Módulo 8 Implicación. Equivalencia Lógica
|
|
|
- Cristina Santos Olivares
- hace 8 años
- Vistas:
Transcripción
1 Módulo 8 Implicación. Equivalencia Lógica OBJETIO: Identificará la suposición o hipótesis de la implicación y su conclusión, expresará en diferentes formas una implicación; e identificará las proposiciones equivalentes. Implicación: Es una proposición compuesta que utiliza el conectivo lógico si... entonces. Se considera un tipo de razonamiento donde hay una hipótesis y una posible conclusión. Hipótesis: X > 5 Conclusión: X > 4 Si X es mayor a 5 implica que X tiene que ser forzosamente mayor a 4 Si un animal vuela, entonces es un ave. En este ejemplo la hipótesis es la oración: Un animal vuela y la conclusión es la oración: es un ave. En el diagrama de enn la implicación se representa como un subconjunto, en donde la conclusión es el conjunto mayor y la hipótesis el subconjunto: X > 4 X > 5 En otras palabras: La implicación de las proposiciones p y q es la proposición p q (si p entonces q) cuya tabla de valores de verdad es:
2 p q p q La proposición p se llama antecedente, y la proposición q se llama consecuente de la implicación o condicional. La tabla nos muestra que la implicación sólo es falsa si el antecedente es verdadero y el consecuente es falso. Por ejemplo, analicemos la siguiente implicación y su valor de verdad: x > 4 x > 6 Observe que si al antecedente x > 4 lo tomamos como verdadero entonces el consecuente x > 6 es falso y así la implicación es falsa porque no todos los números que son mayores que 4 son mayores que 6. Por ejemplo, el 5 es mayor que 4 pero no mayor que 6. eamos más ejemplos: Supongamos la implicación: La implicación está compuesta de las proposiciones p: apruebo q: te presto el libro Nos interesa conocer la verdad o falsedad de la implicación anterior, en relación a la verdad o falsedad de las proposiciones p y q. El enunciado puede pensarse como un compromiso, condicionado por p, y podemos asociar su verdad al cumplimiento del compromiso. Es evidente que si p es, es decir si no apruebo el examen, quedo liberado del compromiso y preste o no el libro la implicación es verdadera.
3 Si p es verdadera, es decir si apruebo el examen, y no presto el libro, el compromiso no se cumple y la proposición i) es falsa. Si p y q son verdaderas, entonces la proposición i) es verdadera pues el compromiso se cumple. 1 = 1 1² = ( 1)² () La proposición resulta ser falsa por ser el antecedente (1 = 1) es falso. Proposiciones equivalentes: Son las proposiciones que tienen el mismo valor de verdad o el mismo conjunto de verdad Todos los ángulos rectos son de la misma medida Si los ángulos son rectos entonces tienen la misma medida El conjunto de ángulos rectos es un subconjunto del conjunto de ángulos con la misma medida. ARIANTES DE LA IMPLICACION Conversa: Es una variante de la implicación en la cual cambiamos el orden de los proposiciones dejando en su lugar al conectivo Si tiene alas, entonces vuela Su conversa es: Si vuela, entonces tiene alas Si un número entero es múltiplo de 8, entonces es número par Su conversa es: Si un número entero es par, entonces es múltiplo de 8 Inversa: Se niega cada una de las proposiciones que componen la implicación. Si es un animal, entonces es un ser vivo. Su inversa es: Si no es un animal, entonces no es un ser vivo Contrapositiva: Es utilizar la proposición conversa pero negando ambas proposiciones Si x es mayor que 7, entonces x es mayor que 4 Su contra positiva es: Si x no es mayor que 4, entonces x no es mayor que 7
4 Si una figura geométrica es un rectángulo, entonces es un paralelogramo Su contra positiva es: Si una figura geométrica no es un paralelogramo, entonces no es un rectángulo Silogismos: Es una unidad básica en las demostraciones y se forma con tres preposiciones, premisa mayor, premisa menor y conclusión. La premisa mayor siempre es una implicación mientras que la premisa menor es solo una proposición simple. Premisa Mayor: Si un animal es un oso entonces le gusta la miel Premisa Menor: mi animal preferido es un oso Conclusión: Mi animal preferido le gusta la miel. Observe que la conclusión se obtiene utilizando ambas premisas con el fin de llegar a algo lógico. De hecho, para llegar a la conclusión se debe ver como se relacionan ambas premisas, se puede decir que la conclusión parte de la premisa menor para relacionarla con el consecuente de la premisa mayor. Premisa mayor: Si un número es múltiplo de 4 entonces es divisible entre dos Premisa menor: El numero 16 es múltiplo de 4 Conclusión: El numero 16 es divisible entre dos. Actividades de aprendizaje 1. Cuál de las siguientes implicaciones es verdadera? a) x < 0 x > 1 b) x > 10 x = 25 c) x 20 x 2 d) x 1 x 4
5 2. Cuál de las siguientes graficas representa la implicación Si x es múltiplo de 15, entonces es múltiplo de 3; x ℵ,? 3. Cuál es la conversa de la implicación Si una figura es un cuadrado, entonces es un rectángulo? a) Si una figura es un triangulo, entonces es un cuadrado b) Si una figura es un triangulo, entonces es un rectángulo c) Si una figura es un rectángulo, entonces es un triangulo d) Si una figura es un rectángulo, entonces es un cuadrado 4. La contra positiva de Si x es múltiplo de 4, entonces es múltiplo de 2, es: a) Si x no es múltiplo de 4, entonces no es múltiplo de 2 b) Si x no es múltiplo de 2, entonces no es múltiplo de 4 c) Si x es múltiplo de 2, entonces no es múltiplo de 4 d) Si x es múltiplo de 4, entonces no es múltiplo de 2 5. Al aplicar la regla de la cadena a las implicaciones x < 9 x < 12 y x < 12 x < 15 ; se concluye que. a) Si x < 12 x < 9 b) Si x < 9 x < 15 c) Si x < 15 x < 9 d) Si x < 12 x < 15
Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo. Contenidos
Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo Complementos Contenidos Clase 1: Elementos de lógica: Conectivos, tablas de verdad, tautologías y contingencias.
encontramos dos enunciados. El primero (p) nos afirma que Pitágoras era griego y el segundo (q) que Pitágoras era geómetra.
Álgebra proposicional Introducción El ser humano, a través de su vida diaria, se comunica con sus semejantes a través de un lenguaje determinado (oral, escrito, etc.) por medio de frases u oraciones. Estas
Material diseñado para los estudiantes del NUTULA, alumnos del profesor Álvaro Moreno.01/10/2010 Lógica Proposicional
Lógica Proposicional INTRODUCCIÓN El humano se comunica con sus semejantes a través de un lenguaje determinado (oral, simbólico, escrito, etc.) construido por frases y oraciones. Estas pueden tener diferentes
CONJUNTO: Colección o agregado de ideas u objetos de cualquier especie.
RESUMEN DE MATEMATICAS I PARTE I CONJUNTOS CONJUNTO: Colección o agregado de ideas u objetos de cualquier especie. A= {números pares} B= { banda de rock} ELEMENTO: Son las ideas u objetos cualesquiera
RAZONAMIENTO LÓGICO LECCIÓN 1: ANÁLISIS DEL LENGUAJE ORDINARIO. La lógica se puede clasificar como:
La lógica se puede clasificar como: 1. Lógica tradicional o no formal. 2. Lógica simbólica o formal. En la lógica tradicional o no formal se consideran procesos psicológicos del pensamiento y los métodos
Introducción a la Lógica
Tema 0 Introducción a la Lógica En cualquier disciplina científica se necesita distinguir entre argumentos válidos y no válidos. Para ello, se utilizan, a menudo sin saberlo, las reglas de la lógica. Aquí
Capítulo 1 Lógica Proposicional
Capítulo 1 Lógica Proposicional 1.1 Introducción El ser humano, a través de su vida diaria, se comunica con sus semejantes a través de un lenguaje determinado (oral, escrito, etc.) por medio de frases
MATEMATICAS I INDICE GENERAL
UNIDAD I CONJUNTOS MATEMATICAS I INDICE GENERAL MODULO 1 CONJUNTOS, NOTACION, ORACIONES ABIERTAS, VARIABLES, CONJUNTO DE REEMPLAZAMIENTO, CONJUNTO DE VERDAD MODULO 2 CARDINALIDAD, CONJUNTOS FINITOS E INFINITOS,
Matemáticas - Guía 1 Proposiciones
LOGROS: 1. Reconoce el conceto e roosición. 2. Clasifica las roosiciones en simles y comuestas. 3. Resuelve roosiciones comuestas utilizando los conectivos lógicos. 4. Halla el valor de verdad de una roosición
ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS.
ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción 1 La lógica es
SECRETARIA DE EDUCACIÓN PUBLICA SUBSECRETARIA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN DE BACHILLERATOS ESTATALES Y PREPARATORIA ABIERTA
SECRETARIA DE EDUCACIÓN PUBLICA SUBSECRETARIA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN DE BACHILLERATOS ESTATALES Y PREPARATORIA ABIERTA DEPARTAMENTO DE PREPARATORIA ABIERTA MATEMÁTICAS I GUIA DE ESTUDIO
Eje 2. Razonamiento lógico matemático
Razonamiento deductivo e inductivo La historia de las matemáticas se remonta al antiguo Egipto y Babilonia. Ante la necesidad de resolver problemas a través de errores y victorias, estas culturas lograron
Una proposición es una afirmación que debe ser cierta o falsa (aunque no lo sepamos).
Lógica intuitiva Una proposición es una afirmación que debe ser cierta o falsa (aunque no lo sepamos). A : Las águilas vuelan B : El cielo es rosa C : No existe vida extraterrestre D : 5 < 3 E : Algunos
2. Si P; Q; R son verdaderas y S; T son falsas, determine el valor de verdad de la proposición: [P =) (R =) T )] () [(:P ^ S) =) (Q =) :T )]
Instituto Tecnológico de Costa Rica Escuela de Matemática I semestre 2012 Cálculo Diferencial e Integral. Prof. Juan José fallas. 1 Leyes de la lógica y reglas de inferencia 2 Ejercicios 1 Leyes de la
LÓGICA PROPOSICIONAL
MATEMÁTICA I AÑO LÓGICA PROPOSICIONAL LÓGICA PROPOSICIONAL Nadie aprende si no se ha equivocado al intentarlo... - DE QUÉ TRATA LA LÓGICA? La lógica investiga la relación de consecuencia que se da entre
Lógica Proposicional. Sergio Stive Solano Sabié. Marzo de 2012
Lógica Proposicional Sergio Stive Solano Sabié Marzo de 2012 Lógica Proposicional Sergio Stive Solano Sabié Marzo de 2012 Proposiciones Definición 1.1 Una proposición (o declaración) es una oración declarativa
Introd. al Pens. Científico Nociones básicas de la lógica ClasesATodaHora.com.ar
ClasesATodaHora.com.ar > Exámenes > UBA - UBA XXI > Introd. al Pensamiento Científico Introd. al Pens. Científico Nociones básicas de la lógica ClasesATodaHora.com.ar Razonamientos: Conjunto de propiedades
Forma lógica de enunciados
Forma lógica de enunciados Marisol Miguel Cárdenas Lenguaje natural y lenguaje formal El lenguaje natural es aquel que utilizamos cotidianamente. Surge históricamente dentro de la sociedad y es aprendido
Borrador del temario de la guía PAA. PRIMERA PARTE: RAZONAMIENTO VERBAL.
Borrador del temario de la guía PAA. PRIMERA PARTE: RAZONAMIENTO VERBAL. -Razonamiento verbal. -Sinónimos. -Antónimos. -Estructura de una oración. -Conectores de una oración. -Uso adecuado de la sintaxis
ANOTACIONES BÁSICAS SOBRE LÓGICA PROPOSICIONAL FILOSOFÍA 1º BACHILLERATO
Pág. 1 Lógica Proposicional La lógica proposicional es la más antigua y simple de las formas de lógica. Utilizando una representación primitiva del lenguaje, permite representar y manipular aserciones
Conjuntos. () April 4, / 32
Conjuntos En general, un conjunto A se de ne seleccionando los elementos de un cierto conjunto U de referencia (o universal) que cumplen una determinada propiedad. () April 4, 2014 1 / 32 Conjuntos En
UNIDAD 7. SISTEMA MÉTRICO DECIMAL
UNIDAD 7. SISTEMA MÉTRICO DECIMAL Reconocer la necesidad de medir, apreciar la utilidad de los instrumentos de medida y conocer los más importantes. Definir el metro como la unidad principal de longitud,
Números irracionales famosos
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: GEOMETRIA NOTA DOCENTE: HUGO BEDOYA TIPO DE GUIA: Conceptual - ejercitación PARA COMPENSAR EL CESE DE ACTIVIDADES DEL
Colegio Decroly Americano Matemática 7th Core, Contenidos I Período
Matemática 7th Core, 2015-2016 Contenidos I Período 1. Sentido Numérico a. Identificar y escribir patrones. b. Escribir números en forma de exponentes. c. Escribir cantidades en notación científica. d.
Matemáticas Discretas TC1003
Matemáticas Discretas TC1003 Módulo I: s Válidos Departamento de Matemáticas ITESM Módulo I: s Válidos Matemáticas Discretas - p. 1/50 En matemáticas y en lógica un argumento no es una disputa. Más bien,
SOBRE LOGICA MATEMATICA. Sandra M. Perilla-Monroy. Departamento de Ciencias Básicas, Universidad Santo Tomás, Bogotá, Colombia.
SOBRE LOGICA MATEMATICA Sandra M. Perilla-Monroy Departamento de Ciencias Básicas, Universidad Santo Tomás, Bogotá, Colombia. Resumen. [email protected] Carrera 9 No 51-11 Bogotá Colombia
LICENCIATURA EN MATEMÁTICA. Práctico N 1 Lenguaje de la lógica. proposicional VICTOR GALARZA ROJAS 1 5 / 0 5 /
Práctico N 1 Lenguaje de la lógica LICENCIATURA EN MATEMÁTICA proposicional VICTOR GALARZA ROJAS 1 5 / 0 5 / 2 0 1 0 PRÁCTICO N 1 1. Fundamentación: fundamentar la expresión Por lo tanto del siguiente
LÓGICA MATEMÁTICA O FORMAL O SIMBÓLICA
LÓGICA MATEMÁTICA O FORMAL O SIMBÓLICA La lógica formal o simbólica, a diferencia de la lógica clásica, utiliza un lenguaje artificial, es decir, está rigurosamente construido, no admite cambios en el
PROBLEMAS RESUELTOS DE PREPARACIÓN PARA OPOSICIONES. Problemas 02
PROBLEMAS RESUELTOS DE PREPARACIÓN PARA OPOSICIONES Problemas 0 Salvador Pérez Gómez [email protected] 4 de abril de 007 PROBLEMA 1 Sea n un número natural. Sea A n = n + n + 3n. a) Demostrar que
Algunos ejemplos de conjuntos pueden ser los siguientes:
1. CONJUNTOS Y PRODUCTO CRTESINO. OBJETIVOS: 1) Establecer los conceptos básicos y las distintas notaciones para conjuntos. 2) Descripción de conjuntos en distintas formas: Lista, expresión verbal, expresión
1. Definir e identificar números primos y números compuestos.
1. Divisibilidad 1. Definir e identificar números primos y números compuestos. 2. Manejar con soltura el vocabulario propio de la divisibilidad: a es múltiplo/ divisor de b, a es divisible por b, a divide
Si..., siempre que, con tal que, puesto que, ya que, porque, cuando, de, a menos que, a no ser que, salvo que, solamente.
1.2 Proposiciones condicionales y equivalencia lógica. Proposición Condicional o implicación lógica Una proposición condicional, es aquella que está formada por dos proposiciones atómicas o moleculares,
Capítulo 4. Lógica matemática. Continuar
Capítulo 4. Lógica matemática Continuar Introducción La lógica estudia la forma del razonamiento, es una disciplina que por medio de reglas y técnicas determina si un teorema es falso o verdadero, además
SECRETARIA DE EDUCACIÓN PUBLICA SUBSECRETARIA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN DE BACHILLERATOS ESTATALES Y PREPARATORIA ABIERTA
1 SECRETARIA DE EDUCACIÓN PUBLICA SUBSECRETARIA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN DE BACHILLERATOS ESTATALES Y PREPARATORIA ABIERTA DEPARTAMENTO DE PREPARATORIA ABIERTA MATEMÁTICAS I GUIA DE ESTUDIO
EL CONDICIONAL. La tercera y cuarta fila incomoda a mucha gente. Porque?
EL CONDICIONAL DEFINICIÓN : Sean p y q dos proposiciones. El condicional con antecedente p y consecuente q es la proposición p q, que se lee si p entonces q cuyo valor lógico está dado por la siguiente
Algoritmos y Estructura de Datos I
Clase práctica de Especificación - Lógica proposicional Viernes 20 de Marzo de 2015 Menú del día Fórmulas bien formadas Tablas de verdad Tautologías, Contingencias y Contradicciones Relación de fuerza
CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED.
. G r e d o s S a n D i e g o V a l l e c a s CONTENIDOS Y CRITERIOS DE EVALUACIÓN MATEMÁTICAS 6º ED. PRIMERA EVALUACIÓN El Sistema de numeración decimal El sistema de numeración decimal. Lectura y escritura
Contenidos mínimos 1º ES0. 1. Contenidos. Bloque I: Aritmética y álgebra.
Contenidos mínimos 1º ES0. 1. Contenidos. Bloque I: Aritmética y álgebra. 1. Resolver expresiones con números naturales con paréntesis y operaciones combinadas. 2. Reducir expresiones aritméticas y algebraicas
Universidad Nacional Abierta y a Distancia UNAD-Lógica Matemática - Georffrey Acevedo G. A que viene la lógica?
A que viene la lógica? Autor: Georffrey Acevedo G. Noviembre 16 de 2008. Los conceptos de proposiciones, conectivos e inferencias confluyen al analizar un razonamiento. Para tener claridad sobre los conceptos
Lógica proposicional. Ivan Olmos Pineda
Lógica proposicional Ivan Olmos Pineda Introducción Originalmente, la lógica trataba con argumentos en el lenguaje natural es el siguiente argumento válido? Todos los hombres son mortales Sócrates es hombre
El conjuntos de los estudiantes inteligentes de la UPR Río Piedras. El conjunto de los mejores baloncelistas de la NBA.
1 Conjuntos Un conjunto es una colección de objetos bien definida. Ejemplos de conjuntos: El conjuntos de todos los estudiantes matriculados en el programa immersión. El conjunto de todos los pueblos de
MYP (MIDDLE YEARS PROGRAMME)
MYP (MIDDLE YEARS PROGRAMME) 2014-2015 Fecha 19/05/2015 APUNTES DE GEOMETRÍA 2º ESO 1. EL TEOREMA DE PITÁGORAS El teorema de Pitágoras establece que en todo triángulo rectángulo, el cuadrado de la hipotenusa
Números. 1. Definir e identificar números primos y números compuestos.
MINIMOS DE MATEMÁTICAS DE 2º DE E.S.O. 1. Divisibilidad Números 1. Definir e identificar números primos y números compuestos. 2. Manejar con soltura el vocabulario propio de la divisibilidad: a es múltiplo/divisor
Teoría Tema 9 Interpretación geométrica de derivada. Definición formal
Asignatura: Matemáticas I 1ºBacillerato página 1/5 Teoría Tema 9 Interpretación geométrica de derivada. Definición formal Índice de contenido Incremento medio e incremento instantáneo de una función f(x)...2
Taller Matemático. Lógica. Cristóbal Pareja Flores antares.sip.ucm.es/cpareja Facultad de Estadística Universidad Complutense de Madrid
Taller Matemático Lógica Cristóbal Pareja Flores antares.sip.ucm.es/cpareja Facultad de Estadística Universidad Complutense de Madrid 1. Lógica 14 amigos aportan la misma cantidad de dinero, sobre un fondo
ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS 2013 ÁLGEBRA I
ESCUELA MILITAR DE INGENIERÍA Elaborado por: Lic. Bismar Choque Nina MISCELÁNEAS DE PROBLEMAS 2013 ÁLGEBRA I A pesar de que la refutación por ejemplo del contrario es un procedimiento válido, los teoremas
Guía para el estudiante
Guía para el estudiante Guía realizada por Jefferson Bustos Profesional en Matemáticas Master en Educación Nombre: Fecha: Curso: Dentro del lenguaje común, las palabras y frases pueden tener diversas interpretaciones.
MATEMÁTICA 1 JRC El futuro pertenece a aquellos que creen en la belleza de sus sueños
MATEMÁTICA 1 JRC LÓGICA Es la ciencia formal que estudia los principios y procedimientos que permiten demostrar la validez o invalidez de una inferencia, es decir, reconocer entre un razonamiento correcto
EJEMPLO DE PREGU,TAS
EJEMPLO DE PREGU,TAS MATEMÁTICAS PRIMERO, SEGU,DO Y TERCERO DE BACHILLERATO 1. Lógica proposicional Esta competencia se refiere al conocimiento que usted posee sobre el lenguaje de las proposiciones y
INDICE Capitulo 1. Expresiones y Ecuaciones: Suma y Resta Actividad con calculadora Matemática mental De los números al álgebra Matemática mental
INDICE Capitulo 1. Expresiones y Ecuaciones: Suma y Resta 1.1. Variables y expresiones 2 1.2. Solución de problema: planteamiento de expresiones. Traducción de 6 frases a expresiones algebraicas 1.3. Propiedades
CRITERIOS DE EVALUACIÓN
DEPARTAMENTO DE MATEMATICAS IES ROSA CHACEL (Colmenar Viejo) Criterios de evaluación y criterios de calificación Recuperación de Matemáticas. 2º de E.S.O. CRITERIOS DE EVALUACIÓN RESOLUCIÓN DE PROBLEMAS
Benemérita Universidad Autónoma de Puebla
Tarea No. 1 Matemáticas Elementales Profesor Fco. Javier Robles Mendoza Benemérita Universidad Autónoma de Puebla Facultad de Ciencias de la Computación Lógica y Conjuntos 1. Considere las proposiciones
ESTALMAT-Andalucía Actividades 06/07
EL LENGUAJE MATEMÁTICO Actividad 1 Cuando hablamos o escribimos en Matemáticas lo hacemos en nuestra lengua habitual, el español, pero utilizamos frases con palabras que designan objetos y símbolos que
Sesión del día 11 de Marzo del 2011 y tutoría del día 12 de Marzo del 2011
Especialidad La enseñanza de las matemáticas en secundaria Grupo B: Celaya Sesión del día 11 de Marzo del 2011 y tutoría del día 12 de Marzo del 2011 Álgebra Resumen de la sesión anterior. Se añadió que
ELEMENTOS DE LA MATEMATICA
ELEMENTOS DE LA MATEMATICA SEMESTRE: Primero CODIGO ANTERIOR: 22G7 CODIGO: 8101 REQUISITOS: No tiene CREDITOS: 6 HORAS DE TEORIA: 4 HORAS DE PRACTICA : 4 TEMA 1: Lógica simbólica. Las conectivas lógicas.
Unidad 8 Áreas y Volúmenes
Unidad 8 Áreas y Volúmenes PÁGINA 132 SOLUCIONES Unidades de medida. Pasa a centímetros cuadrados las siguientes cantidades. a) b) c) Pasa a metros cúbicos las siguientes unidades. a) b) c) Cuántos litros
Sucesiones y Progresiones. Guía de Ejercicios
. Módulo 5 Sucesiones y Progresiones Guía de Ejercicios Índice Unidad I. Sucesiones Ejercicios Resueltos... pág. 02 Ejercicios Propuestos... pág. 06 Unidad II. Sumatorias de sucesiones Ejercicios Resueltos...
Descripciones de los niveles de logro modificados (ALD, siglas en inglés) de la prueba de evaluación MCA en matemáticas Grados 5 a 8
Descripciones de los niveles de logro modificados (ALD, siglas en inglés) de la prueba de evaluación MCA en matemáticas Grados 5 a 8 Grado 5 No cumple los estándares de logro modificados (Grado 5) Los
Conjuntos, relaciones y funciones Susana Puddu
Susana Puddu 1. Repaso sobre la teoría de conjuntos. Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros. Dados dos conjuntos A y B decimos que A está contenido en B o también
Matemáticas. Si un error simple ha llevado a un problema más sencillo se disminuirá la puntuación.
UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD DE LOS MAYORES DE 25 AÑOS CONVOCATORIA 2014 CRITERIOS DE EVALUACIÓN Matemáticas GENERALES: El examen constará de dos opciones (dos
UNIDAD: NÚMEROS Y PROPORCIONALIDAD. Los elementos del conjunto IN = {1, 2, 3, 4, 5, 6, 7,...} se denominan números
GUÍA Nº 2 UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS ENTEROS NÚMEROS NATURALES (ln) Los elementos del conjunto IN = {1, 2, 3, 4, 5, 6, 7,...} se denominan números naturales NÚMEROS ENTEROS (Z) Los elementos
CRITERIOS EVALUACIÓN MATEMÁTICAS
CRITERIOS DE EVALUACIÓN ÁREA MATEMÁTICAS NIVEL 6º EDUCACIÓN PRIMARIA Identifica situaciones en las cuales se utilizan los números. Comprende las reglas de formación de números en el sistema de numeración
Enunciados de los problemas (1)
Enunciados de los problemas (1) Problema 1. El peso de tres manzanas y dos naranjas es de 255 gramos. El peso de dos manzanas y tres naranjas es de 285 gramos. Si todas las manzanas son del mismo peso
INTRODUCCIÓN A LA LÓGICA
UNIVERSIDAD NACIONAL DE RÍO CUARTO FACULTAD DE CIENCIAS EXACTAS, FÍSICO-QUÍMICAS Y NATURALES DEPARTAMENTO DE MATEMÁTICA INTRODUCCIÓN A LA LÓGICA Para el ingreso a las carreras de Matemática Material preparado
LÓGICA PROPOSICIONAL
LÓGICA PROPOSICIONAL QUE ES LA LÓGICA? El sentido ordinario de la palabra lógica se refiere a lo que es congruente, ordenado, bien estructurado. Lo ilógico es lo mismo que incongruente, desordenado, incoherente.
Tutoría Completa - Curso de Matemática para 1, 2 y 3 Básico
Tutoría Completa - Curso de Matemática para 1, 2 y 3 Básico Contenido 1 Básico 1. Proposiciones y cuantificadores a. Proposiciones b. Negación c. Conjunción d. Disyunción e. Condicional f. Doble condicional
Introducción a la geometría
Introducción a la geometría Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares. Plan de estudios (217 temas)
GUIA DE ESTUDIO PARA EXAMEN DEL PRIMER PERIODO PARCIAL
Departamento de Bachillerato GUIA DE ESTUDIO PARA EXAMEN DEL PRIMER PERIODO PARCIAL PREPARATORIA UNAM MATEMÁTICAS V Plan 100 CICLO 06 / 07 NOMBRE DEL ESTUDIANTE: Apellido paterno Apellido materno Nombre(s)
FACULTAD DE INGENIERIA CIVIL CARRERA DE INGENIERIA CIVIL ASIGNATURAS, CAPÍTULOS Y CONTENIDOS PARA EL CAN
FACULTAD DE INGENIERIA CIVIL CARRERA DE INGENIERIA CIVIL ASIGNATURAS, CAPÍTULOS Y CONTENIDOS PARA EL CAN ASIGNATURA: MATEMÁTICAS (128 HORAS 16 SEMANAS) Componente 1: Lógica Matemática Componente 2: Algebra
MÓDULO 8: VECTORES. Física
MÓDULO 8: VECTORES Física Magnitud vectorial. Elementos. Producto de un vector por un escalar. Operaciones vectoriales. Vector unitario. Suma de vectores por el método de componentes rectangulares. UTN
MINI ENSAYO DE MATEMÁTICA Nº 2
Fuente: Pre Universitario Pedro de Valdivia - MINI NSYO MTMÁTI Nº 2 1. Un comerciante tiene bandejas con capacidades para 20 y 30 huevos cada una. Si quiere colocar 750 huevos en igual número de bandejas
MATEMÁTICAS 4. º CURSO UNIDAD 7: DIVISIÓN
MATEMÁTICAS 4. º CURSO UNIDAD 7: DIVISIÓN OBJETIVOS Calcular divisiones cuyo divisor es un número dígito. Reconocer si una división es exacta o entera. Conocer y aplicar la relación entre los términos
SCUACAC026MT22-A16V1. SOLUCIONARIO Ejercitación Generalidades de números
SCUACAC026MT22-A16V1 0 SOLUCIONARIO Ejercitación Generalidades de números 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA EJERCITACIÓN GENERALIDADES DE NÚMEROS Ítem Alternativa 1 E 2 D 3 B 4 E 5 A 6 E 7 B 8 D 9 D
Materia: Matemáticas Curso: Octavo de Básica
Materia: Matemáticas Curso: Octavo de Básica BREVE DESCRIPCIÓN DE LA CLASE: Formar entre el profesor y el estudiante/es una comunidad de trabajo por medio de la creatividad y estructura de los conocimientos
MATEMÁTICAS BÁSICAS. 23 de febrero de Universidad Nacional de Colombia MATEMÁTICAS BÁSICAS
23 de febrero de 2009 Parte I Lógica Proposiciones Considere las siguientes frases Páseme el lápiz. 2 + 3 = 5 1 2 + 1 3 = 2 5 Qué hora es? En Bogotá todos los días llueve Yo estoy mintiendo Maradona fue
Inecuaciones: Actividades de recuperación.
Inecuaciones: Actividades de recuperación. 1.- Escribe la inecuación que corresponde a los siguientes enunciados: a) El perímetro de un triángulo equilátero es menor que 4. (x = lado del triángulo) b)
Colegio Juan de la Cierva. PROGRAMACIÓN DIDÁCTICA Asignatura: Matemáticas Curso: 5º Etapa: Primaria Curso académico:
Colegio Juan de la Cierva PROGRAMACIÓN DIDÁCTICA Asignatura: Matemáticas Curso: 5º Etapa: Primaria Curso académico: 2016-2017 Estadística y probabilidad Geometría Números y operaciones Pro., Mét. y act.
CONTENIDOS DIAGNÓSTICO DE ADMISIÓN 5º BÁSICO
CONTENIDOS DIAGNÓSTICO DE ADMISIÓN 5º BÁSICO Números Naturales Leer, escribir y ordenar Descomponer en forma aditiva. Operatoria básica en los naturales (suma resta, multiplicación y división) Resolución
I. CONSIDERACIONES GENERALES
MATRIZ DE ESPECIFICACIONES DE LA PRUEBA NACIONAL DE SUFICIENCIA EN COMPRENSIÓN DE TEXTOS Y RAZONAMIENTO LÓGICO MATEMÁTICO PARA LA INCORPORACIÓN AL COLEGIO MAYOR SECUNDARIO PRESIDENTE DEL PERÚ I. CONSIDERACIONES
Proposicional. Curso Mari Carmen Suárez de Figueroa Baonza
Semántica Proposicional Curso 2014 2015 Mari Carmen Suárez de Figueroa Baonza [email protected] Contenidos Introducción Interpretación de FBFs proposicionales Validez Satisfacibilidad Validez y Satisfacibilidad
Facultad de Informática. Módulo 1 Lógica. Matemática 0 UNLP. Curso de Ingreso 2013 Matemática 0 Página 1
Matemática 0 UNLP Curso de Ingreso 2013 Matemática 0 Página 1 Contenido 1.1 Álgebra de proposiciones 3 Expresiones No Proposicionales 4 Enunciados Abiertos 4 Clasificación de las Proposiciones 4 1.2 Conectivos
Índice Proposiciones y Conectores Lógicos Tablas de Verdad Lógica de Predicados Inducción
Curso 0: Matemáticas y sus Aplicaciones Tema 5. Lógica y Formalismo Matemático Leandro Marín Dpto. de Matemática Aplicada Universidad de Murcia 2012 1 Proposiciones y Conectores Lógicos 2 Tablas de Verdad
Un ángulo mide y otro Cuánto mide la suma de estos ángulos?
Los Ángulos Qué es un ángulo y su notación? Son dos rayos cualesquiera que determinan dos regiones del plano. Su notación: Para nombrar los ángulos, utilizaremos los símbolos
DIRECCIÓN DE EDUCACIÓN DE ADULTOS.
MINISTERIO DE EDUCACIÓN DIRECCIÓN DE EDUCACIÓN DE ADULTOS. PROGRAMA DE MATEMÁTICA 1 ANO EOC II Unidad 1: Objetivos: Desarrollar habilidades en las operaciones de cálculo de adición, sustracción, multiplicación
Terminaremos el capítulo con una breve referencia a la teoría de cardinales.
TEMA 5. CARDINALES 241 Tema 5. Cardinales Terminaremos el capítulo con una breve referencia a la teoría de cardinales. Definición A.5.1. Diremos que el conjunto X tiene el mismo cardinal que el conjunto
Razones trigonométricas.
Razones trigonométricas. Matemáticas I 1 Razones trigonométricas. Medidas de ángulos. Medidas en grados (Deg.) El grado es el ángulo plano que teniendo su vértice en el centro de un círculo intercepta
Ampliación Matemática Discreta. Justo Peralta López
Justo Peralta López UNIVERSIDAD DE ALMERíA DEPARTAMENTO DE ÁGEBRA Y ANÁLISIS MATEMÁTICO 1 Introducción 2 Definición semántica de las proposiciones 3 Diagrama de valores de certeza 4 Evaluación de fórmulas.
NIVEL: 6º ÁREA: MATEMÁTICAS 1º TRIMESTRE CONCRECIÓN DE LOS OBJETIVOS AL CURSO
NIVEL: 6º ÁREA: MATEMÁTICAS 1º TRIMESTRE CONCRECIÓN DE LOS OBJETIVOS AL CURSO Leer, escribir, componer, descomponer y representar números naturales. Sumar, restar, multiplicar y dividir números naturales.
Un poco de Lógica...
Seminario Universitario Matemática Módulo 1 Un poco de Lógica... Introducción La matemática exige un lenguaje claro y preciso, es decir que no admita ambigüedades. Para lograrlo, se vale de la lógica simbólica
PROGRAMACIÓN DIDÁCTICA
PROGRAMACIÓN DIDÁCTICA Materia Período FBPI Tramo I Ámbito Científico-Tecnológico Bloque I Los números. Créditos 3 (30 horas) Bloque II Sistema Métrico Decimal y elementos de Créditos 4 (40 horas) geometría
Tema Contenido Contenidos Mínimos
1 Estadística unidimensional - Variable estadística. - Tipos de variables estadísticas: cualitativas, cuantitativas discretas y cuantitativas continuas. - Variable cualitativa. Distribución de frecuencias.
GUIA DE CATEDRA Matemática Empresarial Guía N.3 F. Elaboración 09 abril /11 F. 1 Revisión 09/04/11 Pagina 1 de 8
Plan de Estudios: Semestre 1 Área: Matemática 1 Nº Créditos: Intensidad horaria semanal: 3 Hrs T Hrs P Total horas: 6 Tema: Desigualdades 1. OBJETIVO Apropiar los conceptos de desigualdades y establecer
Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 5 Resumen Unidad n 3
Universidad Nacional de Colombia Departamento de Matemáticas 1000003-5 Álgebra Lineal - Grupo 5 Resumen Unidad n 3 Vectores en R n Definición. El conjunto de las n-tuplas ordenadas de números reales se
PLANES DE ESTUDIO PARA PRIMER CURSO
1. Porcentaje e interés Porcentajes Hacer las comparaciones más fáciles Tanto por ciento Valor del porcentaje Valor base Cálculos básicos con porcentajes Interés Interés compuesto Porcentajes en todos
SESIÓN 04 LÓGICA PROPOSICIONAL
SESIÓN 04 LÓGICA PROPOSICIONAL La Lógica Proposicional, sentencial o lógica de enunciados, es la parte de la Lógica simbólica que trata de las proposiciones sin analizarlas y de sus combinaciones. 1. PROPOSICIONES
L OGICA Proposiciones
CAPíTULO 4 LÓGICA Uno de los procesos por los cuales adquirimos conocimiento es el proceso de razonamiento. A su vez, hay una variedad de modos o formas mediante las cuales razonamos o argumentamos a favor
RESPUESTAS REPARTIDO 3 PARA ESCRITO TEORICO Diego Danieli 2IA UTU BUCEO AXIOMAS - TEOREMAS CÓMO SE CONSTRUYE LA GEOMETRIA MODERNA?
AXIOMAS - TEOREMAS CÓMO SE CONSTRUYE LA GEOMETRIA MODERNA? FUNDAMENTOS 1 Comenzó siendo un conjunto de reglas y conocimientos obtenidos por la experiencia, usados por los constructores y medidores de terrenos.
Bloque 1. Contenidos comunes. (Total: 3 sesiones)
4º E.S.O. OPCIÓN A 1.1.1 Contenidos 1.1.1.1 Bloque 1. Contenidos comunes. (Total: 3 sesiones) Planificación y utilización de procesos de razonamiento y estrategias de resolución de problemas, tales como
UNIDAD IV DISTANCIA ENTRE DOS PUNTOS
UNIDAD IV DISTANCIA ENTRE DOS PUNTOS Dados los puntos: P(x1, y1) y Q(x2, y2), del plano, hallemos la distancia entre P y Q. Sin pérdida de generalidad, tomemos los puntos P y Q, en el primer cuadrante
