Relaciones y funciones

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Relaciones y funciones"

Transcripción

1 Relaciones y funciones por: Oliverio Ramírez Juárez No todas las relaciones tienen que ser personales, por ejemplo, se puede relacionar la estatura de un niño con su edad o el costo de la entrada al cine con la hora o el día. Al utilizar la noción de relación, puedes saber que a cada persona le corresponde una fecha de nacimiento; en este caso se relaciona un conjunto de personas con un conjunto de fechas. Observa el siguiente diagrama, qué elementos encuentras en él?, qué puedes concluir del mismo? Figura 1. Relación entre dos conjuntos. Como puedes observar en el diagrama, para que exista una relación es necesario que existan dos conjuntos, el conjunto A que representa a las personas (al cual matemáticamente se le llama Dominio); el conjunto B que representa las fechas de nacimiento (llamado Rango) y una regla de correspondencia que relacione de alguna manera, un elemento del conjunto A con un elemento del conjunto B. Nota que: Todas las personas tienen una fecha de nacimiento. Una persona no puede tener dos fechas distintas de nacimiento. Luis y Ana nacieron el mismo día. 1

2 En Matemáticas, existe un tipo especial de relación que es de gran relevancia, llamado función. Revisa entonces la definición de una función: Smith (2000, p.18) dice que una función f es una regla que asigna exactamente un elemento y de un conjunto B a cada elemento x de un conjunto A. De acuerdo con la definición teórica, para que una relación se considere función debe cumplir con las siguientes dos condiciones: 1. Ningún elemento del dominio (conjunto A) puede quedar sin asociarse con un elemento del rango (conjunto B). 2. Un elemento del dominio no puede tener más de un asociado en el rango, pero un elemento del rango sí puede estar asociado con más de un elemento del dominio. Volviendo a la relación, analiza si es una función o no: Figura 2. Relación entre un conjunto de personas y un conjunto de fechas de nacimiento. 2

3 Todas las personas tienen una fecha de nacimiento. Una persona no puede tener dos fechas distintas de nacimiento. Juan y Ana nacieron el mismo día. Cumple con la regla 1 Cumple con la regla 2 Cumple con la regla 2 Para que una relación se considere función, debe cumplir con las dos condiciones. Por lo tanto, la relación anterior SÍ es una FUNCIÓN. Constante En una expresión matemática, una constante es cualquier cantidad conocida. Por ejemplo, en la fórmula para calcular el área de un círculo A = pr2 aparece la constante π cuyo valor es Figura 3. Diagrama ilustrativo del área de un círculo. Variable independiente y variable dependiente Siguiendo con el mismo ejemplo, observa que se desconoce el valor de A y R. Como su valor puede variar de acuerdo al círculo del que se trate, se les conoce como variables. De la manera en que está escrita la fórmula, para cada valor que asignes a R, habrá un valor para A. Por ello se dice que R es la variable independiente y como el valor de A depende de R, A es la variable dependiente. 3

4 Integración de conceptos Si sabes cómo puedes representar e interpretar a las funciones, éstas te pueden ayudar a tomar decisiones importantes en tu vida diaria. Supón que quieres rentar un plan de telefónicas y te ofrecen dos planes: Plan 1: pagar una renta diaria de $10.00, más $0.50 por llamada que se realice. Plan 2: pagar una renta diaria de $18.00, con ilimitadas. Cuál será el mejor plan para ti? Para tomar la mejor decisión, necesitas representar los datos de una manera más fácil de comprender. Una forma de remplazar algunos datos para el Plan 1, es por medio de una tabla en la que, en base al número de, conozcas el costo que se va generando. La siguiente tabla está incompleta. Verifica los valores que ya están colocados y escribe los números que faltan en los recuadros naranja. [Puedes ver las respuestas al final de esta lectura] Tabla 1. Datos de número de y su costo diario De acuerdo con los datos de la tabla anterior, cuál será el costo si se realizan sólo 12?, en este caso, qué plan conviene? Si se realizan 26, qué plan conviene más?, por qué? 4

5 Con los datos de la tabla anterior, se puede construir una gráfica como la que se te muestra a continuación. Puedes usar Excel o hacerlo en tu cuaderno, graficando los puntos en un plano coordenado. Tu gráfica debe ser similar a la siguiente: Figura 3. Gráfica de la relación existente entre el número de y el costo diario En ocasiones es conveniente analizar los datos en forma de tablas, pero también en forma gráfica. Por ello es necesario que te acostumbres al uso de gráficas. De acuerdo a la gráfica o a la tabla de valores, puedes determinar varias situaciones: 1. Si realizas 16 diarias, el costo sería de $ Si acostumbras hacer menos de 16 diarias, te conviene contratar el Plan Si planeas realizar 16 o más diarias, entonces te conviene contratar el Plan 2, el cual tiene un costo de $18.00, pero con ilimitadas. Te diste cuenta que si analizas tu situación en particular puedes tomar la mejor decisión?, crees que puedas predecir con el Plan 1 cuánto pagarías por 35? Ya se representó una función mediante una gráfica y una tabla de valores. Otra forma de representar una función es mediante una expresión algebraica, la cual se puede determinar a partir de la regla de correspondencia entre los dos conjuntos. 5

6 La forma en que se representará una función es la siguiente. A manera de ejemplo, se tomará la ecuación de la recta pendiente-ordenada al origen. Recuerdas esta ecuación?, la estudiaste en Matemáticas básicas: y = mx + b En este caso: y es la variable dependiente. x es la variable independiente. m, b son las constantes. Una forma alternativa de escribir una función es: De donde se deduce que: f(x) = mx + b y = f(x) Es necesario que te acostumbres a las dos formas de representar una función, porque en el curso usarás ambas de manera indistinta. Ve cómo funciona! Si se expresa algebraicamente la función del ejemplo anterior. Plan 1 Pagar una renta diaria (costo por día) de $10.00, más $0.50 por llamada que realices. Primero: Se establecen los dos conjuntos y se les asigna una variable. Conjunto A: número de = n Conjunto B: costo por día = C 6

7 Segundo: Se traduce la regla de correspondencia (enunciado el Plan 1) del lenguaje común al lenguaje matemático. por día es $10.00 pesos más $0.50 por llamada que se realice C = n Como te habrás dado cuenta, el costo por día (variable C) depende del número de que realices (variable n). Esto lo puedes observar en la gráfica o en la tabla, por lo tanto a la variable C la llamarás variable dependiente y la podrás representar como C(n), lo cual indica que el costo depende del número de. A la variable n, la llamarás variable independiente, ya que el número de determina el costo por día. Finalmente, la expresión anterior la puedes reescribir como: C(n) = n Ahora ya puedes calcular el costo diario, si conoces el número de realizadas. En la siguiente tabla, se te muestran algunos ejemplos del uso de la expresión anterior. Completa la tabla escribiendo las cantidades que faltan. [Puedes ver las respuestas al final de este documento]. Regla de correspondencia por día n C(n) = n C(n) 1 C(1) = (1) C(3) = (3) C(10) = (10) C(16) = (16) 20 C(20) 35 C(35) Tabla 1. Aplicación de la expresión C(n) 7

8 Respuestas a las tablas 1 y 2 Tabla 1: Tabla 2: Regla de correspondencia por día n C(n) = n C(n) 1 C(1) = (1) C(3) = (3) C(10) = (10) C(16) = (16) C(20) C(35) 27.5 Referencias Fuenlabrada, S. (2001). Cálculo diferencial (2ª. ed.). México: Mc Graw- Hill. Smith, R. T. (2000). Cálculo, Tomo 1 (F. A. Castillo y G. A. Villamizar. Trads.). Colombia: Mc Graw-Hill. 8

En este tipo de relaciones siempre existe una variable que depende de la otra, es decir, una de ellas es independiente y la otra dependiente.

En este tipo de relaciones siempre existe una variable que depende de la otra, es decir, una de ellas es independiente y la otra dependiente. I-MIP71_MAAL1_Cédula Funciones Por:SandraElviaPérez Relacionesyfunciones En la vida diaria es muy común encontrar variables que se relacionan entre sí, por ejemplo la longitud de un bebé con respecto al

Más detalles

Plan de Animación para la enseñanza de las Matemáticas

Plan de Animación para la enseñanza de las Matemáticas FUNCIONES MATEMÁTICAS I: CONCEPTOS BÁSICOS Una función, en matemáticas, es el término usado para indicar la relación o correspondencia entre dos o más cantidades. El término función fue usado por primera

Más detalles

La derivada en la solución de problemas

La derivada en la solución de problemas La derivada en la solución de problemas por Oliverio Ramírez En los siguientes ejemplos se utiliza el concepto de derivada como razón de cambio y su interpretación geométrica en la solución de problemas.

Más detalles

Apoyo. Dominio y rango de una recta horizontal, y recta vertical que no es una función. es una constante.

Apoyo. Dominio y rango de una recta horizontal, y recta vertical que no es una función. es una constante. Línea Recta I. Línea recta. Apoo. Dominio rango de una recta horizontal, recta vertical que no es una función. Forma estándar de la ecuación de una recta m b Donde: Variable dependiente (eje de las ordenadas)

Más detalles

Figura 1. Rectas inclinadas.

Figura 1. Rectas inclinadas. I-MIP700_MAAL_Cédula La recta Pendiente de una recta Por: Sandra Elvia Pérez Antes de comenzar con el estudio de la recta, es necesario que revises el concepto de pendiente, qué te imaginas cuando escuchas

Más detalles

CUADERNO Nº 11 NOMBRE: FECHA: / / Funciones. Interpretar y relacionar tabla, gráfica y fórmula de una relación funcional.

CUADERNO Nº 11 NOMBRE: FECHA: / / Funciones. Interpretar y relacionar tabla, gráfica y fórmula de una relación funcional. Funciones Contenidos 1. Relaciones funcionales Tablas, gráficas y fórmulas. Variables Dominio y recorrido 2. Representación gráfica A partir de tabla o fórmula Unos símbolos muy útiles 3. Propiedades generales

Más detalles

Componentes de una función

Componentes de una función Componentes de una función por Oliverio Ramírez y Felipe de la Rosa Dominio y Rango De acuerdo con Fuenlabrada (2001), para que exista una función se necesitan tres componentes: Figura 1. Función. El dominio

Más detalles

Sistemas de Ecuaciones Lineales

Sistemas de Ecuaciones Lineales Sistemas de Ecuaciones Lineales por Oliverio Ramírez Juárez El álgebra es sin duda una de las herramientas matemáticas más utilizadas en la solución de problemas, entre otras razones, porque permite expresar

Más detalles

Matemáticas. para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul

Matemáticas. para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul Matemáticas para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul Unidad I (Capítulos 3 y 5 del texto) Funciones y Gráficas 1.1 Definición y notación de función. 1.2 Dominio y rango

Más detalles

CORPORACION UNIFICADA NACIONA DE EDUCACION SUPERIOR DEPARTAMENTO DE CIENCIAS BASICAS FUNCIÓN Y RELACIÓN

CORPORACION UNIFICADA NACIONA DE EDUCACION SUPERIOR DEPARTAMENTO DE CIENCIAS BASICAS FUNCIÓN Y RELACIÓN CORPORACION UNIFICADA NACIONA DE EDUCACION SUPERIOR DEPARTAMENTO DE CIENCIAS BASICAS AREA / COMPONENTE: FORMACIÓN BÁSICA CICLO DE FORMACIÓN: TECNICA FUNCIÓN Y RELACIÓN RELACION Dados los conjuntos A =

Más detalles

Bloque 3. Funciones. 1. Análisis de funciones

Bloque 3. Funciones. 1. Análisis de funciones Bloque 3. Funciones 1. Análisis de funciones 1. Concepto de función Una función es una relación entre dos magnitudes, de tal manera que a cada valor de la primera le corresponde un único valor de la segunda,

Más detalles

MATEMÁTICAS 2º DE ESO

MATEMÁTICAS 2º DE ESO MATEMÁTICAS 2º DE ESO LOE TEMA VII: FUNCIONES Y GRÁFICAS Coordenadas cartesianas. Concepto de función. Tabla y ecuación. Representación gráfica de una función. Estudio gráfico de una función. o Continuidad

Más detalles

Matemáticas Administrativas

Matemáticas Administrativas Matemáticas Administrativas Matemáticas Administrativas Ciencias Económico Administrativas Economía Nombre de la Materia Departamento Academia Clave Horas-teoría Horas-práctica Horas-Al Total-horas Créditos

Más detalles

ÁREA: MATEMÁTICAS NIVEL: 6º

ÁREA: MATEMÁTICAS NIVEL: 6º ÁREA: MATEMÁTICAS NIVEL: 6º Temporalización: 14-10/8-11 Nombre:... TEMAS : 3-4 C.R.A. Los Fresnos Matemáticas 6º Curso 2013-14 LO QUE VAS A APRENDER EN ESTA UNIDAD VAS A APRENDER: Reconocer y utilizar

Más detalles

UNIDAD II. VARIACION DIRECTAMENTE PROPORCIONAL Y FUNCIONES LINEALES

UNIDAD II. VARIACION DIRECTAMENTE PROPORCIONAL Y FUNCIONES LINEALES UNIDAD II. VARIACION DIRECTAMENTE PROPORCIONAL Y FUNCIONES LINEALES Al finalizar esta unidad: - Describirás verbalmente en que consiste el cambio y cuáles son los aspectos involucrados en él. - Identificarás

Más detalles

Expresiones algebraicas

Expresiones algebraicas Expresiones algebraicas Por: Oliverio Ramírez Juárez De acuerdo con Figueroa y Guzmán (2010), la diferencia entre la aritmética y el álgebra elementales reside en que la primera sólo utiliza números; mientras

Más detalles

Herramientas del Algebra

Herramientas del Algebra 8 GIMNASIO PARAISO ANTARES PERIODO: I FECHA: DIAGNOSTICO TALLER QUIZ: BIMESTRAL APOYO PEDAGOGICO PRUEBA DE SUPERACION DOCENTE:JOSE A. URQUIJO Herramientas del Algebra AREA/ASIGNATURA: MATEMÁTICAS ESTUDIANTE:

Más detalles

FUNCIONES DE VARIABLE REAL

FUNCIONES DE VARIABLE REAL Cálculo Diferencial FUNCIONES DE VARIABLE REAL LOGRO DE LA SESIÓN Al finalizar la sesión de aprendizaje el estudiante conoce, interpreta y aplica la función de una variable real para modelar problemas

Más detalles

GRÁFICOS Y FUNCIONES.

GRÁFICOS Y FUNCIONES. GRÁFICOS Y FUNCIONES. COORDENADAS DEL PLANO Para representar los puntos en el plano, necesitamos dos rectas perpendiculares, llamados ejes cartesianos o ejes de coordenadas: El eje horizontal se llama

Más detalles

Ax + By + C = 0. Que también puede escribirse como. ax + by + c = 0 y que se conoce como: la ecuación general de la línea recta

Ax + By + C = 0. Que también puede escribirse como. ax + by + c = 0 y que se conoce como: la ecuación general de la línea recta ECUACIÒN DE LA RECTA La idea de línea recta es uno de los conceptos intuitivos de la Geometría (como son también el punto y el plano). La recta se puede entender como un conjunto infinito de puntos alineados

Más detalles

Carlos A. Rivera-Morales. Precálculo I

Carlos A. Rivera-Morales. Precálculo I Carlos A. Rivera-Morales Precálculo I Tabla de Contenido Contenido : Contenido Discutiremos: función inversa : Contenido Discutiremos: función inversa construcción de la función inversa : Contenido Discutiremos:

Más detalles

El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D.

El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D. Concepto de función Función real de variable real es toda correspondencia f que asocia a cada elemento de un determinado subconjunto de números reales, llamado dominio, otro número real (uno y sólo uno).

Más detalles

CLASE 1: Funciones y Gráficas

CLASE 1: Funciones y Gráficas CLASE 1: Funciones y Gráficas Sergio Stive Solano Sabié Agosto de 2011 CLASE 1: Funciones y Gráficas Sergio Stive Solano Sabié Agosto de 2011 Cuatro maneras de representar una función Definición 1.1 Una

Más detalles

DESPEJE DE VARIABLES

DESPEJE DE VARIABLES ESTUDIANTE: GRADO: 90_ NOTA: DOCENTE: Edison Fernando Perico Mateus PERIODO: I - 2017 FECHA: MAGNITUDES Magnitudes Fundamentales: Son aquellas que sirven de base para escribir las demás magnitudes. En

Más detalles

Toda función es una relación, pero no toda relación es una función. Las relaciones multiformes NO son funciones. Relación uno a uno (biunívoca)

Toda función es una relación, pero no toda relación es una función. Las relaciones multiformes NO son funciones. Relación uno a uno (biunívoca) CONCEPTO TRADICIONAL DE FUNCIÓN Cuando dos variables están relacionadas en tal forma que a cada valor de la primera corresponde un valor de la segunda, se dice que la segunda es función de la primera.

Más detalles

Actividades para el logro de las tareas de desempeño Día:1 Día:2 Día:3 Día:4 Día:5

Actividades para el logro de las tareas de desempeño Día:1 Día:2 Día:3 Día:4 Día:5 Semana 1 Semana 2,, ES.A.18.1 Las ecuaciones lineales. Actividades para el logro de las tareas de desempeño Día:1 Día:2 Día:3 Día:4 Día:5 Cómo determinar e interpretar el concepto pendiente de una recta.

Más detalles

Departamento de Matemática Profesora Cinthya Coronado G.

Departamento de Matemática Profesora Cinthya Coronado G. Departamento de Matemática Profesora Cinthya Coronado G. Objetivos: Reforzar contenidos de lenguaje algebraico y ecuaciones. Graficar correctamente ecuaciones de dos variables en el plano cartesiano. Diferenciar

Más detalles

Colegio Decroly Americano Matemática 7th Core, Contenidos I Período

Colegio Decroly Americano Matemática 7th Core, Contenidos I Período Matemática 7th Core, 2015-2016 Contenidos I Período 1. Sentido Numérico a. Identificar y escribir patrones. b. Escribir números en forma de exponentes. c. Escribir cantidades en notación científica. d.

Más detalles

MATEMÁTICAS 9. TALLER DE FUNCIONES No 1

MATEMÁTICAS 9. TALLER DE FUNCIONES No 1 MATEMÁTICAS 9 TALLER DE FUNCIONES No 1 1. elabora una tabla de valores para cada función y traza su respectiva gráfica. Dar los valores a x desde -3 hasta 3. a. f(x) = x 5 b. f(x) = 9x + 4 2. determina

Más detalles

Materia: Matemática de 5to Tema: Ecuación vectorial. Marco Teórico

Materia: Matemática de 5to Tema: Ecuación vectorial. Marco Teórico Materia: Matemática de 5to Tema: Ecuación vectorial Marco Teórico Como ya sabemos y = mx + b es la forma pendiente-intersección de una recta. Mientras que esta ecuación funciona bien en el espacio de dos

Más detalles

ESCUELA PREPARATORIA UNO DEL ESTADO TURNO MATUTINO GUIA Y EJERCICIOS DE MATEMATICAS PARA QUINTO SEMESTRE

ESCUELA PREPARATORIA UNO DEL ESTADO TURNO MATUTINO GUIA Y EJERCICIOS DE MATEMATICAS PARA QUINTO SEMESTRE ESCUELA PREPARATORIA UNO DEL ESTADO TURNO MATUTINO GUIA Y EJERCICIOS DE MATEMATICAS PARA QUINTO SEMESTRE NOMBRE DEL ALUMNO EJERCICIO 1 I) RELACIONES Y FUNCIONES Concepto: Una Relación es una correspondencia

Más detalles

Aplicaciones Numéricas de la derivada

Aplicaciones Numéricas de la derivada Aplicaciones Numéricas de la derivada por Oliverio Ramírez La derivada como razón de cambio. De acuerdo con Fuenlabrada (001, p.151) razón es comparar dos cantidades por su cociente, es decir, a través

Más detalles

Definición de Funciones MATE 3171

Definición de Funciones MATE 3171 Definición de Funciones MATE 3171 Función Una función, f, es una regla de correspondencia entre dos conjuntos, que asigna a cada elemento x de D exactamente un elemento de E : x 1 x 2 x 3 y 2 y 1 Terminología

Más detalles

Algebra Sigla MAT2001

Algebra Sigla MAT2001 TIPO DE ACTIVIDAD: Ejercicios Título Actividad: Nombre Asignatura: Concepto de Función Algebra Sigla MAT2001 Semana Nº: 1 Actividad Nº 1 Lugar APRENDIZAJES ESPERADOS: Aprendizaje 1 Sala de clases Otro

Más detalles

Explorando la ecuación de la recta pendiente intercepto

Explorando la ecuación de la recta pendiente intercepto Explorando la ecuación de la recta pendiente intercepto Realiza las siguientes actividades, mientras trabajas con el tutorial. 1. Los puntos que están en la misma recta se dice que son. 2. Describe el

Más detalles

Límites y continuidad

Límites y continuidad CDIN06_MAAL_Límites Versión: Septiembre 0 Límites y continuidad por Sandra Elvia Pérez Después de haber repasado las funciones polinomiales, su dominio y rango, estamos listos para iniciar con el estudio

Más detalles

GUÍA DE TRABAJO No.4

GUÍA DE TRABAJO No.4 INSTITUCIÓN EDUCATIVA JOSÉ JOAQUIN FLOREZ HERNANDEZ JORNADA TARDE ALUMNO: CÓDIGO : GRADO: 9 C - D ASIGNATURA : MATEMÁTICAS FECHA : UNIDAD 2: RELACIONES Y FUNCIONES PERÍODO : 2 GUÍA DE TRABAJO No.4 Definición

Más detalles

ƒ : {(1, 4), (2, 5), (3, 6), (4, 7)}.

ƒ : {(1, 4), (2, 5), (3, 6), (4, 7)}. SECCIÓN 5. Funciones inversas 5. Funciones inversas Verificar que una función es la inversa de otra. Determinar si una función tiene una función inversa. Encontrar la derivada de una función inversa. f

Más detalles

SESIÓN 10 FUNCIONES Y GRÁFICAS

SESIÓN 10 FUNCIONES Y GRÁFICAS SESIÓN 10 FUNCIONES Y GRÁFICAS I. CONTENIDOS: 1. Funciones. 2. Variables dependientes e independientes. 3. Gráfica de funciones y su aplicación. II. OBJETIVOS: Al término de la Sesión, el alumno: Comprenderá

Más detalles

Cálculo de la Recta Tangente

Cálculo de la Recta Tangente Cálculo de la Recta Tangente Nota: f(x) es una función cualquiera a es un valor cualquiera del eje x Introducción Ya aprendimos a calcular la pendiente de la recta tangente a una función f(x), para eso,

Más detalles

Definición matemática de Relación y de Función

Definición matemática de Relación y de Función Fecha: 05/0 Versión: DOCENTE: ANTONIO ELI CASTILLA Definición matemática de Relación de Función En matemática, Relación es la correspondencia de un primer conjunto, llamado Dominio, con un segundo conjunto,

Más detalles

Concavidad y punto de inflexión

Concavidad y punto de inflexión Concavidad y punto de inflexión por Oliverio Ramírez Otra característica de una función que ayuda a conocer su comportamiento es la concavidad pero Qué significa concavidad? El diccionario de la Real Academia

Más detalles

ALF ABETIZACIÓN DE ADULTOS. Félix Delgado

ALF ABETIZACIÓN DE ADULTOS. Félix Delgado ALF ABETIZACIÓN DE ADULTOS Félix Delgado URUK, Alfabetización de Adultos MATEMÁTICAS PARA LA FORMACIÓN INSTRUMENTAL Los números. Contar Félix Delgado Septiembre 2014 1 Los números TABLA 1 100 21 22 23

Más detalles

CRITERIOS DE EVALUACIÓN

CRITERIOS DE EVALUACIÓN DEPARTAMENTO DE MATEMATICAS IES ROSA CHACEL (Colmenar Viejo) Criterios de evaluación y criterios de calificación Recuperación de Matemáticas. 2º de E.S.O. CRITERIOS DE EVALUACIÓN RESOLUCIÓN DE PROBLEMAS

Más detalles

Una función dada gráficamente proporciona una visión de conjunto de la evolución de una variable al cambiar la otra.

Una función dada gráficamente proporciona una visión de conjunto de la evolución de una variable al cambiar la otra. FUNCION NUMERICA: 5º Año-Economía- El término función proviene del latín fucto que significa acto de realizar y fue utilizado por Leibnitz en el año 1694, referido a curvas. Un siglo más tarde Euler veía

Más detalles

Facultad de Ciencias Exactas y Tecnología Universidad Autónoma Gabriel René Moreno CARRERA DE INGENIERIA INDUSTRIAL

Facultad de Ciencias Exactas y Tecnología Universidad Autónoma Gabriel René Moreno CARRERA DE INGENIERIA INDUSTRIAL DATOS GENERALES PROGRAMA ANALITICO DE LA ASIGNATURA CALCULO I (MAT-101) ASIGNATURA:. SIGLA Y CODIGO:... CURSO:.. PREREQUISITOS: HORAS SEMANAS:... CREDITOS: PROFESOR: Calculo I MAT-101 Primer Semestre MAT-101

Más detalles

Módulo 2 - Diapositiva 6 Funciones y sus gráficas. Universidad de Antioquia

Módulo 2 - Diapositiva 6 Funciones y sus gráficas. Universidad de Antioquia Módulo 2 - Diapositiva 6 Funciones y sus gráficas Facultad de Ciencias Exactas y Naturales Temas Funciones Funciones Funciones Lineales Función Funciones Dominio y rango de una función Gráfica de funciones

Más detalles

La gráfica de la ecuación y = x 2

La gráfica de la ecuación y = x 2 INSTITUTO TECNOLÓGICO DE COSTA RICA UNIVERSIDAD DE COSTA RICA Randall Blanco B. La gráfica de la ecuación y = x 2 Cuando se habla de la gráfica de una ecuación con dos incógnitas, se hace referencia a

Más detalles

Cuál es la utilidad del plano cartesiano?

Cuál es la utilidad del plano cartesiano? Álgebra 1 Sesión No. 3 Nombre: Funciones algebraicas y sus gráficas. Parte I. Objetivo: al finalizar la sesión, el estudiante conocerá cómo localizar puntos en el sistema de coordenadas cartesianas, cómo

Más detalles

PLAN DE EVALUACIÓN ACREDITACIÓN

PLAN DE EVALUACIÓN ACREDITACIÓN PLAN DE EVALUACIÓN ACREDITACIÓN ASIGNATURA: MATEMÁTICAS III SEDE: ESTATAL SEMESTRE: TERCERO BLOQUES: I y II PERIODO: 2016-2 CORTE: 1 DESEMPEÑO A DEMOSTRAR Uno o más desempeños pueden asociarse con una.

Más detalles

1.1 SITUACIONES QUE DAN LUGAR A UNA FUNCIÓN POLINOMIAL

1.1 SITUACIONES QUE DAN LUGAR A UNA FUNCIÓN POLINOMIAL 1.1 SITUACIONES QUE DAN LUGAR A UNA FUNCIÓN POLINOMIAL Con frecuencia se necesita describir una cantidad en términos de otra ya sea empleando tablas, gráficas o ecuaciones por ejemplo: el precio de un

Más detalles

Las funciones son relaciones entre dos o más variables expresadas en una ecuación algebraica.

Las funciones son relaciones entre dos o más variables expresadas en una ecuación algebraica. FUNCIONES Y GRÁFICAS Las funciones son relaciones entre dos o más variables epresadas en una ecuación algebraica. or ejemplo, la epresión relaciona la variable con la variable mediante una regla de correspondencia

Más detalles

FUNCIONES DE 4º ESO (OPCIÓN A)

FUNCIONES DE 4º ESO (OPCIÓN A) FUNCIONES DE 4º ESO (OPCIÓN A) DEPENDENCIA ENTRE MAGNITUDES.- RELACIONES DADAS POR TABLAS: En una clase de laboratorio un alumno ha medido la temperatura de un líquido según se calentaba. Los resultados

Más detalles

MATE 3013 RAZON DE CAMBIO INSTANTANEO Y LA DERIVADA DE UNA FUNCION

MATE 3013 RAZON DE CAMBIO INSTANTANEO Y LA DERIVADA DE UNA FUNCION MATE 3013 RAZON DE CAMBIO INSTANTANEO Y LA DERIVADA DE UNA FUNCION Resumen razón de cambio promedio La pendiente de la recta secante que conecta dos puntos en la gráfica de una función representa la razón

Más detalles

UNIDAD 7: PROGRESIONES OBJETIVOS

UNIDAD 7: PROGRESIONES OBJETIVOS UNIDAD 7: PROGRESIONES Reconocer sucesiones y deducir su regla de formación en los casos en que sea posible. Obtener distintos términos en sucesiones recurrentes. Distinguir si una sucesión es una progresión

Más detalles

m y b x 0 y b y b mx Esto conduce a la siguiente forma de la ecuación de una recta con la ordenada al origen.

m y b x 0 y b y b mx Esto conduce a la siguiente forma de la ecuación de una recta con la ordenada al origen. COLEGIO HERNANDO DURAN DUSSAN GUIA NIVELACION GRADO 0 Y 02 SEGUNDO PERIODO Leer el documento y resolver los ejercicios en hojas tipo examen (excelente presentación) Funciones lineales A continuación se

Más detalles

A continuación se recogen los bloques de contenido directamente relacionados con los criterios de evaluación por unidad del segundo trimestre.

A continuación se recogen los bloques de contenido directamente relacionados con los criterios de evaluación por unidad del segundo trimestre. UNIDADES DIDÁCTICAS 4º DIVERSIFICACIÓN A continuación se recogen los bloques de contenido directamente relacionados con los criterios de evaluación por unidad del segundo trimestre. 1 UNIDADES DIDÁCTICAS

Más detalles

Unidad 2. FUNCIONES Conceptos

Unidad 2. FUNCIONES Conceptos Unidad 2. FUNCIONES Competencia específica a desarrollar Comprender el concepto de función real y tipos de funciones, así como estudiar sus propiedades y operaciones. Función 2.1. Conceptos Se puede considerar

Más detalles

Documento 1 : Nociones básicas sobre Funciones reales

Documento 1 : Nociones básicas sobre Funciones reales Unidad 4: Funciones reales de una variable real Temas: Definición Función real. Conceptos asociados: dominio, codominio, imagen, pre-imagen, recorrido. Gráfico de una función. Variable independiente. Variable

Más detalles

Suma y resta algebraica. Expresiones algebraicas

Suma y resta algebraica. Expresiones algebraicas Suma y resta algebraica En una panadería se tienen varias charolas, en ellas se encuentran 35 bolillos, 15 donas, 18 conchas y 12 cuernitos entre otra variedad de panes. En un momento determinado llega

Más detalles

UNIDAD VIII FUNCIONES, RELACIONES Y GRAFICAS. Módulo 13 Funciones. OBJETIVO Definir el concepto de función así como sus características.

UNIDAD VIII FUNCIONES, RELACIONES Y GRAFICAS. Módulo 13 Funciones. OBJETIVO Definir el concepto de función así como sus características. UNIDAD VIII FUNCIONES, RELACIONES Y GRAFICAS Módulo 13 Funciones OBJETIVO Definir el concepto de función así como sus características. En la vida diaria nos encontramos (a veces sin darnos cuenta) con

Más detalles

Guía 1: PATRONES DE REPETICIÓN

Guía 1: PATRONES DE REPETICIÓN Guía : PATRONES DE REPETICIÓN Un patrón es una sucesión de elementos (orales, gestuales, gráficos, de comportamiento, numéricos) que se construye siguiendo una regla, ya sea de repetición o de recurrencia.

Más detalles

FUNCIONES y = f(x) ESO3

FUNCIONES y = f(x) ESO3 Las correspondencias entre conjunto de valores o magnitudes se pueden expresar de varias formas: con un enunciado, con una tabla, con una gráfica, o con una fórmula o expresión algebraica o analítica.

Más detalles

y ) de números reales tiene a x como primer componente

y ) de números reales tiene a x como primer componente Guía de estudio El sistema de coordenadas rectangulares. El plano cartesiano. Fórmulas de punto medio y distancia. La ecuación de una circunferencia Unidad A: Clase 6 Camilo Ernesto Restrepo Estrada, Lina

Más detalles

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA CICLO BÁSICO DEPARTAMENTO DE MATEMÁTICAS APLICADAS

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA CICLO BÁSICO DEPARTAMENTO DE MATEMÁTICAS APLICADAS TIPO DE PROPÓSITO La asignatura Cálculo I, está ubicada en el primer semestre del Ciclo Básico, por lo que no tiene requisito para su curso. El propósito de la asignatura es proporcionar la base fundamental

Más detalles

GRAFICAS LINEALES REGLAS GENERALES PARA LA CONSTRUCCIÓN DE GRÁFICAS

GRAFICAS LINEALES REGLAS GENERALES PARA LA CONSTRUCCIÓN DE GRÁFICAS GRAFICAS LINEALES OBJETIVOS 1. Realizar linealización de gráficos por el método de cambios de variables. 2. Obtener experimentalmente la relación matemática, más adecuada, entre dos cantidades o magnitudes

Más detalles

Tabulación Gráfica Función Continuidad Rango

Tabulación Gráfica Función Continuidad Rango Concepto de Tabulación Gráfica Función Continuidad Rango Heberto Sierra Mora Tienda de tamales El Condimento Estoy a cargo de una tienda de tamales donde el dueño solo llega al abrir, para dejarme los

Más detalles

PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL SEPTIEMBRE 2014 PARTE COMÚN MATERIA: FUNDAMENTOS DE MATEMÁTICAS

PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL SEPTIEMBRE 2014 PARTE COMÚN MATERIA: FUNDAMENTOS DE MATEMÁTICAS CALIFICACIÓN: Consejería de Educación, PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL SEPTIEMBRE 2014 Apellidos Nombre Centro de examen PARTE COMÚN MATERIA: FUNDAMENTOS

Más detalles

Colegio Beato Carlos Manuel Rodríguez Departamento de Matemáticas. Mapa curricular Algebra I 9 no grado

Colegio Beato Carlos Manuel Rodríguez Departamento de Matemáticas. Mapa curricular Algebra I 9 no grado Colegio Beato Carlos Manuel Rodríguez Departamento de Matemáticas Mapa curricular Algebra I 9 no grado Colegio Beato Carlos Manuel Rodríguez Mapa curricular Algebra I 9 no grado periodo contenido Dos semanas

Más detalles

COLEGIO INSTITUTO TECNICO INDUUSTRIAL PILOTO

COLEGIO INSTITUTO TECNICO INDUUSTRIAL PILOTO COLEGIO INSTITUTO TECNICO INDUUSTRIAL PILOTO GUÍA DE TRABAJO N.1 CALCULO - ONCE DOCENTE ANDRÉS ORTIZ 017 Presentación El estudiante por medio de ésta guía se aproximará al concepto de inecuaciones y desigualdades.

Más detalles

5.1 DISTINTOS TIPOS DE FUNCIONES LINEALES

5.1 DISTINTOS TIPOS DE FUNCIONES LINEALES Tema 5 : Funciones elementales - Matemáticas B 4º E.S.O. 1 TEMA 5 FUNCIONES ELEMENTALES 5.1 DISTINTOS TIPOS DE FUNCIONES LINEALES 3º 5.1.1 - FUNCIONES DE PROPORCIONALIDAD: y = mx Las funciones de proporcionalidad

Más detalles

Nombre: Sistemas de ecuaciones lineales y matrices. Parte I.

Nombre: Sistemas de ecuaciones lineales y matrices. Parte I. Álgebra 1 Sesión No. 7 Nombre: Sistemas de ecuaciones lineales y matrices. Parte I. Objetivo: al finalizar la sesión, el estudiante identificará correctamente un sistema de ecuaciones lineales, así como

Más detalles

Álgebra y trigonometría: Gráficas de ecuaciones y funciones

Álgebra y trigonometría: Gráficas de ecuaciones y funciones Álgebra y trigonometría: Gráficas de ecuaciones y funciones CNM-108 Instituto de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Este documento es distribuido bajo una licencia

Más detalles

El plano cartesiano y Gráficas de ecuaciones. Copyright 2013, 2009, 2006 Pearson Education, Inc. 1

El plano cartesiano y Gráficas de ecuaciones. Copyright 2013, 2009, 2006 Pearson Education, Inc. 1 El plano cartesiano y Gráficas de ecuaciones Copyright 2013, 2009, 2006 Pearson Education, Inc. 1 Sistema de coordenadas rectangulares En el cap 2 presentamos la recta numérica real que resulta al establecer

Más detalles

Guía de Matemática Segundo Medio

Guía de Matemática Segundo Medio Guía de Matemática Segundo Medio Aprendizaje Esperado:. Analizan la ecuación de la recta; establecen la dependencia entre las variables y la expresan gráfica y algebraicamente.. Identifican e interpretan

Más detalles

ECUACIÓN DE LA RECTA

ECUACIÓN DE LA RECTA MATEMÁTICA SEMANA 2 ECUACIÓN DE LA RECTA Todos los derechos de autor son de la exclusiva propiedad de IACC o de los otorgantes de sus licencias. No está permitido copiar, reproducir, reeditar, descargar,

Más detalles

La gráfica de la ecuación

La gráfica de la ecuación INSTITUTO TECNOLÓGICO DE COSTA RICA UNIVERSIDAD DE COSTA RICA Randall Blanco B. La gráfica de la ecuación Cuando se habla de la gráfica de una ecuación con dos incógnitas, se hace referencia a la representación

Más detalles

FUNCIONES DE PROPORCIONALIDAD: y = mx. Su pendiente es 0. La recta y = 0 coincide con el eje

FUNCIONES DE PROPORCIONALIDAD: y = mx. Su pendiente es 0. La recta y = 0 coincide con el eje Funciones elementales - Matemáticas B 4º E.S.O. FUNCIONES ELEMENTALES DISTINTOS TIPOS DE FUNCIONES LINEALES FUNCIONES DE PROPORCIONALIDAD: y = mx FUNCIÓN CONSTANTE: y = n Las funciones de proporcionalidad

Más detalles

Programación Estructurada

Programación Estructurada Programación Estructurada Código de materia 01 Prof Titular Ing Rafael Brizuela Facultad de tecnología informática UNIVERSIDAD ABIERTA INTERAMERICANA GUÍA DE REPASO CONCEPTUAL PREGUNTAS Unidad 1: Conceptos

Más detalles

CURSO PREPARATORIO DE INGENIERÍA (CPI) PROGRAMA DE ASIGNATURA

CURSO PREPARATORIO DE INGENIERÍA (CPI) PROGRAMA DE ASIGNATURA CURSO PREPARATORIO DE INGENIERÍA (CPI) PROGRAMA DE ASIGNATURA CÁLCULO DIFERENCIAL AÑO 2016 I. FUNDAMENTACIÓN El curso de Cálculo Diferencial proporciona las herramientas fundamentales para entender la

Más detalles

UNIDAD DE APRENDIZAJE II

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE II Saberes procedimentales 1. Emplea de manera sistemática conceptos algebraicos, geométricos, trigonométricos y de geometría analítica. 2. Relaciona una ecuación algebraica con a

Más detalles

EJERCICIOS DE PRÁCTICA

EJERCICIOS DE PRÁCTICA EJERCICIOS DE PRÁCTICA PPAA 0 Grado 8 MATEMÁTICAS Nombre del estudiante: Todos los derechos de reproducción y divulgación están reservados por el Departamento de Educación de Puerto Rico, 0. HOJA DE MATEMÁTICAS

Más detalles

GIMNASIO VIRTUAL SAN FRANCISCO JAVIER Valores y Tecnología para la Formación Integral del Ser Humano UNIDAD I FUNCIONES

GIMNASIO VIRTUAL SAN FRANCISCO JAVIER Valores y Tecnología para la Formación Integral del Ser Humano UNIDAD I FUNCIONES UNIDAD I FUNCIONES Una función es una correspondencia entre dos conjuntos, que asocia a cada elemento del primer conjunto exactamente un elemento del otro conjunto. Una función f definida entre dos conjuntos

Más detalles

Operaciones algebraicas

Operaciones algebraicas Operaciones algebraicas Por: Oliverio Ramírez Juárez Muchas veces para solucionar problemas cotidianos, éstos se tienen que transformar de lenguaje común a lenguaje algebraico, para así obtener una respuesta

Más detalles

ELECCIÓN RACIONAL DE UNA COMPAÑÍA TELEFÓNICA

ELECCIÓN RACIONAL DE UNA COMPAÑÍA TELEFÓNICA ELECCIÓN RACIONAL DE UNA COMPAÑÍA TELEFÓNICA Rosa Mª Romero Flores Índice de contenido 1 OBJETIVO DE LA ACTIVIDAD...3 2 CONTEXTUALIZACIÓN:...3 3 TEMPORALIZACIÓN:...3 4 OBJETIVOS DEL ÁREA:...3 5 CONTENIDOS

Más detalles

Calendario Lenguaje Matemática Inglés Hist. Cs.Soc Cs.Nat (1º -8º Básico) 17 de Junio 23 de Junio 28 de Junio 30 de Junio 4 de Julio

Calendario Lenguaje Matemática Inglés Hist. Cs.Soc Cs.Nat (1º -8º Básico) 17 de Junio 23 de Junio 28 de Junio 30 de Junio 4 de Julio Curso: 7º Básico Nivel de Séptimos del Primer Semestre (coef. 2), de según fecha indicada para cada sector de Hist. Cs.Soc Cs.Nat (1º -8º Básico) 17 de Junio 23 de Junio 30 de Junio 4 de Julio Los Sectores

Más detalles

CASOS DE LA FUNCIÓN AFÍN

CASOS DE LA FUNCIÓN AFÍN CASOS DE LA FUNCIÓN AFÍN Considera que el precio de un artículo es de Bs 80. Conocido el precio unitario (precio por unidad) es posible calcular fácilmente el precio de varios artículos con solo multiplicar

Más detalles

PLAN DE UNIDAD Álgebra II.1

PLAN DE UNIDAD Álgebra II.1 ETAPA ACTIVIDADES PARA EL LOGRO DE LAS TAREAS DE DESEMPEÑO TAREAS DE DESEMPEÑO U OTRA EVIDENCIA Antes (Dirigen la instrucción hacia la exploración del conocimiento previo del estudiante) Durante(El estudiante

Más detalles

Criterios de evaluación 3º de ESO. Matemáticas Orientadas a las Enseñanzas Aplicadas

Criterios de evaluación 3º de ESO. Matemáticas Orientadas a las Enseñanzas Aplicadas CONCRECCIÓN de los CRITERIOS de EVALUACIÓN MATEMÁTICAS APLICADAS º ESO Teniendo en cuenta los criterios de evaluación correspondientes a esta materia, se realizan a continuación una concreción de dichos

Más detalles

DEFINICION DE RELACIÓN

DEFINICION DE RELACIÓN DEFINICION DE RELACIÓN Se Define como relación o correspondencia R entre los conjuntos B C, a un subconjunto del producto cartesiano B C, compuesto por pares de elementos que cumplen cierta regla definida.

Más detalles

Unidad II. 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función.

Unidad II. 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función. Unidad II Funciones 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función. Función En matemática, una función (f) es una relación entre un conjunto dado X (llamado dominio)

Más detalles

TRIGONOMETRÍA ANALÍTICA

TRIGONOMETRÍA ANALÍTICA TRIGONOMETRÍA ANALÍTICA....4 Los alumnos comenzaron a estudiar funciones trigonométricas en el Capítulo 7, cuando aprendieron sobre radianes la transformación de funciones trigonométricas. Aquí aprenderán

Más detalles

Matemáticas UNIDAD 5 CONSIDERACIONES METODOLÓGICAS. Material de apoyo para el docente. Preparado por: Héctor Muñoz

Matemáticas UNIDAD 5 CONSIDERACIONES METODOLÓGICAS. Material de apoyo para el docente. Preparado por: Héctor Muñoz CONSIDERACIONES METODOLÓGICAS Material de apoyo para el docente UNIDAD 5 Preparado por: Héctor Muñoz Diseño Gráfico por: www.genesisgrafica.cl LA RELACIÓN DE PROPORCIONALIDAD 1. DESCRIPCIÓN GENERAL DE

Más detalles