 Diremos que una variable aleatoria discreta X tiene una distribución Uniforme de parámetro N, N 1, si. rg(x) = {1, 2,...
Índice 4 MODELOS DE DISTRIBUCIONES 4.1 4.1 Introducción.......................................... 4.1 4.2 Modelos de distribuciones discretas............................. 4.1 4.2.1 Distribución Uniforme
EJERCICIOS RESUELTOS DE ESTADÍSTICA II
EJERCICIOS RESUELTOS DE ESTADÍSTICA II RESUMEN DE EJERCICIOS DADOS EN CLASES POR: EILEEN JOHANA ARAGONES GENEY DISTRIBUCIONES DOCENTE: JUAN CARLOS VERGARA SCHMALBACH ESTIMACIÓN PRUEBAS DE HIPÓTESIS Grupo
A. PRUEBAS DE BONDAD DE AJUSTE: B.TABLAS DE CONTINGENCIA. Chi cuadrado Metodo G de Fisher Kolmogorov-Smirnov Lilliefords
A. PRUEBAS DE BONDAD DE AJUSTE: Chi cuadrado Metodo G de Fisher Kolmogorov-Smirnov Lilliefords B.TABLAS DE CONTINGENCIA Marta Alperin Prosora Adjunta de Estadística [email protected] http://www.fcnym.unlp.edu.ar/catedras/estadistica
Distribuciones unidimensionales discretas
Estadística II Universidad de Salamanca Curso 2011/2012 Outline 1 Distribución de Bernouilli de parámetro p 2 3 4 5 6 7 Distribución de Bernouilli de parámetro p Experimento de Bernouilli Es un experimento
Conceptos del contraste de hipótesis
Análisis de datos y gestión veterinaria Contraste de hipótesis Departamento de Producción Animal Facultad de Veterinaria Universidad de Córdoba Córdoba, 14 de Diciembre de 211 Conceptos del contraste de
Teorema Central del Límite (1)
Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico
Ejercicios de Variables Aleatorias
Ejercicios de Variables Aleatorias Elisa M. Molanes-López, Depto. Estadística, UC3M Transformaciones de variables aleatorias Ejercicio. Sea X una v.a. continua con función de densidad dada por: /, si
Prueba Integral Lapso /6
Prueba Integral Lapso 2 009-2 76 - /6 Universidad Nacional Abierta Probabilidad y Estadística I (76) Vicerrectorado Académico Cód. Carrera: 06-20 - 508 Fecha: 2-2 - 2 009 MODELO DE RESPUESTAS Objetivos,
Distribuciones de probabilidad bidimensionales o conjuntas
Distribuciones de probabilidad bidimensionales o conjuntas Si disponemos de dos variables aleatorias podemos definir distribuciones bidimensionales de forma semejante al caso unidimensional. Para el caso
Análisis Estadístico de Datos Climáticos. Distribuciones paramétricas de probabilidad (Wilks, cap. 4)
Análisis Estadístico de Datos Climáticos Distribuciones paramétricas de probabilidad (Wilks, cap. 4) 2013 Variables aleatorias Una variable aleatoria es aquella que toma un conjunto de valores numéricos
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 00-.003 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumno debe elegir sólo una de las pruebas (A o B) y, dentro de ella, sólo
Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev
PROBABILIDAD Y ESTADÍSTICA Sesión MODELOS ANALÍTICOS DE FENÓMENOS ALEATORIOS CONTINUOS. Definición de variable aleatoria continua. Función de densidad y acumulatíva. Valor esperado, varianza y desviación
Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos
Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Se considera el sistema lineal de ecuaciones, dependiente del parámetro
JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas
JUEGO DE BASKETBALL Repaso de Distribuciones de Probabilidad Discretas y Continuas PREGUNTA #1 Qué es una variable aleatoria uniforme discreta? Cómo es su distribución? Qué es una variable aleatoria uniforme
Variables aleatorias. Examen Junio La función de distribución de una variable continua X es de la forma:
TEMA 6: Variables aleatorias Examen Junio 003.- La función de distribución de una variable continua X es de la forma: 3 F ( t) = P( X t) = a + bt ct t, Se sabe que la densidad verifica f(-)=f()=0. [ ]
Maestría en Bioinformática Probabilidad y Estadística: Clase 3
Maestría en Bioinformática Probabilidad y Estadística: Clase 3 Gustavo Guerberoff [email protected] Facultad de Ingeniería Universidad de la República Abril de 2010 Contenidos 1 Variables aleatorias
= -6 0 A-1 A -1 = 1 A A = A d t Ad A-1 = X = A d = -5 2 A-1 =
www.clasesalacarta.com.- Universidad de Castilla la Mancha PAU/LOGSE Reserva-2 2.0 Opción A RESERVA _ 2 _ 20 a) Despeja la matriz X en la siguiente ecuación matricial: I - 2X + XA = B, suponiendo que todas
Probabilidad y Estadística
Probabilidad y Estadística Grado en Ingeniería Informática Tema 3 Variables aleatorias Javier Cárcamo Departamento de Matemáticas Universidad Autónoma de Madrid [email protected] Javier Cárcamo PREST.
INFERENCIA ESTADISTICA
1 INFERENCIA ESTADISTICA Es una rama de la Estadística que se ocupa de los procedimientos que nos permiten analizar y extraer conclusiones de una población a partir de los datos de una muestra aleatoria,
Variables Aleatorias. Introducción
Variables Aleatorias Introducción Concepto de variable aleatoria Es conveniente que los resultados de un experimento aleatorio estén expresados numéricamente. Se prueban tres componentes electrónicos,
INFERENCIA DE LA PROPORCIÓN
ESTADISTICA INFERENCIA DE LA PROPORCIÓN DISTRIBUCIÓN MUESTRAL DE PROPORCIONES En una población la proporción de elementos (personas, animales, cosas o entes) que posee una cierta característica es p. En
Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana.
Página 1 de 7 DISTRIBUCIÓN NORMAL o campana de Gauss-Laplace Esta distribución es frecuentemente utilizada en las aplicaciones estadísticas. Su propio nombre indica su extendida utilización, justificada
4. NÚMEROS PSEUDOALEATORIOS.
4. NÚMEROS PSEUDOALEATORIOS. En los experimentos de simulación es necesario generar valores para las variables aleatorias representadas estas por medio de distribuciones de probabilidad. Para poder generar
INTERVALOS DE CONFIANZA Julián de la Horra Departamento de Matemáticas U.A.M.
1 Introducción INTERVALOS DE CONFIANZA Julián de la Horra Departamento de Matemáticas U.A.M. En este capítulo, vamos a abordar la estimación mediante Intervalos de Confianza, que es otro de los tres grandes
Tema 5. Contraste de hipótesis (I)
Tema 5. Contraste de hipótesis (I) CA UNED de Huelva, "Profesor Dr. José Carlos Vílchez Martín" Introducción Bienvenida Objetivos pedagógicos: Conocer el concepto de hipótesis estadística Conocer y estimar
Prof. Eliana Guzmán U. Semestre A-2015
Unidad III. Variables aleatorias Prof. Eliana Guzmán U. Semestre A-2015 Variable Aleatoria Concepto: es una función que asigna un número real, a cada elemento del espacio muestral. Solo los experimentos
Estadística para la toma de decisiones
Estadística para la toma de decisiones ESTADÍSTICA PARA LA TOMA DE DECISIONES. 1 Sesión No. 7 Nombre: Distribuciones de probabilidad para variables continúas. Objetivo Al término de la sesión el estudiante
Generación de Variables Aleatorias. UCR ECCI CI-1453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides
Generación de Variables Aleatorias UCR ECCI CI-453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción Las variables aleatorias se representan por medio de distribuciones
Tema 3: Medidas de posición
Estadística I Universidad de Salamanca Curso 2010/2011 Outline 1 na 2 Outline na 1 na 2 aritmética na Definición: X X = N i=1 x i N = k i=1 x in i N = k x i f i i=1 Propiedades Es única No tiene porque
= P (Z ) - P (Z ) = P (Z 1 25) P (Z -1 25)= P (Z 1 25) [P (Z 1 25)] = P (Z 1 25) [1- P (Z 1 25)] =
El peso en kg de los estudiantes universitarios de una gran ciudad se supone aproximado por una distribución normal con media 60kg y desviación típica 8kg. Se toman 100 muestras aleatorias simples de 64
Variables aleatorias
Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando
Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ 2 conocida: Suponga que X 1, X 2,, X n, es una m.a.(n) desde N( µ, σ 2 )
Test de Hipótesis II Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ conocida: Suponga que X, X,, X n, es una m.a.(n) desde N( µ, σ ) Estadística de Prueba X - μ Z 0 = σ / n ~ N(0,)
Formulario y Tablas de Probabilidad para el Curso de Estadística II
Formulario y Tablas de Probabilidad para el Curso de Estadística II Ernesto Barrios Zamudio 1 José Ángel García Pérez2 Departamento Académico de Estadística Instituto Tecnológico Autónomo de México Octubre
DISTRIBUCIÓN DE POISSON
DISTRIBUCIÓN DE POISSON P O I S S O N Siméon Denis Poisson, (1781-1840), astronauta francés, alumno de Laplace y Lagrange, en Recherchés sur la probabilité des jugements..., un trabajo importante en probabilidad
Conceptos Básicos de Inferencia
Conceptos Básicos de Inferencia Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Inferencia Estadística Cuando obtenemos una muestra, conocemos
Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste
1 Contraste de hipótesis Tema 3 1. Pasos del contraste de hipótesis 1.1 Hipótesis estadísticas: nula y alternativa 1.2 Supuestos 1.3 Estadístico de contraste 1.4 Regla de decisión: zona de aceptación y
Unidad IV: Distribuciones muestrales
Unidad IV: Distribuciones muestrales 4.1 Función de probabilidad En teoría de la probabilidad, una función de probabilidad (también denominada función de masa de probabilidad) es una función que asocia
Tema 3 Variables aleatorias yprincipales distribuciones
Tema 3 Variables aleatorias yprincipales distribuciones 1. Variables aleatorias. Distribuciones de probabilidad de v. a. discretas 3. Distribución de probabilidad de v. a. continuas 4. ropiedades de las
Distribución Chi (o Ji) cuadrada (χ( 2 )
Distribución Chi (o Ji) cuadrada (χ( 2 ) PEARSON, KARL. On the Criterion that a Given System of Deviations from the Probable in the Case of a Correlated System of Variables is such that it Can Reasonably
Distribuciones de probabilidad con R Commander
Distribuciones de probabilidad con R Commander En el menú Distribuciones podemos seleccionar Distribuciones discretas Distribuciones continuas Las distribuciones discretas que aparecen en R Commander son
Repaso de conceptos de álgebra lineal
MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN Manuel Sánchez-Montañés Luis Lago Ana González Escuela Politécnica Superior Universidad Autónoma de Madrid Repaso
5. DISTRIBUCIOES COTIUAS DE PROBABILIDAD
Distribución normal 5. DISTRIBUCIOES COTIUAS DE PROBABILIDAD La distribución continua de probabilidad más importante en todo el campo de la estadística es la distribución normal. Su grafica, que se denomina
Tema 7: Estadística y probabilidad
Tema 7: Estadística y probabilidad En este tema revisaremos: 1. Representación de datos e interpretación de gráficas. 2. Estadística descriptiva. 3. Probabilidad elemental. Representaciones de datos Cuatro
Matemáticas 2.º Bachillerato. Intervalos de confianza. Contraste de hipótesis
Matemáticas 2.º Bachillerato Intervalos de confianza. Contraste de hipótesis Depto. Matemáticas IES Elaios Tema: Estadística Inferencial 1. MUESTREO ALEATORIO Presentación elaborada por el profesor José
Puntuaciones Estándarizadas, Distribución Normal y Aplicaciones. Dra. Noemí L. Ruiz Limardo 2008 Derechos de Autor Reservados, Revisado 2010
Puntuaciones Estándarizadas, Distribución Normal y Aplicaciones Dra. Noemí L. Ruiz Limardo 2008 Derechos de Autor Reservados, Revisado 2010 Objetivos de Lección Conocer características principales de una
Tema 5: Principales Distribuciones de Probabilidad
Tema 5: Principales Distribuciones de Probabilidad Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 5: Principales Distribuciones de Probabilidad
ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua
ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:
Intervalos de confianza
Capítulo 5 Intervalos de confianza Como su nombre indica, el objetivo de un estadístico puntual para un parámetro desconocido de una población, es acercarnos al verdadero valor del mismo dando un valor
Análisis de datos Categóricos
Introducción a los Modelos Lineales Generalizados Universidad Nacional Agraria La Molina 2016-1 Introducción Modelos Lineales Generalizados Introducción Componentes Estimación En los capítulos anteriores
Distribuciones de Probabilidad
Distribuciones de Probabilidad Variables Aleatorias Ahora se introducirá el concepto de variable aleatoria y luego se introducirán las distribuciones de probabilidad discretas más comunes en la práctica
PROBABILIDAD Y ESTADÍSTICA
FACULTAD DE INGENIERÍA U N A M PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro [email protected] T E M A S DEL CURSO 1. Análisis Estadístico de datos muestrales. 2. Fundamentos de la Teoría de la
Tema 4: Variables aleatorias multidimensionales
Tema 4: Variables aleatorias multidimensionales Los contenidos a desarrollar en este tema son los siguientes: Distribución conjunta de probabilidad Probabilidad/densidad marginales y condicionadas Independencia
478 Índice alfabético
Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión
Contrastes de Hipótesis paramétricos y no-paramétricos.
Capítulo 1 Contrastes de Hiptesis paramétricos y no-paramétricos. Estadística Inductiva o Inferencia Estadística: Conjunto de métodos que se fundamentan en la Teoría de la Probabilidad y que tienen por
Tema 4: Variables aleatorias multidimensionales
1 Tema 4: Variables aleatorias multidimensionales En este tema: Distribución conjunta de probabilidad Probabilidad/densidad marginal Probabilidad/densidad condicionada Esperanza, varianza, desviación típica
Distribuciones de probabilidad discretas
Lind, Douglas; William G. Marchal y Samuel A. Wathen (2012). Estadística aplicada a los negocios y la economía, 15 ed., McGraw Hill, China. Distribuciones de probabilidad discretas Capítulo 6 FVela/ McGraw-Hill/Irwin
Tema 3. VARIABLES ALEATORIAS.
3..- Introducción. Tema 3. VARIABLES ALEATORIAS. Objetivo: Encontrar modelos matemáticos para el trabajo con probabilidad de sucesos. En particular, se quiere trabajar con funciones reales de variable
Unidad Temática 3: Probabilidad y Variables Aleatorias
Unidad Temática 3: Probabilidad y Variables Aleatorias 1) Qué entiende por probabilidad? Cómo lo relaciona con los Sistemas de Comunicaciones? Probabilidad - Definiciones Experimento aleatorio: Un experimento
Técnicas Cuantitativas para el Management y los Negocios I
Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:
3 PROBABILIDAD Y DISTRIBUCION NORMAL
3 PROBABILIDAD Y DISTRIBUCION NORMAL La probabilidad puede ser considerada como una teoría referente a los resultados posibles de los experimentos. Estos experimentos deben ser repetitivos; es decir poder
1. La Distribución Normal
1. La Distribución Normal Los espacios muestrales continuos y las variables aleatorias continuas se presentan siempre que se manejan cantidades que se miden en una escala continua; por ejemplo, cuando
