Documento 1 : Nociones básicas sobre Funciones reales
|
|
|
- Trinidad Figueroa Córdoba
- hace 8 años
- Vistas:
Transcripción
1 Unidad 4: Funciones reales de una variable real Temas: Definición Función real. Conceptos asociados: dominio, codominio, imagen, pre-imagen, recorrido. Gráfico de una función. Variable independiente. Variable dependiente. Regla del máimo dominio (RMD). Gráfico de una función. Capacidades. Manejar conceptos y propiedades de las funciones reales de una variable real, y analizar propiedades de una función desde los puntos de vista numérico (tabla de valores), gráfico y algebraico Conoce el concepto función y reconoce sus elementos básicos: dominio, codominio, rango, imagen y pre-imagen 1.2. Determina imágenes y pre-imágenes de funciones definidas tanto por una fórmula como por un gráfico Reconoce e identifica variable dependiente e independiente Determina, gráfica y algebraicamente, el rango de una función Determina el dominio de una función, usando la regla del máimo dominio Encuentra el gráfico de una función. Wilelm Leibniz Leonard Euler Joann Diriclet Alemán ( ) Suizo ( ) Alemán ( ) 1. Introducción Uno de los conceptos más importantes en matemática es el de función. Este concepto formaliza matemáticamente la interdependencia entre dos cantidades, situación que se presenta en la modelación de una gran cantidad de importantes situaciones de carácter aplicado. Si bien la idea que encierra este concepto surgió en la Grecia clásica no es asta el año 1694 en que la palabra función aparece por primera vez en los trabajos del matemático alemán Leibniz, pero referida sólo al ámbito geométrico. Posteriormente, en el año 1718, J. Bernoulli, alumno destacado de Leibniz, entrega el primer intento de definir función independiente del lenguaje geométrico: Una función de una cantidad variable es una magnitud formada de alguna manera de esta cantidad variable y constantes Posteriormente, L. Euler, alumno brillante de J. Bernoulli, afinó el concepto de función dando la siguiente definición en su libro Cálculo diferencial: Instituto de Matemática y Física 1 Universidad de Talca
2 Cantidades que dependen de otras de modo que cuando la segunda cambia, también cambia la primera, son llamadas funciones Finalmente, y sólo en el siglo pasado, el matemático alemán Diriclet entrega una definición suficientemente general de función, que es la que actualmente se usa. Una cantidad variable y se dice ser una función de una cantidad variable, si para cada valor de la cantidad corresponde un único valor de la cantidad y 2. Definición de función Sean A y B dos subconjuntos de R. Una función real f de A en B es una regla que ace corresponder a cada elemento del conjunto A un único número real y en B, denotado por f(). Esta función se denota por: Nota: Un ejemplo de función es: 3. Nociones básicas f : A B y = f() f : R \ {1} R y = f() = En lo que sigue f : A B es una función de A en B. A y B subconjuntos de R. Si b = f(a), b se llama imagen de a y a se llama pre-imagen de b. A se llama dominio de f, lo que se denotará dom(f). El conjunto B se llama codominio de f, que se denotará cod(f). El subconjunto de B: es llamado recorrido de f, y se denotará rec(f). {b B / b = f(a), para algún a A} En la función y = f(), la variable recibe el nombre de variable independiente y la variable y recibe el nombre de variable dependiente Ejemplo (algebraico) Considerar la función f() = 3 +5, con dom(f) = R \ { 5}.se pide: 1. Encontrar f(4), f( 5) 2. Calcular f( 1 ) 1 f() 3. Calcular f(+) f() Instituto de Matemática y Física 2 Universidad de Talca
3 4. Determinar la preimagen del 3 5. Determinar el rec(f) Desarrollo: 1. Teniendo como referencia la fórmula que define a f, se tiene que f(4) = = 1 9. f( 5) no eiste, ya que en 5 / dom(f). 2. f 3. ( ) f() = f( + ) f() = 3 +5 (+) 3 (+) = = (1 + 5)( 3) = 8 (++5)(+5) = 8 ( + + 5)( + 5) 4. La preimagen de 3, en caso de eistir, es algún dom(f) tal que f() = 3. Busquemos este. Si f() = 3 se tiene que 3 +5 = 3. Resolviendo esta ecuación se obtiene que = 9. Luego, la preimagen del 3 es Un elemento y de B está en el rec(f) si eiste algún en A tal que f() = y. Busquemos, entonces los y s que cumplen esta condición. 3 f() = y = + 5 = y = 3 + 5y 1 y = Por lo tanto, los y de B que tienen preimagen son todos ecepto el 1, es decir Rec(f)= R \ {1}. 4. Regla del máimo dominio En lo que sigue es usual entregar una función indicado solo su fórmula. Por ejemplo, en un ejercicio se puede señalar: en este caso se deberá subentender que... considerar la función f() = el dom(f) es el máimo subconjunto de R donde la fórmula tiene sentido, es decir, donde ella se puede calcular. el cod(f), siempre será igual a R. Este criterio para determinar el dominio de f recibe el nombre de Regla del Máimo Dominio Ejemplo Determinar, usando la RMD, el dom(f), para f() = Desarrollo: Es claro que dom(f) siempre y cuando > 0, o equivalentemente 2 6 < 0. Por lo tanto, para encontrar el dom(f) se debe resolver esta inecuación. Poner atención a los pasos seguidos para resolver esta inecuación, pues ellos le pueden servir de guía en las resoluciones de otras inecuaciones. Instituto de Matemática y Física 3 Universidad de Talca
4 1. Pasar todo a un lado de la inecuación y factorizar. En este caso ya está todo a un lado. Por lo tanto se procede a factorizar. 2 6 < 0 = ( 3)( + 2) < 0 2. Búsqueda de puntos claves: Los puntos claves son los números que anulan a cada uno de los factores. En este caso: = 3, = 2 Nota: = 2 y = 3 determinan en la recta real tres intervalos: < 2 2 < < 3 > 3 3. Estudio de signos de ( 3)( + 2), en cada intervalo: Tabla de signos. En cada intervalo, se elige un número cualquiera, se reemplaza en cada factor, y se anota el signo del valor que se obtiene. Por ejemplo, se podría elegir = 4; en el segundo: = 0; y en el tercero: = 5. Tabla de signos: El conjunto solución de la inecuación es: Por lo tanto. dom(f) =] 2, 3[ 5. Gráfico de funciones ( 4) (0) (5) < < < 3 3 > ( 3)( + 2) NO NO SI NO NO S = { R/ 2 < < 3} =] 2, 3[ En todo curso de Cálculo junto el trabajo algebraico se complementa, siempre que sea posible, con el trabajo geométrico de los conceptos involucrados. Desde este punto de vista, el gráfico de las funciones adquiere una importancia vital. Se denomina gráfico de una función y = f() al conjunto del plano cartesiano graf(f) = { (, f()) / dom(f) } A medida que transcurra el curso iremos incorporando resultados que nos ayudaran en esta tarea, por el momento podemos usar un método bastante básico, pero no por ello menos efectivo: 5.1. Pasos para graficar una función Paso 1 Hacer una tabla de valores de pares ordenados que están en f, bajo el siguiente esquema: y Instituto de Matemática y Física 4 Universidad de Talca
5 Paso 2 Graficar en el plano cartesiano los puntos de la tabla precedente. Paso 3 Se bosqueja una curva que pase por todos los los puntos recién graficados. En caso que los puntos graficados no permitan sospecar la forma del gráfico de la función, se deben determinar y graficar puntos adicionales Un ejemplo Siguiendo los pasos recién comentados, graficar la función y = 2. Paso 1 Tabla de valores Paso 2 Graficar los puntos de la tabla precedente Paso 3 Obtener el gráfico y Ejemplo (gráfico) Consideremos la función y = f() = 2 + 5, con dominio [ 3, 4]: Instituto de Matemática y Física 5 Universidad de Talca
6 Imagen de = 3 Preimagen de y = 15 Dominio de y = f() Recorrido de y = f() 6. Actividades finales 1. El gráfico de una función y = f() viene dado por: y A partir del gráfico de f, encontrar a) la imagen del 2 y la imagen del b) en caso de eistir, un número que tenga una única preimagen, otro que tenga 2 preimagenes, otro que tenga 3 preimagenes y otro que tenga 4 preimagenes. c) dom(f), cod(f) y rec(f). d) las soluciones de la ecuación f() = 2,5. e) las soluciones de ecuación f( 2 1) = 0 3 2, Si f() = 1 2. a) Indicar dom(f), cod(f) y rec(f). b) Calcular, simplificando al máimo su respuesta, f(5), f(1 2 ), f(+) f(). c) Preimagenes del 3 d) Resolver la ecuación f() = f(1 ). Instituto de Matemática y Física 6 Universidad de Talca
7 3. Determinar, usando la RMD, los dominios 1 de las siguientes funciones (a) f 1 () = + 1 (b) f 2 () = (c) f 3 () = (d) f 4 () = (e) f 5 () = Dada la ecuación: (E) : 30y = ( ) se pide: 2 1 (f) f 6 () = 4 2 a) Completar la siguiente tabla de valores: b) Graficar los puntos anteriores, y en base a ellos esbozar un posible gráfico de la ecuación (E). Qué curva parece ser el gráfico de (E). c) Completar la tabla de valores para otros valores de, por ejemplo, 2, 4, 2, y 4. d) Incorporar estos nuevos puntos del gráfico de (E) y con ellos esbozar nuevamente un gráfico para la ecuación (E). e) Qué enseñanza le deja esta actividad? 5. Hacer un esbozo de los siguientes gráficos (a) y = 3 (b) y = 3 (c) y = 1 (d) y = (e) y = 2 (f) y = 2 6. Revisar algún libro de Cálculo para indicar, al menos 3 maneras diferentes, de presentar una función. Dar ejemplos de cada caso. 7. Desafíos Encontrar el dominio de la función f() = y Sea f una función real que tiene las siguientes propiedades: i) Para todos, y reales, f( + y) = + f(y) ii) f(0) = 2. Calcular el valor de f(2010). Si f() = 2 y n un entero positivo, calcular f(1/1) + f(2/1) + f(3/1) f(n/1) + f(1/2) + f(2/2) + f(3/2) f(n/2) + f(1/3) + f(2/3) + f(3/3) f(n/3). + f(1/n) + f(2/n) + f(3/n) f(n/n) Sea f() = con dom(f) =]0, + [. Sabiendo que su recorrido es un intervalo de la forma ]0, M[, allar M. 1 En caso de no recordar como resolver una inecuación, puede ir al sitio web del curso: Contenidos Desigualdades. Instituto de Matemática y Física 7 Universidad de Talca
NOCIONES PRELIMINARES (*) 1
CONJUNTOS NOCIONES PRELIMINARES (*) 1 Conjunto no es un término definible, pero da idea de una reunión de cosas ( elementos ) que tienen algo en común. En matemática los conjuntos se designan con letras
Funciones: Aspectos básicos
Funciones: Aspectos básicos Nombre: Curso:.. Producto cartesiano En teoría de conjuntos, el producto cartesiano de dos conjuntos es una operación que resulta en otro conjunto cuyos elementos son todos
Ficha 3. Funciones. x f x x y x y a) Definición de función
Ficha 3. Funciones a) Definición de función Sean A y B dos conjuntos no vacíos y f una relación definida de A hacia B, de tal forma que a cada elemento de A se le asocia un único elemento de B. Dicha relación
FUNDAMENTOS NUMÉRICOS SEMANA 4
FUNDAMENTOS NUMÉRICOS SEMANA 4 ÍNDICE INECUACIONES Y DESIGUALDADES... 3 APRENDIZAJES ESPERADOS... 3 INTRODUCCIÓN... 3 INECUACIONES... 4 REGLAS DE LAS DESIGUALDADES... 4 INECUACIONES LINEALES... 5 INECUACIONES
Inecuaciones con valor absoluto
Inecuaciones con valor absoluto El valor absoluto de un número real a se denota por a y está definido por: Propiedades a a si a si a 0 a < 0 i a y b son números reales y n es un número entero, entonces:
Colegio Universitario Boston. Funciones
70 Concepto de Función Una función es una correspondencia entre dos conjuntos, tal que relaciona, a cada elemento del conjunto A con un único elemento del conjunto Para indicar que se ha establecido una
Guía de Ejercicios Funciones. Debes copiar cada enunciado en tu cuaderno y realizar el desarrollo, indica la respuesta correcta en la guía 2-1-
Colegio Raimapu Departamento de Matemática Guía de Ejercicios Funciones Nombre del Estudiante: IV Medio Debes copiar cada enunciado en tu cuaderno realizar el desarrollo, indica la respuesta correcta en
Identificación de inecuaciones lineales en los números reales
Grado Matematicas - Unidad Operando en el conjunto de Tema Identificación de inecuaciones lineales en los números reales Nombre: Curso: A través de la historia han surgido diversos problemas que han implicado
CONSTRUCCIÓN DE UNA FUNCIÓN POLINOMIAL
CONSTRUCCIÓN DE UNA FUNCIÓN POLINOMIAL Sugerencias para quien imparte el curso Se deben revisar los trazos que los alumnos realicen para el bosquejo de sus graficas, el error en un signo de alguna raíz
Algebra Sigla MAT2001
TIPO DE ACTIVIDAD: Ejercicios Título Actividad: Nombre Asignatura: Concepto de Función Algebra Sigla MAT2001 Semana Nº: 1 Actividad Nº 1 Lugar APRENDIZAJES ESPERADOS: Aprendizaje 1 Sala de clases Otro
4 E.M. Curso: Unidad: Estadísticas Inferencial. Colegio SSCC Concepción. Depto. de Matemáticas. Nombre: CURSO: Unidad de Aprendizaje: FUNCIONES
Colegio SSCC Concepción Depto. de Matemáticas Unidad de Aprendizaje: FUNCIONES Capacidades/Destreza/Habilidad: Racionamiento Matemático/Calcular/ Resolver Valores/ Actitudes: Curso: E.M. 10 Respeto, Solidaridad,
Unidad II. 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función.
Unidad II Funciones 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función. Función En matemática, una función (f) es una relación entre un conjunto dado X (llamado dominio)
PROYECTO MATEM CURSO PRECÁLCULO UNDÉCIMO AÑO MODALIDAD ANUAL. Guía para el II parcial
Universidad de Costa Rica Instituto Tecnológico de Costa Rica PROYECTO MATEM CURSO PRECÁLCULO UNDÉCIMO AÑO MODALIDAD ANUAL Guía para el II parcial Sábado 25 de junio, 8:00 a.m. 2016 II PARCIAL ÁLGEBRA
Derivada. 1. Pendiente de la recta tangente a una curva
Nivelación de Matemática MTHA UNLP Derivada Pendiente de la recta tangente a una curva Definiciones básicas Dada una curva que es la gráfica de una función y = f() y sea P un punto sobre la curva La pendiente
Manual de teoría: Funciones Matemática Bachillerato
Manual de teoría: Funciones Matemática Bachillerato Realizado por José Pablo Flores Zúñiga Funciones: José Pablo Flores Zúñiga Página 1 Contenido: ) Funciones.1 Conceptos Básicos de Funciones. Función
SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES
SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES RELACIONES BINARIAS PAR ORDENADO Es un arreglo de dos elementos que tienen un orden determinado donde a es llamada al primera componente y b es llamada la
Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( )
Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (00874) UNIDAD N 2 (LIMITES) Profesora: Yuar Matute Diciembre 20 0 Definición Intuitiva de Límites
= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x
Modelo 4. Problema A.- (Calificación máima: puntos) 4 si Se considera la función real de variable real f ( ) si > a) Determínense las asíntotas de la función y los puntos de corte con los ejes. a. Asíntotas
Tema Contenido Contenidos Mínimos
1 Estadística unidimensional - Variable estadística. - Tipos de variables estadísticas: cualitativas, cuantitativas discretas y cuantitativas continuas. - Variable cualitativa. Distribución de frecuencias.
INTERVALOS Y SEMIRRECTAS.
el blog de mate de aida CSI: Inecuaciones pág 1 INTERVALOS Y SEMIRRECTAS La ordenación de números permite definir algunos conjuntos de números que tienen una representación geométrica en la recta real
Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 3: Lunes 25 - Jueves 28 de Marzo. Contenidos
Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 3: Lunes 25 - Jueves 28 de Marzo Cálculo Contenidos Clase 1: Funciones: Dominio, recorrido, gráfico. Ejemplos. Clase 2: Igualdad de funciones.
V. DISCUSIÓN DE ECUACIONES ALGEBRAICAS
V. DISCUSIÓN DE ECUACIONES ALGEBRAICAS 134 5.1. DISCUSIÓN DE UNA ECUACIÓN Discutir una ecuación algebraica representada por una epresión en dos variables de la forma f (, y) = 0, significa analizar algunos
3.1. Distancia entre dos puntos. Definición 3.1. Sean a, b e, se llama distancia entre los números a y b que se denota por d (a, b), a la cantidad:
III. UNIDAD: GEOMETRIA ANALITICA LANA. La Geometría Analítica permite usar los métodos algebraicos en la solución de problemas geométricos, recíprocamente, los métodos de la geometría analítica pueden
MATEMÁTICAS BÁSICAS. Autoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano
MATEMÁTICAS BÁSICAS Autoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2015 Universidad
Matemáticas Avanzadas I
Matemáticas Avanzadas I El estudiante reunirá habilidades en el manejo del cálculo diferencial e integral para aplicarlo en la interpretación, planteamiento y resolución de problemas y modelos matemáticos
Guía N 2 Desigualdades e Inecuaciones. p < 0 E) x E) N.A IV) > 2 x C) x > 4 B) 4
Colegio Raimapu Departamento de Matemática Guía N Desigualdades e Inecuaciones Nombre del Estudiante: π ) Para el conjunto de números reales A = R / es verdadero que: I) A II), A III) A ) Qué condición
EJERCICIOS RESUELTOS DE NÚMEROS REALES
EJERCICIOS RESUELTOS DE NÚMEROS REALES 1. Expresar mediante intervalos los siguientes subconjuntos de R: a) A = x œ R 5-x 4+x < 0 b) B = x œ R x+ d) D = x œ R x -4 x-9 0 e) E = { x œ R x + 4x x - } x-
f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y).
TEMA 8: FUNCIONES. 8. Función real de variable real. 8. Dominio de una función. 8.3 Características de una función: signo, monotonía, acotación, simetría y periodicidad. 8.4 Operaciones con funciones:
Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x
Funciones. DEFINICIÓN Y TERMINOLOGÍA.. Definición de función real de variable real. "Es toda correspondencia, f, entre un subconjunto D de números reales y R (o una parte de R), con la condición de que
dada por c(x) = donde x indica el tamaño de los pedidos para renovar existencias
FUNCIONES +, si
Unidad 2: Ecuaciones, inecuaciones y sistemas.
Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.
Inecuaciones Intervalo Intervalo Abierto Intervalo Cerrado
Capítulo 7 Inecuaciones D entro del mundo de la resolución de problemas te encontrarás en ocaciones en que la incógnita que deseas encontrar no tiene tantas restricciones que la hacen ser única para satisfacer
Desigualdades o inecuaciones lineales en una variable. Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo
Desigualdades o inecuaciones lineales en una variable Prof. Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo Desigualdades Una desigualdad o inecuación usa símbolos como ,, para representar
Unidad #1: DESIGUALDAD o inecuaciones COLEGIO BENIGNO TOMÁS ARGOTE UNIDAD # 1
ÁREA: Algebra COLEGIO BENIGNO TOMÁS ARGOTE UNIDAD # 1 ASIGNATURA: Matemática. NIVEL: Duodécimo grado ( CIENCIAS ) PROFESOR: José Alexander Echeverría Ruiz TRIMESTRE: I TÍTULO DE LA UNIDAD DIDÁCTICA: 1.
Definición matemática de Relación y de Función
Fecha: 05/0 Versión: DOCENTE: ANTONIO ELI CASTILLA Definición matemática de Relación de Función En matemática, Relación es la correspondencia de un primer conjunto, llamado Dominio, con un segundo conjunto,
GIMNASIO VIRTUAL SAN FRANCISCO JAVIER Valores y Tecnología para la Formación Integral del Ser Humano UNIDAD I FUNCIONES
UNIDAD I FUNCIONES Una función es una correspondencia entre dos conjuntos, que asocia a cada elemento del primer conjunto exactamente un elemento del otro conjunto. Una función f definida entre dos conjuntos
Interpretación geométrica de la derivada
Interpretación geométrica de la derivada El matemático francés ierre de Fermat (60 665) al estudiar máimos mínimos de ciertas funciones observó que en aquellos puntos en los que la curva presenta un máimo
Descomposición en forma canónica de Jordan (Segunda versión)
Descomposición en forma canónica de Jordan (Segunda versión) Francisco J. Bravo S. 1 de septiembre de 211 En esta guía se presentan los resultados necesarios para poder construir la forma de Jordan sin
Materia: Matemática de Octavo Tema: Función afín
Materia: Matemática de Octavo Tema: Función afín Alguna vez has mantenido un seguimiento de la cantidad de libros que has leído en un período de tiempo? Mira a Kendra. Kendra y sus amigas han estado leyendo
Tema 7.0. Repaso de números reales y de funciones
Matemáticas II (Bachillerato de Ciencias) Análisis: Repaso de números reales y de funciones 47 Tema 70 Repaso de números reales y de funciones El conjunto de los números reales El conjunto de los números
APUNTES ACERCA DE LA ECUACIÓN DE LA RECTA
Introducción APUNTES ACERCA DE LA ECUACIÓN DE LA RECTA Se denomina solución de una ecuación al valor o conjunto de valores de la(s) incógnita(s) que verifican la igualdad. Así por ejemplo decimos que x
ƒ : {(1, 4), (2, 5), (3, 6), (4, 7)}.
SECCIÓN 5. Funciones inversas 5. Funciones inversas Verificar que una función es la inversa de otra. Determinar si una función tiene una función inversa. Encontrar la derivada de una función inversa. f
Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos
Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím
ECUACIÓN DE LA RECTA
MATEMÁTICA SEMANA 2 ECUACIÓN DE LA RECTA Todos los derechos de autor son de la exclusiva propiedad de IACC o de los otorgantes de sus licencias. No está permitido copiar, reproducir, reeditar, descargar,
Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA
Matemática - º Cuatrimestre Año 0 FUNCIÓN CUADRÁTICA Hemos definido anteriormente la función lineal como una función f: R R de la forma f()a+b con a R y b R, que se representa en el plano mediante una
DERIVADA DE LA FUNCIONES BÁSICAS TANGENTE, COTANGENTE, SECANTE Y COSECANTE
DERIVADA DE LA FUNCIONES BÁSICAS TANGENTE, COTANGENTE, SECANTE Y COSECANTE Sugerencias para quien imparte el curso: En esta sección de la propuesta didáctica se parte de plantear un problema de optimización
DERIVADA DE LA FUNCIÓN EXPONENCIAL NATURAL
DERIVADA DE LA FUNCIÓN EXPONENCIAL NATURAL Sugerencias para quien imparte el curso: Es importante que la interacción con los alumnos dentro del salón de clases sea lo más activa posible, para no caer en
Tutorial MT-b11. Matemática Tutorial Nivel Básico. Inecuaciones e intervalos
12345678901234567890 M ate m ática Tutorial MT-b11 Matemática 2006 Tutorial Nivel Básico Inecuaciones e intervalos Matemática 2006 Tutorial Inecuaciones e intervalos I. Definición y Propiedades de las
Prof. J. Contreras S. Prof. C. del Pino O. U de Talca
Sesión 7 Regla de L Hopital Temas Regla de L Hopital. Aplicaciones de la Regla de L Hopital a otras formas indeterminadas. 7. Introducción Johann Bernoulli Suizo. (667-748) Capacidades Conocer y comprender
SESIÓN 10 DERIVACIÓN DE FUNCIONES TRIGONOMÉTRICAS DIRECTAS
SESIÓN 0 DERIVACIÓN DE FUNCIONES TRIGONOMÉTRICAS DIRECTAS I. CONTENIDOS:. Derivadas de funciones trigonométricas directas. Ejercicios resueltos. Estrategias Centradas en el Aprendizaje: Ejercicios propuestos
APUNTES DE MATEMÁTICAS
APUNTES DE MATEMÁTICAS TEMA 7: FUNCIONES 1º BACHILLERATO 1 ÍNDICE 1. INTRODUCCIÓN...3 1.1. CONCEPTO DE FUNCIÓN...3. Definición de Dominio...3.1. CÁLCULOS DE DOMINIOS...3 3. Composición de funciones...4
UNIDAD DE APRENDIZAJE I
UNIDAD DE APRENDIZAJE I Saberes procedimentales 1. Define en forma correcta el concepto de desigualdad y el de valor absoluto. 2. Explica la diferencia entre constante, parámetro y variable. 3. Define
UNIDAD 7: PROGRESIONES OBJETIVOS
UNIDAD 7: PROGRESIONES Reconocer sucesiones y deducir su regla de formación en los casos en que sea posible. Obtener distintos términos en sucesiones recurrentes. Distinguir si una sucesión es una progresión
El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D.
Concepto de función Función real de variable real es toda correspondencia f que asocia a cada elemento de un determinado subconjunto de números reales, llamado dominio, otro número real (uno y sólo uno).
I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS
Eamen Global Análisis Matemáticas II Curso 010-011 I E S ATENEA SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL PRIMERA EVALUACIÓN ANÁLISIS Curso 010-011 1-I-011 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES
Álgebra y Trigonometría Clase 2 Ecuaciones, desigualdades y Funciones
Álgebra y Trigonometría Clase 2 Ecuaciones, desigualdades y Funciones CNM-108 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción
Guía de Ejercicios: Funciones
Guía de Ejercicios: Funciones Área Matemática Resultados de aprendizaje Determinar dominio y recorrido de una función. Analizar funciones: inyectivas, sobreyectivas y biyectivas. Determinar la función
SESIÓN 11 DERIVACIÓN DE FUNCIONES TRIGONOMETRICAS INVERSAS
SESIÓN 11 DERIVACIÓN DE FUNCIONES TRIGONOMETRICAS INVERSAS I. CONTENIDOS: 1. Función inversa, conceptos y definiciones 2. Derivación de funciones trigonométricas inversas 3. Ejercicios resueltos 4. Estrategias
14.1 Introducción. 14.2 Caso 1: Area bajo una curva.
Temas. Capacidades Calcular áreas de regiones del plano. 14.1 Introducción Area bajo una curva En esta sesión se inicia una revisión de las principales aplicaciones de la integral definida. La primera
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16. f : A! B x 7! y = f(x):
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16 Función Sean A y B conjuntos. Una función f de A en B es una regla que asigna a cada elemento x 2 A exactamante un elemento
Estudio de funciones mediante límites y derivadas
Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un
UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES
UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES En la Sección anterior se abordó contenidos relacionados con las funciones y gráficas, continuamos aprendiendo más sobre funciones; en la presente unidad abordaremos
INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA
INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA Pobre del estudiante que no aventaje a su maestro. LA LÍNEA RECTA Leonardo da Vinci DESEMPEÑOS Identificar, interpretar, graficar
Despejando, se tienen las siguientes ecuaciones de la forma : a) b)
MAT 115 B EJERCICIOS RESUELTOS 1. De la siguiente ecuación: Despejando, se tienen las siguientes ecuaciones de la forma : a) b) Calcule la raíz por el método de punto fijo, tomando en cuenta el criterio
Gráfica de Sistemas de desigualdades lineales en dos variables
Gráfica de Sistemas de desigualdades lineales en dos variables Una ecuación lineal con dos variables x y y, es de la forma: ax+by+c=0, a,b ambos no iguales a cero Donde tiene un conjunto solución que se
Curso de Inducción de Matemáticas
Curso de Inducción de Matemáticas CAPÍTULO 1 Funciones y sus gráficas M.I. ISIDRO I. LÁZARO CASTILLO Programa del Curso 1. Funciones y sus gráficas. 2. Límites. 3. Cálculo Analítico de Límites. 4. Derivación.
Sucesiones Introducción
Temas Límites de sucesiones. convergentes. Sucesiones divergentes. Sucesiones Capacidades Conocer y manejar conceptos de sucesiones convergentes y divergentes. Conocer las principales propiedades de las
1.3.- V A L O R A B S O L U T O
1.3.- V A L O R A B S O L U T O OBJETIVO.- Que el alumno conozca el concepto de Valor Absoluto y sepa emplearlo en la resolución de desigualdades. 1.3.1.- Definición de Valor Absoluto. El valor absoluto
1) Expresar los intervalos como conjuntos y los conjuntos en forma de intervalos y graficar:
TRABAJO PRÁCTICO N : FUNCIONES DE UNA VARIABLE REAL ASIGNATURA: MATEMÁTICA LIC. ADMINISTRACIÓN - LIC. TURISMO - LIC. HOTELERÍA - 05 ) Epresar los intervalos como conjuntos y los conjuntos en forma de intervalos
Ecuaciones cuadráticas. Guía de trabajo Tema: Ecuaciones cuadráticas Curso: 3 B, 3 D, 3 F (todos)
Ecuaciones cuadráticas. Guía de trabajo Tema: Ecuaciones cuadráticas Curso: B, D, F (todos) Introducción. En las semanas anteriores nos hemos abocado al estudio de la función cuadrática. Así, has aprendido
Dos inecuaciones se dice que son equivalentes cuando ambas tienen las mismas soluciones.
10. INECUACIONES Definición de inecuación Una inecuación es una desigualdad entre dos expresiones algebraicas. 2x + 3 < 5 ; x 2 5x > 6 ; x x 1 0 Inecuaciones equivalentes Dos inecuaciones se dice que son
FUNCIONES REALES DE VARIABLE REAL.
FUNCIONES REALES DE VARIABLE REAL. CORRESPONDENCIA. Se llama CORRESPONDENCIA entre dos conjuntos A y B a toda ley que asocia elementos del conjunto A con elementos del conjunto B. Se denota por : A B A
Capítulo 4. Inecuaciones. M.Sc. Alcides Astorga M., Lic. Julio Rodríguez S. Instituto Tecnológico de Costa Rica Escuela de Matemática
1 Capítulo 4 Inecuaciones M.Sc. Alcides Astorga M., Lic. Julio Rodríguez S. Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet (www.cidse.itcr.ac.cr)
Sistemas de ecuaciones
Eje temático: Álgebra y funciones Contenidos: Sistemas de ecuaciones Nivel: 2 Medio Sistemas de ecuaciones 1. Sistemas de ecuaciones lineales En distintos problemas de matemáticas nos vemos enfrentados
Ecuaciones Cuadráticas Las ecuaciones cuadráticas se pueden resolver por el método de factorización o utilizando la fórmula cuadrática.
Ejemplos de Ecuaciones Cuadráticas e Inecuaciones Cuadráticas Ecuaciones Cuadráticas Las ecuaciones cuadráticas se pueden resolver por el método de factorización o utilizando la fórmula cuadrática. El
TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL
TEMA. FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL . FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL.5.1. DOMINIO, CORTES CON LOS
SOLUCIONARIO Composición de funciones y función inversa
SOLUCIONARIO Composición de funciones y función inversa SGUICES04MT-A6V TABLA DE CORRECCIÓN GUÍA PRÁCTICA Composición de funciones y función inversa Ítem Alternativa E Comprensión A 3 D 4 B 5 C 6 D 7 A
PROGRAMA INSTRUCCIONAL MATEMÁTICA
UNIVERSIDAD FERMIN TORO VICE RECTORADO ACADEMICO FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES ESCUELA DE RELACIONES INDUSTRIALES ESCUELA DE ADMINISTRACIÓN PROGRAMA INSTRUCCIONAL MATEMÁTICA CÓDIGO ASIGNADO
Guía de Matemática Tercero Medio
Guía de Matemática Tercero Medio Aprendizaje Esperado: 1. Plantean y resuelven problemas que involucran ecuaciones de segundo grado; explicitan sus procedimientos de solución y analizan la existencia y
(Soluc: a) ; b)- ; c)± ; d)± ; e)± ; f) 0; g)± ; h) ; i)± ; x 1. 3 f) x e. lim x 2 x 1. lim x. lim. lim log x. lim. lim. x 1 (x 1)(x 4) lim x 1.
+ ln 4 + f + 5 EJERCICIOS de LÍMITES de FUNCIONES y CONTINUIDAD. Calcular los siguientes límites no indeterminados : 4 + + 4 f) e log g) 0, + 4 d) i) 0+ + 4 e) j) 4. Dada la gráfica de la figura, indicar
DERIVADAS PARCIALES Y APLICACIONES
CAPITULO IV CALCULO II 4.1 DEFINICIÓN DERIVADAS PARCIALES Y APLICACIONES En cálculo una derivada parcial de una función de diversas variables es su derivada respecto a una de esas variables con las otras
Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 7: Lunes 22 - Viernes 27 de Abril. Contenidos
Coordinación de Matemática I (MAT01) 1 er Semestre de 013 Semana 7: Lunes - Viernes 7 de Abril Cálculo Contenidos Clase 1: Álgebra de límites. Teorema del Sandwich. Cálculo de límites. Límites trigonométricos.
UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN. Tema: LA INTEGRAL DEFINIDA
UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN Tema: LA INTEGRAL DEFINIDA La integral definida Anteriormente se mencionó que la Integral Indefinida da como resultado una familia de funciones
Conjuntos, relaciones y funciones Susana Puddu
Susana Puddu 1. Repaso sobre la teoría de conjuntos. Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros. Dados dos conjuntos A y B decimos que A está contenido en B o también
Una ecuación puede tener ninguna, una o varias soluciones. Por ejemplo: 5x 9 = 1 es una ecuación con una incógnita con una solución, x = 2
Podemos definir a las ecuaciones como una igualdad entre expresiones algebraicas (encadenamiento de números y letras ligados por operaciones matemáticas diversas),en la que intervienen una o más letras,
CONTENIDOS MÍNIMOS del ÁREA DE MATEMÁTICAS
Dpto. de Matemáticas IES Las Breñas 4º ESO OPCIÓN B CONTENIDOS MÍNIMOS del ÁREA DE MATEMÁTICAS 1: Números reales. Septiembre-2016 Números no racionales. Expresión decimal - Reconocimiento de algunos irracionales.
MATE 3031. Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 77
MATE 3031 Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia 1 / 77 P. Vásquez (UPRM) Conferencia 2 / 77 Qué es una función? MATE 3171 En esta parte se recordará la idea de función y su definición formal.
Materia: Matemática de Octavo Tema: Raíces de un polinomio. Marco teórico
Materia: Matemática de Octavo Tema: Raíces de un polinomio Y si tuvieras una ecuación polinómica como? Cómo podrías factorizar el polinomio para resolver la ecuación? Después de completar esta lección
1 er Problema. 2 Problema
Facultad de Contaduría Administración. UNAM Lugares geométricos Autor: Dr. José Manuel Becerra Espinosa MATEMÁTICAS BÁSICAS LUGARES GEOMÉTRICOS Eisten dos problemas fundamentales en la Geometría Analítica:.
Límites y continuidad de funciones reales de variable real
Límites y continuidad de funciones reales de variable real Álvarez S., Caballero M.V. y Sánchez M. a M. [email protected], [email protected], [email protected] Índice 1. Definiciones 3 2. Herramientas 10 2.1. Funciones
TEMA 8: FUNCIONES. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.
2009 TEMA 8: FUNCIONES. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 1º E.S.O. TEMA 08: Funciones. TEMA 08: FUNCIONES. 1. Correspondencia.
Laboratorio Nº 1 La Descripción Gráfica de la Ecuación Diferencial Ordinaria
Universidad Diego Portales Segundo Semestre 007 Facultad de Ingeniería Instituto de Ciencias Básicas Asignatura: Ecuaciones Diferenciales Laboratorio Nº 1 La Descripción Gráfica de la Ecuación Diferencial
Grado: 9 UoL_3: Extrayendo información de nuestro entorno: el análisis de tablas y gráficos. LO_4: Construcción del concepto de función Recurso:
Grado 10 Matematicas - Unidad 1 Reconozcamos otras características de la función. Título del objeto Clasificación de funciones relacionados (Pre clase) Grado: 9 UoL_3: Extrayendo información de nuestro
Tema 2. FUNCIONES REALES DE VARIABLE REAL
UAH Funciones reales de variable real 1 Tema FUNCIONES REALES DE VARIABLE REAL Concepto de función Dados dos conjuntos A y B, una función de A en B es una relación (una ley) que asigna a cada elemento
Capitulo VI: Funciones.
Funciones o Aplicaciones: Capitulo VI: Funciones. Ejemplo de función: Sean: A = {, 2, 3 } B = { a, b, c, d, e } F = { (;a) (2;b) (3;e) } es una función de A en B, porque a cada elemento de A, le corresponde
