Factorización de polinomios
|
|
|
- Nieves Villalba Córdoba
- hace 10 años
- Vistas:
Transcripción
1 ExMa-MA0125. Factorización de polinomios W. Poveda 1 Factorización de polinomios Objetivos 1. Factorizar completamente polinomios mediante los métodos de factor común, diferencia de cuadrados, diferencia de cubos, suma de cubos, inspección, agrupación y división sintética. Temas 1. Ceros de un polinomio. 2. Factorización de polinomios. Métodos de factorización: factor común, diferencia de cuadrados, diferencia de cubos, suma de cubos, inspección, agrupación. 3. Teorema del factor y del residuo.
2 ExMa-MA0125. Factorización de polinomios W. Poveda 2 La factorización de un polinomio consiste en expresarlo como un producto de monomios o polinomios, llamados factores el polinomio original. Con el propósito de que pueda estudiar y comprender la factorización de polinomios, a continuación le ofrecemos diversos ejemplos. Le recomendamos que usted no asuma que ya lo sabe: lea, comprenda y efectúe por sí mismo cada ejemplo cuando termine de comrpender esta sección. Ejemplo 1 Cuál es la factorización completa de 16ax 2 2ax 5 + 8ax 3 64a? 16ax 2 2ax 5 + 8ax 3 64a = 2a(x 5 4x 3 8x ) = 2a [(x 5 4x 3 ) + ( 8x )] = 2a [x 3 (x 2 4) 8(x 2 4)] = 2a(x 2 4)(x 3 8) = 2a(x + 2)(x 2) 2 (x 2 + 2x + 4) Ejemplo 2 Factorice completamente x 8 1 x 8 1 = (x 4 + 1)(x 4 1) = (x 4 + 1)(x 2 + 1)(x 2 1) = (x 4 + 1)(x 2 + 1)(x + 1)(x 1) Ejemplo 3 Factorice completamente x xy + 32y 2 x xy + 32y 2 = (x + 4y) (x + 8y)
3 ExMa-MA0125. Factorización de polinomios W. Poveda 3 Ejemplo 4 Factorice completamente 2x xy + 64y 2 2x xy + 64y 2 = 2 (x + 4y) (x + 8y) Ejemplo 5 Factorice completamente x xy 32y 2 x xy 32y 2 = (x 8y) (x 4y) Ejemplo 6 Factorice completamente 25x 2 (3x 1) 2 25x 2 (3x 1) 2 = (5x + 3x 1)(5x (3x 1)) = (8x 1)(2x + 1) Ejemplo 7 Factorice completamente 2x 3 24x x 2x 3 24x x = 2x (x 2) (x 10) Ejemplo 8 Factorice completamente (x + 1) 2 + 5(x + 1) + 6 (x + 1) 2 + 5(x + 1) + 6 = (x + 4) (x + 3) Ejemplo 9 Factorice completamente 6x 4 16x 3 + 4x 2 6x 4 16x 3 + 4x 2 = 2x 2 ( 8x + 3x 2 + 2) Ejemplo 10 Factorice completamente b 2 m 2 4(b + m) 2 b 2 m 2 4(b + m) 2 = (bm + 2(b + m))(bm 2(b + m)) = (bm + 2b + 2m)(bm 2b 2m)
4 ExMa-MA0125. Factorización de polinomios W. Poveda 4 Ejemplo 11 Factorice completamente 25 x 2 + 4xy 4y 2 25 x 2 + 4xy 4y 2 = 25 (x 2 4xy + 4y 2 ) 25 (x 2y) 2 = (5 + x 2y)(5 x + 2y) Ejemplo 12 Factorice completamente m 2 n 2 2m + 2n m 2 n 2 2m + 2n = (m + n)(m n) 2(m n) = (m n)(m + n 2) Ejemplo 13 Factorice completamente x 4 27xy 3 x 4 27xy 3 = x(x 3 27y 3 ) = x (x 3y) (3xy + x 2 + 9y 2 ) Ejemplo 14 Factorice completamente 4x 2 y 2 + 2x(2x + y) 4x 2 y 2 + 2x(2x + y) = (2x + y)(2x y) + 2x(2x + y) = (2x + y)(2x y + 2x) = (2x + y)(4x y) Ejemplo 15 Factorice completamente (x + y) 2 x 2 + y 2 (x + y) 2 x 2 + y 2 = (x + y) 2 + (y x)(y + x) = (x + y)(x + y + y x) = (x + y)(2y)
5 ExMa-MA0125. Factorización de polinomios W. Poveda 5 Ejemplo 16 Factorice completamente (4x 5y) 2 2x 2 + 5y 2 (4x 5y) 2 16x y 2 = (4x 5y) 2 (16x 2 25y 2 ) = (4x 5y) 2 (4x 5y)(4x + 5y) = (4x 5y)(4x 5y 4x 5y) = 10x(4x 5y) Ejemplo 17 Factorice completamente bmp b 2 m b 2 p + b 3 bmp b 2 m b 2 p + b 3 = (bmp b 2 m) (b 2 p b 3 ) = bm(p b) b 2 (p b) = (bm b 2 )(p b) = b(m b)(p b) Ejemplo 18 Factorice completamente 2x(x 2y) x + 2y : La respuesta es (a), pues 2x(x 2y) x + 2y = 2x(x 2y) (x 2y) = (x 2y)(2x 1) 1 Ejemplo 19 Factorice completamente x + 2x Sea u = x 1 2 x + 2x = u 2 + 2u + 1 = (u + 1) 2 = ( p x + 1) 2
6 ExMa-MA0125. Factorización de polinomios W. Poveda 6 Ejemplo 20 Factorice completamente y 2m 100 y 2m 100 = (y m + 10)(y m 10) Ejemplo 21 Sea p; q; m; n 2 R, si pq = m y p + q = n Cuál es la factorización de x 2 nx + m? Sea f(x) = x 2 nx + m, f(x) es factorizable si existen p; q 2 R tal que n = p + q ^ m = pq así x 2 nx + m = x 2 (p + q)x + pq = (x p)(x q) Ejemplo 22 Factorice completamente 24x 1 12x 2 9 Consideremos el cambio de variable u = x 1 ) 24x 1 12x 2 9 = 24u 12u 2 9 = 3 (8u 4u 2 3) = 3 (2u 1) (2u 3) = 3(2x 1 1)(2x 1 3) = x x = 2 x 2 3x 3 x x = 3 (2 x)(2 3x) x2 = 3 (x 2)(2 3x) x2 = 3x 2 (x 2)(2 3x)
7 ExMa-MA0125. Factorización de polinomios W. Poveda 7 Ejemplo 23 Considere el polinomio P (x) = x 3 + px 2 + qx r;con p; q; r 2 R: Si P (1) = P ( 2) = P ( 3) = 0: Cuál es el valor numérico de p + q r? Como P (1) = P ( 2) = P ( 3) = 0, por el teorema del factor se tiene que (x 1); (x + 2) y (x + 3) son factores de P (x) ) P (x) = (x 1)(x + 2)(x + 3) si realizamos las operaciones obtenemos P (x) = x 3 + 4x 2 + x 6 ) p = 4; q = 1; r = 6 p + q r = = 11 Teorema del residuo Teorema 1 Si un polinomio P (x) se divide por un monomio de la forma (x ), 2 Q; entonces el residiuo de la división es P (): Ejemplo 24 Calcular el residuo de (3x 4 + 2x 2 x + 6) (x 2) Se aplica el teorema del residuo, P (2) = 3(2) 4 + 2(2) = 60 Teorema del factor Teorema 2 Un polinomio P (x) tiene un factor de la forma (x ), 2 Q; sii P () = 0: División sintética Ejemplo 25 Factorizar completamente el polinomio 4x 4 20x x 2 57x + 18
8 ExMa-MA0125. Factorización de polinomios W. Poveda 8 Sea P (x) = 4x 4 20x 3 +51x 2 57x+18;se procede a obtener los posibles ceros del polinomio, éstos son los divisores de la constante 18: 1; 2; 3; 6; 9; 18;y los posibles ceros racionales del polinomio, éstos son los divisores de la constante entre los divisores del coe ciente principal, los factores del coe ciente principal son: 1; 2; 4: 1; 2; 3; 6; 9; 18; 1 2 ; 1 4 ; 2 2 ; 2 4 ; 3 2 ; 3 4 ; 6 2 ; 6 4 ; 9 2 ; 9 4 ; 18 2 ; 18 4 eliminando los repetidos 1; 2; 3; 6; 9; 18; 1 2 ; 1 4 ; 3 2 ; 3 4 ; 9 2 ; 9 4 aplicando el teorema del residuo y factor con los posobles ceros anteriores como P (1) 6= 0 ) (x 1) no es factor de P (x) como P ( 1) 6= 0 ) (x + 1) no es factor de P (x) se continúa así hasta que 1 P = 0 ) (2x 1) es factor de P (x); se aplica división sintética y se 2 obtiene un cociente de (4x 3 18x x 36) ) P (x) = (2x 1) (4x 3 18x x 36) se continúa veri cando hasta hallar otro cero 1 como P 6= 0 ) (2x 1) no es factor de P (x) 2 : : : 3 P = 0 ) (2x 3) es factor de P (x) 2 se realiza otra división sintética pero ahora con (4x 3 18x x 36)(2x 3) para obtener el cociente (x 2 3x + 6) ) P (x) = (2x 1)(2x 3)(x 2 3x + 6) se aplica inspección o fórmula general para factorizar x 2 3x + 6; el cual no es factorizable en R: 4x 4 20x x 2 57x + 18 = (2x 1)(2x 3)(x 2 3x + 6)
POLINOMIOS. División. Regla de Ruffini.
POLINOMIOS. División. Regla de Ruffini. Recuerda: Un monomio en x es una expresión algebraica de la forma a x tal que a es un número real y n es un número natural. El real a se llama coeficiente y n se
Operaciones combinadas con polinomios
ExMa-MA05. Operaciones combinadas W. Poveda Operaciones combinadas con polinomios Objetivos. Aplicar las leyes de potencias.. Aplicar las propiedades de la suma y el producto.. Aplicar los productos notables
1. División de polinomios por monomios
1. División de polinomios por monomios El cociente de dos monomios (si es posible) es igual a otro monomio que tiene: como coeficiente, el cociente de los coeficientes; como parte literal, las letras que
Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo
Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo P (x) = a 0 x n + a 1 x n 1 +... + a n Donde n N (número natural) ; a 0, a 1, a 2,..., a n son coeficientes reales
REGLA DE RUFFINI. FACTORIZACIÓN DE POLINOMIOS
REGLA DE RUFFINI. FACTORIZACIÓN DE POLINOMIOS Si en una división de polinomios el divisor es de la forma (x - a) se puede aplicar la regla de Ruffini para obtener el cociente y el resto de la división.
4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN
4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN Bloque 2. POLINOMIOS. (En el libro Tema 3, página 47) 1. Definiciones. 2. Valor numérico de una expresión algebraica. 3. Operaciones con polinomios: 3.1. Suma,
La suma se realiza miembro a miembro. La suma de polinomios goza de las mismas propiedades que la suma de números. Ejemplo:
Tema 4. Polinomios 1. Definición Un polinomio es una expresión hecha con constantes, variables y exponentes, que están combinados. Los exponentes sólo pueden ser 0, 1, 2, 3,... etc. No puede tener un número
EXPRESIONES ALGEBRAICAS
EXPRESIONES ALGEBRAICAS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman V A R I A B L ES, I N C Ó G N I T A S o
Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x
Los polinomios Los polinomios Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Elementos de un polinomio Los términos: cada
TEMA 2 POLINOMIOS Y FRACCIONES ALGEBRAICAS
Matemáticas B 4º E.S.O. Tema : Polinomios y fracciones algebraicas. 1 TEMA POLINOMIOS Y FRACCIONES ALGEBRAICAS.1 COCIENTE DE POLINOMIOS 4º.1.1 COCIENTE DE MONOMIOS 4º El cociente de un monomio entre otro
TALLER DE MATEMÁTICAS NOTAS. Toda expresión algebraica del tipo. a n x n + a n 1 x n 1 +... + a 1 x + a 0. es un polinomio de grado n, si a n 0.
NOTAS Toda expresión algebraica del tipo es un polinomio de grado n, si a n 0. a n x n + a n 1 x n 1 +... + a 1 x + a 0 RELACIONES DE DIVISIBILIDAD 1) x n a n = (x a)(x n 1 + ax n 2 + a 2 x n 3 +... +
Descomposición factorial de polinomios
Descomposición factorial de polinomios Contenidos del tema Introducción Sacar factor común Productos notables Fórmula de la ecuación de segundo grado Método de Ruffini y Teorema del Resto Combinación de
Multiplicación. Adición. Sustracción
bernardsanz TERMINOLOGÍA ALGEBRAICA Algebra: generalización de la aritmética, la cual representa cantidades por medio de símbolos en lugar de números concretos, estos símbolos representan números cualesquiera.
EXPRESIONES ALGEBRAICAS. POLINOMIOS
EXPRESIONES ALGEBRAICAS. POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Estas expresiones del área son expresiones algebraicas, ya que además de números aparecen letras. Son también expresiones algebraicas: bac,
Ejercicios Resueltos del Tema 4
70 Ejercicios Resueltos del Tema 4 1. Traduce al lenguaje algebraico utilizando, para ello, una o más incógnitas: La suma de tres números consecutivos Un número más la mitad de otro c) El cuadrado de la
Polinomios y Fracciones Algebraicas
Tema 4 Polinomios y Fracciones Algebraicas En general, a lo largo de este tema trabajaremos con el conjunto de los números reales y, en casos concretos nos referiremos al conjunto de los números complejos.
Polinomios y fracciones algebraicas
UNIDAD Polinomios y fracciones algebraicas U n polinomio es una expresión algebraica en la que las letras y los números están sometidos a las operaciones de sumar, restar y multiplicar. Los polinomios,
POLINOMIOS OPERACIONES CON MONOMIOS
POLINOMIOS Una expresión algebraica es una combinación de letras y números, ligados por los signos de las operaciones: adición, sustracción, multiplicación, división y potenciación. Las expresiones algebraicas
43 EJERCICIOS de POLINOMIOS
EJERCICIOS de POLINOMIOS 1. Calcular el valor numérico del polinomio P(x) para el valor de x indicado: a) P(x)x +1, para x1 b) P(x)x +1, para x-1 (Soluc: a) ; b) 0; c) 8; d) -) Ejercicios libro: pág. 1:
Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP. Universidad de Santiago de Chile. Polinomios
Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP Universidad de Santiago de Chile Polinomios Definición: P es un polinomio en el conjunto de los números reales si y sólo si P es una función de
( x ) 2 SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD. 1 Saca factor común: 2 Expresa los polinomios siguientes como cuadrado de un binomio:
Pág. 1 Página 95 PRACTICA Factor común e identidades notables 1 Saca factor común: a) 9x 2 + 6x 3 b) 2x 3 6x 2 + 4x c) 10x 3 5x 2 d) x 4 x 3 + x 2 x a) 9x 2 +6x 3 = 3(3x 2 + 2x 1) b) 2x 3 6x 2 + 4x = 2x(x
EL GRADO Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO
RECONOCER OBJETIVO EL GRADO Y LOS ELEMENTOS QUE ORMAN UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma algebraica de monomios, que son los términos del polinomio.
Biblioteca Virtual Ejercicios Resueltos
EJERCICIO 13 13 V a l o r n u m é r i c o Valor numérico de expresiones compuestas P r o c e d i m i e n t o 1. Se reemplaza cada letra por su valor numérico 2. Se efectúan las operaciones indicadas Hallar
1º) Siempre que se pueda, hay que sacar factor común: :a b ± a c ± a d ± = a (b ± c ± d ± ):
Pág. 1 de 7 FAC T O R I Z AC I Ó N D E P O L I N O M I O S Factorizar (o descomponer en factores) un polinomio consiste en sustituirlo por un producto indicado de otros de menor grado tales que si se multiplicasen
EXPRESIONES ALGEBRAICAS Y POLINOMIOS
EXPRESIONES ALGEBRAICAS Y POLINOMIOS 1. Dado el polinomio A(x)=x +3. Halla: a) (B(x)) y b)(b(x)) 3. a) Define valor numérico de un polinomio P(x) en x=a. b) Halla el valor numérico del polinomio P(x) =
14 Expresiones algebraicas. Polinomios
PARADA TeÓRICA 14 Expresiones algebraicas. Polinomios Una expresión algebraica es una combinación cualquiera y finita de números, de letras, o de números, letras, ligados entre sí con la adición, sustracción,
45 EJERCICIOS de POLINOMIOS 4º ESO opc. B
EJERCICIOS de POLINOMIOS º ESO opc. B 1. Calcular el valor numérico del polinomio P(x) para el valor de x indicado: a) P(x)x +1, para x1 b) P(x)x +1, para x-1 c) P(x)x +x+, para x d) P(x)-x -x-, para x-
Operaciones con polinomios
5 Operaciones con polinomios 5.1 Igualdades notables El cuadrado de una suma es igual al cuadrado del primero, más el doble del primero por el segundo, más el cuadrado del segundo: (a + b) a + ab + b El
. Definición: Dos o más términos son semejantes cuando tienen las mismas letras y afectadas por el mismo exponente.
Ejercicios Resueltos del Algebra de Baldor. Consultado en la siguiente dirección electrónica http://www.quizma.cl/matematicas/recursos/algebradebaldor/index.htm. Definición: Dos o más términos son semejantes
CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES
INECUACIONES NOTA IMPORTANTE: El signo de desigualdad de una inecuación puede ser,, < o >. Para las cuestiones teóricas que se desarrollan en esta unidad únicamente se utilizará la desigualdad >, siendo
Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2
SISTEMA DE ACCESO COMÚN A LAS CARRERAS DE INGENIERÍA DE LA UNaM III. UNIDAD : FUNCIONES POLINÓMICAS III..1 POLINOMIOS La expresión 5x + 7 x + 4x 1 recibe el nombre de polinomio en la variable x. Es de
5 Expresiones algebraicas
8948 _ 04-008.qxd /9/07 :0 Página 9 Expresiones algebraicas INTRODUCCIÓN RESUMEN DE LA UNIDAD El lenguaje algebraico sirve para expresar situaciones relacionadas con la vida cotidiana, utilizando letras
Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) =
T1 Dominios, Límites, Asíntotas, Derivadas y Representación Gráfica. 1.1 Dominios de funciones: Polinómicas: D( = La X puede tomar cualquier valor entre Ejemplos: D( = Función racional: es el cociente
Factorización de polinomios
Factorización de polinomios Polinomios Un polinomio p en la variable x es una expresión de la forma: px a 0 a 1 x a x a n1 x n1 a n x n donde a 0, a 1, a,, a n1, a n son unos números, llamados coeficientes
OBJETIVOS CONTENIDOS PROCEDIMIENTOS
82652 _ 0275-0286.qxd 27/4/07 1:20 Página 275 Polinomios INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de ahí la importancia de comprender
5 Operaciones. con polinomios P I E N S A Y C A L C U L A A P L I C A L A T E O R Í A. 1. Polinomios. Suma y resta
5 Operaciones con polinomios 1. Polinomios. Suma y resta Dado el cubo de la figura, calcula en función de : a) El área. b) El volumen. a) A() = 6 2 b) V() = 3 P I E N S A Y C A L C U L A 1 Dado el prisma
INSTITUTO VALLADOLID PREPARATORIA página 9
INSTITUTO VALLADOLID PREPARATORIA página 9 página 10 FACTORIZACIÓN CONCEPTO Para entender el concepto teórico de este tema, es necesario recordar lo que se mencionó en la página referente al nombre que
Operatoria algebraica
Eje temático: Algebra y funciones Contenidos: Operatoria algebraica Ecuaciones de primer grado Nivel: 1 Medio Operatoria algebraica 1. Operatoria algebraica 1.1. Términos semejantes Un término algebraico
Polinomios. Jesús García de Jalón de la Fuente. IES Ramiro de Maeztu Madrid
Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Definición Un polinomio es una operación indicada de sumas y productos entre números y una variable x (indeterminada): P (x) = a n x n + a
Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice
Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice 1 Polinomios Dedicaremos este apartado al repaso de los polinomios. Se define R[x] ={a 0 + a 1 x + a 2 x 2 +... +
Capitulo 4. Polinomios
Capitulo 4. Polinomios Objetivo. El alumno usará y analizará los conceptos del álgebra de los polinomios y sus propiedades para obtener raíces. Contenido. 4.1 Definición de polinomio. Grado de un polinomio.
EXPRESIONES ALGEBRAICAS
EXPRESIONES ALGEBRAICAS Un grupo de variables representadas por letras junto con un conjunto de números combinados con operaciones de suma, resta, multiplicación, división, potencia o etracción de raíces
José de Jesús Ángel Ángel, c 2010. Factorización
José de Jesús Ángel Ángel, c 2010. Factorización Contenido 1. Introducción 2 1.1. Notación.................................. 2 2. Factor común 4 2.1. Ejercicios: factor común......................... 4
Polinomios y fracciones algebraicas
829566 _ 0249-008.qxd 27/6/08 09:21 Página 27 Polinomios y fracciones algebraicas INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de
TEMA 3 POLINOMIOS NOMBRE Y APELLIDOS... HOJA 1 - FECHA...
TEMA 3 POLINOMIOS NOMBRE Y APELLIDOS... HOJA 1 - FECHA... TEMA 3 EXPRESIONES ENTERAS Y POLINOMIOS Una expresión algebraica es una combinación de letras y números con operaciones matemáticas que las unen,
Qué son los monomios?
Qué son los monomios? Recordemos qué es una expresión algebraica. Definición Una expresión algebraica es aquella en la que se utilizan letras, números y signos de operaciones. Si se observan las siguientes
SOLUCIÓN DE INECUACIONES DE UNA VARIABLE
SOLUCIÓN DE INECUACIONES DE UNA VARIABLE Resolver una inecuación es hallar el conjunto de soluciones de las incógnitas que satisfacen la inecuación. Terminología: ax + b > cx + d Primer miembro Segundo
Tema 3. Polinomios y fracciones algebraicas
Tema. Polinomios y fracciones algebraicas. Monomios.. Definiciones.. Operaciones con monomios. Polinomios.. Definiciones.. Operaciones con polinomios. Factorización de un polinomio.. Teorema del resto.
La derivada de una función también se puede obtener como el límite del cociente de incrementos, conocido como la regla de los cuatro pasos.
Regla de los cuatro pasos La derivada de una función también se puede obtener como el límite del cociente de incrementos, conocido como la regla de los cuatro pasos. f ( ) lím 0 f ( ) f ( ) El procedimiento
1. Sumar monomios semejantes:
FICHA 1: Monomios 1. Sumar monomios semejantes: a) 3x + 4x 5x b) 6x 3 x 3 + 3x 3 c) x 5 + 4x 5 7x 5 d) x 4 + 6x 4 + 3x 4 5x 4 e) 7x + 9x 8x + x f) y + 5y 3y g) 3x y 6x y + 5x y h) 4xy xy 7xy i) a 6 3a
f(x)=a n x n +a n-1 x n-1 +a n-2 x n-2 +...a 2 x 2 +a 1 x 1 +a 0
FUNCIÓN POLINOMIAL. DEFINICIÓN. Las funciones polinomiales su representación gráfica, tienen gran importancia en la matemática. Estas funciones son modelos que describen relaciones entre dos variables
DEL LENGUAJE DE LOS NÚMEROS AL LEGUAJE ALGEBRAICO.
DEL LENGUAJE DE LOS NÚMEROS AL LEGUAJE ALGEBRAICO. En ocasiones, en matemáticas, necesitamos operar con números desconocidos. Para ello, se toman letras para representar esas cantidades desconocidas o
Observaciones del profesor:
Calificación total máxima: 10 puntos. Tiempo: 60 minutos. OPCIÓN A Ejercicio 1. (Puntuación máxima: 4 puntos) Se considera la matriz: A=( ) a) Determina la matriz B= A 2-2A 1,5 PUNTOS b) Determina los
Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo
POLINOMIOS 1.1. DEFINICIONES Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo p(x) = a i x i = a 0 + a 1 x + a 2 x 2 + + a n x n + ; a i, x K; n N
POLINOMIOS Y FRACCIONES ALGEBRAICAS
POLINOMIOS Y FRACCIONES ALGEBRAICAS Página 66 PARA EMPEZAR, REFLEXIONA Y RESUELVE Múltiplos y divisores. Haz la división: 4 + 5 0 + 5 A la vista del resultado, di dos divisores del polinomio 4 + 5 0. (
Informática 1 Sistemas numéricos: decimal, binario, octal y hexadecimal FCFA Febrero 2012
Informática 1 Sistemas numéricos: decimal, binario, octal y hexadecimal CONVERSIONES DE UN SISTEMA A OTRO Para la realización de conversiones entre números de bases diferentes se efectúan operaciones aritméticas
CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS
CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS Guía de Estudio para examen de Admisión de Matemáticas CONTENIDO PRESENTACIÓN... 3 I. ARITMÉTICA... 4 1. OPERACIONES CON FRACCIONES...
Las expresiones algebraicas se clasifican en racionales e irracionales.
1. 1.1 Epresiones algebraicas 1.1 Epresión algebraica. En matemáticas una epresión algebraica es un conjunto de letras y números, ligados por los signos de adición, sustracción, multiplicación, división,
MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 10
Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia / 0 Ceros complejos y el teorema fundamental del álgebra En las secciones anteriores se ha discutido que un polinomio de grado n puede tener a lo más
PROBLEMAS RESUELTOS. CASO I cuando todos los términos de un polinomio tienen un factor común. Algebra Baldor
PROBLEMAS RESUELTOS CASO I cuando todos los términos de un polinomio tienen un factor común CASO II factor comun por agrupación de terminos CASO III trinomio cuadrado perfecto CASO IV Diferencia de cuadrados
Área: Matemática ÁLGEBRA
Área: Matemática ÁLGEBRA Prof. HENRY AYTE MORALES FICHA DE TRABAJO RECUPERACIÓN 1ro SEC A, B y C I. TEORÍA DE EXPONENTES 1. DEFINICIÓN Es un conjunto de fórmulas que relaciona a los exponentes de las expresiones
INSTITUTO VALLADOLID PREPARATORIA página 37
INSTITUTO VALLADOLID PREPARATORIA página 37 página 38 SUMA DE FRACCIONES CONCEPTO Las cuatro operaciones fundamentales, suma, resta, multiplicación y división, con fracciones algebraicas se realizan bajo
Ecuaciones diferenciales de orden superior
CAPÍTULO 4 Ecuaciones diferenciales de orden superior 4.4.2 ED lineales homogéneas con coeficientes constantes de orden n 3 En la sección anterior hemos obtenido las soluciones de la ED lineal homogénea
CONCEPTOS ALGEBRAICOS BASICOS
CONCEPTOS ALGEBRAICOS BASICOS OBJETIVOS: 1.- Expresar relaciones numéricas mediante símbolos numéricos y literales. 2.- Reconocer las expresiones algebraicas y sus elementos. 3.- Reducir y evaluar expresiones
INSTITUTO VALLADOLID PREPARATORIA página 57
INSTITUTO VALLADOLID PREPARATORIA página 57 página 58 RESTA DE FRACCIONES RESTA La resta de fracciones está basada, por ser el inverso de la operación suma, en las mismas reglas y leyes de la suma, es
Desarrollar los puntos anteriores en hojas cuadriculadas examen.
DEPARTAMENTO DE MATEMÁTICAS TERCER PERIODO - 2014 NOMBRE DEL ESTUDIANTE: GRADO: OCTAVO CURSO: ASIGNATURA: MATEMÁTICAS PROFESOR (A): INDICADORES DE DESEMPEÑO 301. Comunicación Matemática: Utiliza lenguaje
Teoría Tema 1 Inecuaciones
página 1/7 Teoría Tema 1 Inecuaciones Índice de contenido Qué es una inecuación?...2 Inecuaciones de primer grado...3 Sistemas de inecuaciones con una incógnita...4 Inecuaciones de segundo grado...5 Inecuaciones
6. Usa el teorema del resto para comprobar si los siguientes polinomios son divisibles por (x 2)
1. Halla el cociente y el resto de la división: (3x 2 7x + 5) : (x 2 ) 2. Halla el cociente y el resto de la división: (x 3 3x 2 2) : (x 2 + 1) 3. Calcula y simplifica: a) 3x(x + 7) 2 + (2x 1)( 3x + 2)
Capítulo 4. Productos notables y factorización
Capítulo 4 Productos notables y factorización Las siguientes fórmulas de multiplicación de expresiones algebraicas ayudan a factorizar muchas expresiones, sin embargo se debe aprender a reconocer cuál
2Soluciones a las actividades de cada epígrafe PÁGINA 42
PÁGINA 42 Pág. 20 cm r r l l 20 cm Amparo quiere fabricar las cuatro velas que ha diseñado sobre el lienzo, pero aún no se ha decidido sobre alguna de sus dimensiones. Para hacerlo necesita saber su volumen
Guía 4 Formalizando conceptos y procedimientos algebraicos
1 Guía 4 Formalizando conceptos y procedimientos algebraicos Nombre Curso Capacidad Destreza Valor Actitud 1 Año Medio A B C D Resolver Problemas Analizar Colaboración Constancia Aprendizajes Esperados
MA-0125 MATEMÁTICA ELEMENTAL -Décimo Año- I EXAMEN PARCIAL 2012
Escuelas de Matemática Proyecto MATEM 01 http://matem.emate.ucr.ac.cr/ tel. (506) 511-458 MA-015 MATEMÁTICA ELEMENTAL -Décimo Año- I EXAMEN PARCIAL 01 Nombre: Código: Colegio: Fórmula 1 Sábado 14 de abril
6 División de polinomios. Raíces
6 División de polinomios. Raíces ACTIVIDADES INICIALES 6.I. 6.II. Si quieres ampliar una foto de x por y píxeles a 4y por x píxeles, cuántos píxeles nuevos tendrás que rellenar? 4y x x y = 6xy píxeles
Polinomios y Ecuaciones
Ejercicios de Cálculo 0 Prof. María D. Ferrer G. Polinomios y Ecuaciones.. Polinomios: Un polinomio o función polinómica es una epresión de la forma: n n n P a a a a a a = n + n + n + + + + 0 () Los números
(a+b) (a b)=a 2 b 2 OBJETIVOS CONTENIDOS PROCEDIMIENTOS
Polinomios INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de ahí la importancia de comprender el concepto de polinomio y otros asociados
Matemática SECRETARÍA ACADÉMICA AREA INGRESO. - Septiembre de 2010 -
SECRETARÍA ACADÉMICA AREA INGRESO - Septiembre de 00 - SECRETARÍA ACADÉMICA ÁREA INGRESO UNIVERSIDAD TECNOLÓGICA NACIONAL Zeballos 000 Rosario - Argentina www.frro.utn.edu.ar e-mail: [email protected]
Operaciones con polinomios
Operaciones con polinomios Los polinomios son una generalización de nuestro sistema de numeración. Cuando escribimos un número, por ejemplo, 2 354, queremos decir: 2 354 = 2 000 + 300 + 50 + 4 = 2)1 000)
DIVISIBILIDAD SOLUCIÓN:
DIVISIBILIDAD 1. Si a, b y c son números naturales tales que c = a. b, se dice: a) c es divisor de a y de b. b) c es múltiplo de a y de b. c) a y b son múltiplos de c. Todo número descompuesto en un producto
Polinomios. Antes de empezar
Antes de empezar Utilidad de los polinomios Los polinomios no solo están en la base de la informática, en economía los cálculos de intereses y duración de las hipotecas se realizan con expresiones polinómicas,
[email protected]
Titulo: OPERACIONES CON POLINOMIOS (Reducción de términos semejantes, suma y resta de polinomios, signos de agrupación, multiplicación y división de polinomios) Año escolar: 2do: año de bachillerato Autor:
Cómo desarrollar y factorizar expresiones algebraicas?
1 Cómo desarrollar y factorizar expresiones algebraicas? Prof. Jean-Pierre Marcaillou OBJETIVOS: La calculadora CASIO ClassPad 330 dispone de los comandos [expand], [factor], [rfactor], [factorout] y [collect]
UNEFA CURSO INTEGRAL DE NIVELACIÓN UNIVERSITARIA (CINU)- MATEMÁTICA Página 1
Unidad 1: Epresiones Algebraicas UNEFA CURSO INTEGRAL DE NIVELACIÓN UNIVERSITARIA (CINU)- MATEMÁTICA Página 1 UNEFA CURSO INTEGRAL DE NIVELACIÓN UNIVERSITARIA (CINU)- MATEMÁTICA Página Matemática Unidad
Material N 15 GUÍA TEÓRICO PRÁCTICA Nº 12
C u r s o : Matemática Material N 5 GUÍA TEÓRICO PRÁCTICA Nº UNIDAD: ÁLGEBRA Y FUNCIONES ÁLGEBRA DE POLINOMIOS EVALUACIÓN DE EXPRESIONES ALGEBRAICAS Evaluar una epresión algebraica consiste en sustituir
2. Calcula cociente y resto en la siguiente división de polinomios: (x 5 32) : (x 1)
1. Un polinomio con raíces únicas 1, 0, 2, 2, 3 es: a) x 4 + 4x 3 + x 2 6x b) x 4 + 6x 3 + 9x 2 4x 12 c) x 5 6x 4 + 9x 3 + 4x 2 12x d) x 5 + 6x 4 + 9x 3 4x 2 12x e) x 4 4x 3 + x 2 + 6x 2. Calcula cociente
MATEMATICAS I SESIÓN 1 DEFINICIONES FUNDAMENTALES (REDUCCIÓN DE TERMINOS SEMEJANTES)
MATEMATICAS I SESIÓN 1 DEFINICIONES FUNDAMENTALES (REDUCCIÓN DE TERMINOS SEMEJANTES) Introducción: El alumno comprenderá qué estudia el algebra, así como algunas definiciones importantes como son: expresión
Polinomios y fracciones algebraicas
Polinomios y fracciones algebraicas POLINOMIOS SUMA, RESTA Y MULTIPLICACIÓN POTENCIAS DIVISIÓN REGLA DE RUFFINI DIVISORES DE UN POLINOMIO FACTORIZACIÓN DE UN POLINOMIO VALOR NUMÉRICO DE UN POLINOMIO TEOREMA
Funciones polinomiales de grados 3 y 4
Funciones polinomiales de grados 3 y 4 Ahora vamos a estudiar los casos de funciones polinomiales de grados tres y cuatro. Vamos a empezar con sus gráficas y después vamos a estudiar algunos resultados
INTEGRAL INDEFINIDA. Hemos estudiado la derivada de una función. Ahora vamos a determinar una función F(x) conociendo su derivada.
1. INTEGRAL INDEFINIDA INTEGRAL INDEFINIDA Hemos estudiado la derivada de una función. Ahora vamos a determinar una función F(x) conociendo su derivada. Ejm: La función F x = x es una primitiva de f x
RELACIÓN DE PROBLEMAS Nº 2 CONJUNTOS Y APLICACIONES
UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Dpto. de Matemáticas (Área de Álgebra) 1. Sean X e Y conjuntos. Demostrar: a) X = X Y Y X. b) X = X Y X Y. RELACIÓN DE PROBLEMAS Nº 2 CONJUNTOS Y APLICACIONES
Lección 9: Polinomios
LECCIÓN 9 c) (8 + ) j) [ 9.56 ( 9.56)] 8 q) (a x b) d) ( 5) 4 k) (6z) r) [k 0 (k 5 k )] e) (. 0.) l) (y z) s) (v u ) 4 f) ( 5) + ( 4) m) (c d) 7 t) (p + q) g) (0 x 0.) n) (g 7 g ) Lección 9: Polinomios
1. Encontrar el dominio de la función racional. 2. Encontrar los interceptos con x y y de la función racional.
1. Encontrar el dominio de la función racional. h(x) x 2 3x 1 (x 2 4)(x 2 + 11x + 24) Para encontrar el dominio de una función racional debemos encontrar los valores de la variable que hacen cero el denominador.
Expresiones algebraicas
5 Expresiones algebraicas Objetivos Crear expresiones algebraicas a partir de un enunciado. Hallar el valor numérico de una expresión algebraica. Clasificar una expresión algebraica como monomio, binomio,...
Estudio de ceros de ecuaciones funcionales
Capítulo 1 Estudio de ceros de ecuaciones funcionales Problema 1.1 Calcular el número de ceros de la ecuación arctang(x) = 4 x, dando un intervalo 5 donde se localicen. Solución: Denimos f(x) = arctan(x)
TEMA 5 EXPRESIONES ALGEBRAICAS
5.1 Monomios TEMA 5 EXPRESIONES ALGEBRAICAS Di si las siguientes expresiones matemáticas son monomios o no. En caso de serlo, determina su parte literal, su coeficiente y su grado. 6x 4 6 1 x 4 6 x 4 no
Matemáticas I (Álgebra) Manual de bachillerato. Primera Edición, 2009 Compilación y Asesoría Pedagógica Erika Alejandra López Estrada
Matemáticas I (Álgebra) Manual de bachillerato Primera Edición, 2009 Compilación y Asesoría Pedagógica Erika Alejandra López Estrada Coordinador editorial Alan Santacruz Farfán Revisión Alejandro Vázquez
SUMA Y RESTA DE FRACCIONES
SUMA Y RESTA DE FRACCIONES CONCEPTOS IMPORTANTES FRACCIÓN: Es la simbología que se utiliza para indicar que un todo será dividido en varias partes (se fraccionará). Toda fracción tiene dos partes básicas:
PENDIENTES 2º ESO. Segundo examen DEPARTAMENTO DE MATEMÁTICAS. Preparación del segundo examen de recuperación de MATEMÁTICAS DE 2º ESO Curso 2013-2014
014 015 Preparación del segundo examen de recuperación de MATEMÁTICAS DE º ESO Curso 013-014 PENDIENTES º ESO Segundo examen DEPARTAMENTO DE MATEMÁTICAS Preparación del segundo examen de recuperación de
Colegio Hermanos Carrrera. Departamento de Matemática Prof. Roberto Medina
Colegio Hermanos Carrrera Departamento de Matemática Prof. Roberto Medina Unidad 2 Objetivos: - Conceptos algebraicos básicos - Valoración de expresiones algebraicas - Reducción de términos semejantes
3 Polinomios y fracciones algebráicas
Solucionario 3 Polinomios y fracciones algebráicas ACTIVIDADES INICIALES 3.I. Para cada uno de los siguientes monomios, indica las variables, el grado y el coeficiente, y calcula el valor numérico de los
EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS/AS CON LAS MATEMÁTICAS DE 3º ESO PENDIENTES PRIMER PARCIAL
de º de E.S.O. EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS/AS CON LAS MATEMÁTICAS DE º ESO PENDIENTES PRIMER PARCIAL Fecha tope para entregarlos de enero de 0 Examen de enero de 0 I.E.S. SERPIS DEPARTAMENTO
