GEOESTADÍSTICA APLICADA
|
|
|
- Felisa Cano Peralta
- hace 8 años
- Vistas:
Transcripción
1 UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO GEOESTADÍSTICA APLICADA Tema: Funciones Aleatorias Instructores: Dr. Martín A. Díaz Viera Dr. Ricardo Casar González 2009
2 Contenido Función Aleatoria (FA) Variable regionalizada Función de distribución de una FA Momentos de una FA Estacionaridad de una FA Clasificación de las FA según su grado de estacionaridad FA estacionarias de segundo orden Funciones aleatorias intrínsecas Funciones aleatorias no estacionarias 20/08/2010 CG3-Funciones Aleatorias 2
3 Función Aleatoria Si a cada punto x que pertenece a un dominio en el espacio le hacemos corresponder una variable aleatoria Z, entonces el conjunto de variables aleatorias espacialmente distribuidas será una función aleatoria Z(x). Ejemplo: La distribución espacial de las facies o la porosidad en un yacimiento. 20/08/2010 CG3-Funciones Aleatorias 3
4 Variable regionalizada Al tomar una muestra de una función aleatoria, a la que llamaremos realización, se obtendrá una función espacial discreta la cual constituye una variable regionalizada. Es decir una realización de una función aleatoria es una variable regionalizada. 20/08/2010 CG3-Funciones Aleatorias 4
5 Función de distribución de una FA Sea una función aleatoria Z(x) definida en una región, entonces el vector aleatorio Z x1, Z x2,..., Z xn se caracteriza por su función de distribución de probabilidad n-variada: F z, z,..., z,,..., Z x1 Z x2 Z x n 1 2 n Pr Z x 1 z1, Z x2 z2,..., Z xn z 20/08/2010 CG3-Funciones Aleatorias 5 n
6 Función de distribución de una FA El conjunto de todas las distribuciones para todo valor de n y para cualquier selección de puntos en constituye la ley espacial de probabilidad de la función aleatoria. Esta función en la práctica es imposible de determinar y sólo se puede esperar inferir los primeros momentos de la distribución de la FA Z(x). 20/08/2010 CG3-Funciones Aleatorias 6
7 Momentos de una FA Momento de primer orden Conocido como valor medio o media de Z(x) está definido como: m x E Z x 20/08/2010 CG3-Funciones Aleatorias 7
8 Momentos de una FA Momentos de segundo orden La varianza de Z(x) está definida como: 2 2 x Var Z x E Z x m x La covarianza de Z(x) está definida como:, C x x E Z x m x Z x m x i j i i j j 20/08/2010 CG3-Funciones Aleatorias 8
9 Momentos de una FA Momentos de segundo orden El semivariograma de Z(x) está definido como: x i x j Var Z xi Z x j 2, 1 x, 2 i x j E Z xi Z x j 2 También conocido como función de semivarianzas o variograma 20/08/2010 CG3-Funciones Aleatorias 9
10 Estacionaridad de una FA Se dice que una función aleatoria es estrictamente estacionaria si su función de distribución de probabilidad es invariante a cualquier traslación respecto a un vector h. Pero resulta práctico limitar la hipótesis de estacionaridad a los primeros momentos. 20/08/2010 CG3-Funciones Aleatorias 10
11 Clasificación de las FA según su grado de estacionaridad FA estacionarias de segundo orden FA aleatorias intrínsecas Funciones aleatorias no estacionarias 20/08/2010 CG3-Funciones Aleatorias 11
12 FA estacionarias de segundo orden Se dice que una FA es estacionaria de segundo orden si sus momentos de primer y segundo orden no dependen de la posición, es decir 2 y E Z x m Var Z x x C h C x h, x E Z x h Z x m 2 1 h x h, x E Z x h Z x /08/2010 CG3-Funciones Aleatorias 12
13 FA aleatorias intrínsecas Cuando la FA no es estacionaria pero las diferencias Z(x+h)-Z(x) son estacionarias de segundo orden (Hipótesis Intrínseca) El valor esperado de la diferencia es E Z x h Z x m x La varianza de la diferencia es Var Z x h Z x 2 h x 20/08/2010 CG3-Funciones Aleatorias 13
14 FA no estacionarias Cuando no cumplen la Hipótesis Intrínseca. El valor esperado de la diferencia depende de la posición La varianza de la diferencia no es estacionaria 20/08/2010 CG3-Funciones Aleatorias 14
15 Diagrama de clasificación de las FAs por su grado de estacionaridad No Estacionarias Intrínsecas Estacionarias 2do Orden Estrictamente Estacionarias 20/08/2010 CG3-Funciones Aleatorias 15
16 FA no estacionarias Un indicador de no estacionaridad (tendencia) es cuando el variograma presenta un crecimiento similar o superior a h 2 Si consideramos a la FA como Entonces vemos que el variograma depende de x Si la deriva o tendencia es lineal Z x m x R x x h x h m x h m x, R h h 1 2m h 2 R m x m m x 1 20/08/2010 CG3-Funciones Aleatorias
17 FA no estacionarias Ejemplo de variograma en presencia de tendencia muestra un crecimiento h 2 20/08/2010 CG3-Funciones Aleatorias 17
18 Ejemplos de Estacionaridad (a) Media y varianza constantes; (b) media variable y varianza constante; (c) Media constante y varianza no constante; (d) Media y varianza no constantes. 20/08/2010 CG3-Funciones Aleatorias 18
19 Ejemplos de Estacionaridad (a) Media estacionaria; (b) Media no estacionaria Estacionaria No Estacionaria 20/08/2010 CG3-Funciones Aleatorias 19
DEPENDENCIA ESPACIAL
DEPENDENCIA ESPACIAL Concepción González García (2008) DEPENDENCIA ESPACIAL Análisis Exploratorio de Datos Espaciales: OBJETIVO: > Revisar las herramientas para el análisis de dependencias de las variables
Unidad Temática 3: Probabilidad y Variables Aleatorias
Unidad Temática 3: Probabilidad y Variables Aleatorias 1) Qué entiende por probabilidad? Cómo lo relaciona con los Sistemas de Comunicaciones? Probabilidad - Definiciones Experimento aleatorio: Un experimento
Estadística Espacial en Ecología del Paisaje
Estadística Espacial en Ecología del Paisaje Introducción H. Jaime Hernández P. Facultad de Ciencias Forestales U. de Chile Tipos de datos en análisis espacial Patrones espaciales puntuales Muestras geoestadísticas
Variables aleatorias
Distribuciones continuas Se dice que una variable aleatoria X tiene una distribución continua, o que X es una variable continua, si existe una función no negativa f, definida sobre los números reales,
Distribuciones de probabilidad
Distribuciones de probabilidad Prof, Dr. Jose Jacobo Zubcoff Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir
Distribuciones de Probabilidad para Variables Aleatorias Discretas 1
Distribuciones de Probabilidad para Variables Aleatorias Discretas Apellidos, nombre Martínez Gómez, Mónica ([email protected]) Marí Benlloch, Manuel ([email protected]) Departamento Centro Estadística,
Maestría en Bioinformática Probabilidad y Estadística: Clase 3
Maestría en Bioinformática Probabilidad y Estadística: Clase 3 Gustavo Guerberoff [email protected] Facultad de Ingeniería Universidad de la República Abril de 2010 Contenidos 1 Variables aleatorias
Variables aleatorias unidimensionales
Estadística II Universidad de Salamanca Curso 2011/2012 Outline Variable aleatoria 1 Variable aleatoria 2 3 4 Variable aleatoria Definición Las variables aleatorias son funciones cuyos valores dependen
Tema 13: Distribuciones de probabilidad. Estadística
Tema 13: Distribuciones de probabilidad. Estadística 1. Variable aleatoria Una variable aleatoria es una función que asocia a cada elemento del espacio muestral, de un experimento aleatorio, un número
X = beneficio del jugador = (ganancia neta) (recursos invertidos) Cuántos euros debo poner yo para que el juego sea justo?
Ejemplo: el valor esperado y los juegos justos. En los juegos de azar es importante la variable aleatoria X = beneficio del jugador = (ganancia neta) (recursos invertidos) El juego consiste en una caja
VARIABLES ESTADÍSTICAS BIDIMENSIONALES
VARIABLES ESTADÍSTICAS BIDIMENSIONALES 1.- En una variable estadística bidimensional, el diagrama de dispersión representa: a) la nube de puntos. b) las varianzas de las dos variables. c) los coeficientes
Una metodología para la modelación geológico-petrofísica de yacimientos areno-arcillosos del tipo Chicontepec
Asociación de Ingenieros Petroleros de México, A. C. XXVIII Jornadas Técnicas 2013 Una metodología para la modelación geológico-petrofísica de yacimientos areno-arcillosos del tipo Chicontepec Ricardo
Facultad de Ciencias Sociales - Universidad de la República
Facultad de Ciencias Sociales - Universidad de la República Estadística y sus aplicaciones en Ciencias Sociales Edición 2016 Ciclo Avanzado 3er. Semestre (Licenciatura en Ciencia Política/ Licenciatura
Teorema Central del Límite (1)
Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico
T1. Distribuciones de probabilidad discretas
Estadística T1. Distribuciones de probabilidad discretas Departamento de Ciencias del Mar y Biología Aplicada Inferencia estadística: Parte de la estadística que estudia grandes colectivos a partir de
ESCUELA COMERCIAL CÁMARA DE COMERCIO EXTENSIÓN DE ESTUDIOS PROFESIONALES MAESTRÍA EN ADMINISTRACIÓN
CICLO, ÁREA O MÓDULO: TERCER CUATRIMESTRE OBJETIVO GENERAL DE LA ASIGNATURA: Al termino del curso el alumno efectuara el análisis ordenado y sistemático de la Información, a través del uso de las técnicas
Cálculo de Probabilidades II Preguntas Tema 1
Cálculo de Probabilidades II Preguntas Tema 1 1. Suponga que un experimento consiste en lanzar un par de dados, Sea X El número máximo de los puntos obtenidos y Y Suma de los puntos obtenidos. Obtenga
Procesos estocásticos. Definición
Procesos estocásticos Definición http://humberto-r-alvarez-a.webs.com Definición de proceso estocástico Estudio del comportamiento de una variable aleatoria a lo largo del tiempo El ajuste de cualquier
Distribuciones de Probabilidad Para Variables Aleatorias Continuas
Distribuciones de Probabilidad Para Variables Aleatorias Continuas Departamento de Estadística-FACES-ULA 20 de Diciembre de 2013 Introducción Recordemos la definición de Variable Aleatoria Continua. Variable
Tema 4: Variables aleatorias multidimensionales
1 Tema 4: Variables aleatorias multidimensionales En este tema: Distribución conjunta de probabilidad Probabilidad/densidad marginal Probabilidad/densidad condicionada Esperanza, varianza, desviación típica
Grupo 23 Semestre Segundo examen parcial
Probabilidad Grupo 23 Semestre 2015-2 Segundo examen parcial La tabla siguiente presenta 20 postulados, algunos de los cuales son verdaderos y otros son falsos. Analiza detenidamente cada postulado y elige
Estadística aplicada a la comunicación
Estadística aplicada a la comunicación Tema 5: Análisis de datos cuantitativos I: estadística descriptiva b. Análisis bivariante OpenCourseWare UPV/EHU Unai Martín Roncero Departamento de Sociología 2
5. TEOREMA FUNDAMENTAL: Formulación y Demostración. Jorge Eduardo Ortiz Triviño
5. TEOREMA FUNDAMENTAL: Formulación y Demostración Jorge Eduardo Ortiz Triviño [email protected] http:/www.docentes.unal.edu.co/jeortizt/ 1 CONTENIDO 1. INTRODUCCIÓN 2. VARIABLES ALEATORIAS 3. TEOREMA
Tema 5. Muestreo y distribuciones muestrales
1 Tema 5. Muestreo y distribuciones muestrales En este tema: Muestreo y muestras aleatorias simples. Distribución de la media muestral: Esperanza y varianza. Distribución exacta en el caso normal. Distribución
Clasificación de sistemas
Capítulo 2 Clasificación de sistemas 2.1 Clasificación de sistemas La comprensión de la definición de sistema y la clasificación de los diversos sistemas, nos dan indicaciones sobre cual es la herramienta
Repaso de conceptos de álgebra lineal
MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN Manuel Sánchez-Montañés Luis Lago Ana González Escuela Politécnica Superior Universidad Autónoma de Madrid Repaso
El Algoritmo E-M. José Antonio Camarena Ibarrola
El Algoritmo E-M José Antonio Camarena Ibarrola Introducción Método para encontrar una estimación de máima verosimilitud para un parámetro ѳ de una distribución Ejemplo simple 24 Si tiene las temperaturas
CONTENIDOS. 1. Procesos Estocásticos y de Markov. 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD
CONTENIDOS 1. Procesos Estocásticos y de Markov 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD 4. Comportamiento Estacionario de las CMTD 1. Procesos Estocásticos
Tema 3: Cálculo de Probabilidades Unidad 2: Variables Aleatorias
Estadística Tema 3: Cálculo de Probabilidades Unidad 2: Variables Aleatorias Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Noviembre 2010 Contenidos...............................................................
ÍNDICE CAPÍTULO 1. INTRODUCCIÓN
ÍNDICE CAPÍTULO 1. INTRODUCCIÓN 1.1. OBJETO DE LA ESTADÍSTICA... 17 1.2. POBLACIONES... 18 1.3. VARIABLES ALEATORIAS... 19 1.3.1. Concepto... 19 1.3.2. Variables discretas y variables continuas... 20 1.3.3.
Distribución Normal. Universidad Diego Portales Facultad de Economía y Empresa. Estadística I Profesor: Carlos R. Pitta
Distribución Normal La distribución normal (O Gaussiana) se define como sigue: En donde y >0 son constantes arbitrarias. Esta función es en realidad uno de las más importantes distribuciones de probabilidad
CM0244. Suficientable
IDENTIFICACIÓN NOMBRE ESCUELA ESCUELA DE CIENCIAS NOMBRE DEPARTAMENTO Ciencias Matemáticas ÁREA DE CONOCIMIENTO MATEMATICAS, ESTADISTICA Y AFINES NOMBRE ASIGNATURA EN ESPAÑOL ESTADÍSTICA GENERAL NOMBRE
Variables aleatorias
Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando
Estimación por métodos Geoestadísticos
Estimación por métodos Geoestadísticos Métodos de Estimación de Recursos Mineros Estimación global Estimación local La media aritmética Los polígonos El método del inverso de la distancia Geoestadística
TEMA 3. Algunos modelos de probabilidad de tipo discreto. 3.1 Al finalizar el tema el alumno debe conocer...
TEMA 3. Algunos modelos de probabilidad de tipo discreto En este capítulo se abordan «familias» muy específicas de probabilidad, que con cierta frecuencia se nos presentan en el mundo real. Van a ser distribuciones
Tema I. Introducción. Ciro el Grande ( A.C.)
1.1. La ciencia de la estadística:. El origen de la estadística:. Ciencia descriptiva. Evaluación de juegos de azar Ciro el Grande (560-530 A.C.) Si tengo 1 As y 2 reyes, que descarte es mas conveniente
Tema 4: Variables aleatorias multidimensionales
Tema 4: Variables aleatorias multidimensionales Los contenidos a desarrollar en este tema son los siguientes: Distribución conjunta de probabilidad Probabilidad/densidad marginales y condicionadas Independencia
Capítulo 2. Conceptos básicos
Capítulo. Conceptos básicos.1 Conceptos hidrogeológicos Se denomina acuífero a aquella formación geológica que es capaz de almacenar y transmitir el agua subterránea a través de ella en cantidades significativas,
PROBABILIDAD Y ESTADÍSTICA
FACULTAD DE INGENIERÍA U N A M PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro [email protected] T E M A S DEL CURSO 1. Análisis Estadístico de datos muestrales. 2. Fundamentos de la Teoría de la
Variables aleatorias. Examen Junio La función de distribución de una variable continua X es de la forma:
TEMA 6: Variables aleatorias Examen Junio 003.- La función de distribución de una variable continua X es de la forma: 3 F ( t) = P( X t) = a + bt ct t, Se sabe que la densidad verifica f(-)=f()=0. [ ]
EXPERIMENTO ALEATORIO
EXPERIMENTO ALEATORIO En concepto de la probabilidad, un experimento aleatorio es aquel que bajo el mismo conjunto aparente de condiciones iniciales, puede presentar resultados diferentes, en otras palabras,
Ayudantía N 9. Problema 1. Considere la siguiente matriz de transición. 1/2 1/2 0 1/3 1/3 1/3
Universidad Diego Portales. Escuela de Industrias, Facultad de Ingeniería. Modelos Estocásticos; 2do semestre de 2014. Profesor: Franco Basso Ayudantes: Diego Espinoza Ayudantía N 9 Problema 1 Considere
INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith)
INTERVALOS DE CONFIANZA La estadística en cómic (L. Gonick y W. Smith) EJEMPLO: Será elegido el senador Astuto? 2 tamaño muestral Estimador de p variable aleatoria poblacional? proporción de personas que
Tema 8: Contraste de hipótesis
Tema 8: Contraste de hipótesis 1 En este tema: Conceptos fundamentales: hipótesis nula y alternativa, nivel de significación, error de tipo I y tipo II, p-valor. Contraste de hipótesis e IC. Contraste
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL PROGRAMA DE LA ASIGNATURA DE: IDENTIFICACIÓN DE LA ASIGNATURA
Funciones y Cardinalidad
Funciones y Cardinalidad Definición 1 Llamaremos función f entre dos conjuntos A y B a una relación que verifica las siguientes propiedades: i) Dom(f) = A ii) Si (a, b), (a, c) f entonces b = c Dicho de
Introducción al Tema 9
Tema 2. Análisis de datos univariantes. Tema 3. Análisis de datos bivariantes. Tema 4. Correlación y regresión. Tema 5. Series temporales y números índice. Introducción al Tema 9 Descripción de variables
ESTADÍSTICA INFERENCIAL
ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL 1 Sesión No. 4 Nombre: Distribuciones de probabilidad para variables Contextualización En la sesión anterior se definió el concepto de variable aleatoria
Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos
Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,
Dr. Mauro Gutierrez Martinez Dr. Christiam Gonzales Chávez
Profesores: Mg. Cecilia Rosas Meneses Dr. Mauro Gutierrez Martinez Dr. Christiam Gonzales Chávez Definición. La función de distribución acumulada F X de una v.a. X es definida para cada número real x como
ANX-PR/CL/ GUÍA DE APRENDIZAJE. ASIGNATURA Estadistica. CURSO ACADÉMICO - SEMESTRE Primer semestre
ANX-PR/CL/001-01 GUÍA DE APRENDIZAJE ASIGNATURA Estadistica CURSO ACADÉMICO - SEMESTRE 2016-17 - Primer semestre GA_05IQ_55001012_1S_2016-17 Datos Descriptivos Nombre de la Asignatura Titulación Centro
Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s).
VARIABLE ALEATORIA Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s). X : S S s s X () s X(s) Rx Rx es el recorrido
Estadística Aplicada
Estadística Aplicada Distribuciones de Probabilidad Variables aleatorias Toman un valor numérico para cada resultado de un espacio muestral Discretas. Sus valores posibles constituyen un conjunto discreto.
Bioestadística. Curso Capítulo 3
Bioestadística. Curso 2012-2013 Capítulo 3 Carmen M a Cadarso, M a del Carmen Carollo, Xosé Luis Otero, Beatriz Pateiro Índice 1. Introducción 2 2. Variable aleatoria 2 2.1. Variables aleatorias discretas...............................
b) dado que es en valor absoluto será el área entre -1,071 y 1,071 luego el resultado será F(1,071)-(1-F(1,071)=0,85-(1-0,85)=0,7
EJERCICIOS T12-MODELOS MULTIVARIANTES ESPECÍFICOS 1. Un determinado estadístico J se distribuye según un modelo jhi-dos de parámetro (grados de libertad) 14. Deseamos saber la probabilidad con la que dicho
Tema 9: Contraste de hipótesis.
Estadística 84 Tema 9: Contraste de hipótesis. 9.1 Introducción. El objetivo de este tema es proporcionar métodos que permiten decidir si una hipótesis estadística debe o no ser rechazada, en base a los
Propiedades en una muestra aleatoria
Capítulo 5 Propiedades en una muestra aleatoria 5.1. Conceptos básicos sobre muestras aleatorias Definición 5.1.1 X 1,, X n son llamadas una muestra aleatoria de tamaño n de una población f(x) si son variables
Pruebas de Hipótesis. Diseño Estadístico y Herramientas para la Calidad. Pruebas de Hipótesis. Hipótesis
Diseño Estadístico y Herramientas para la Calidad Pruebas de Hipótesis Expositor: Dr. Juan José Flores Romero [email protected] http://lsc.fie.umich.mx/~juan M. en Calidad Total y Competitividad Pruebas de
TEMARIO: CONTENIDOS, OBJETIVOS MÍNIMOS Y TIEMPO.
TEMARIO: CONTENIDOS, OBJETIVOS MÍNIMOS Y TIEMPO. Los contenidos seleccionados tienen la intención de aportar una formación matemática suficiente para abordar problemas del mundo social y del entorno, así
MATEMÁTICAS 2º DE BACHILLERATO
MATRICES 1. Matrices y tipos de matrices 2. Operaciones con matrices 3. Producto de matrices 4. Matriz traspuesta 5. Matriz inversa 6. Rango de matrices DETERMINANTES 7. Determinantes de orden 2 y 3 8.
Econometría II Grado en finanzas y contabilidad
Econometría II Grado en finanzas y contabilidad Variables aleatorias y procesos estocásticos. La FAC y el correlograma Profesora: Dolores García Martos E-mail:[email protected] Este documento es
Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos
Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Se considera el sistema lineal de ecuaciones, dependiente del parámetro
1. VALORES FALTANTES 2. MECANISMOS DE PÉRDIDA
1. VALORES FALTANTES Los valores faltantes son observaciones que en un se tenía la intención de hacerlas, pero por distintas razones no se obtuvieron. Puede ser que no se encuentre a un encuestado, entonces
Gestión de Plagas con Métodos Geoestadísticos
Gestión de Plagas con Métodos Geoestadísticos Alumno Profesor Coordinador Dr. Martín Alberto Díaz Viera Palabras Clave: SIG, Geoestadística, Plagas, Agrícolas Master en Sistemas de Información Geográfica.
Continuidad. 5.1 Continuidad en un punto
Capítulo 5 Continuidad 5.1 Continuidad en un punto Definición 5.1.1 (Aplicación continua en un punto). Sean (X, τ) e (Y, τ ) dos espacios topológicos, y sea f : X Y una aplicación entre ellos. Diremos
Tema 6. Variables aleatorias continuas
Tema 6. Variables aleatorias continuas Resumen del tema 6.1. Definición de variable aleatoria continua Identificación de una variable aleatoria continua X: es preciso conocer su función de densidad, f(x),
Propiedades de los sistemas (con ecuaciones)
Propiedades de los sistemas (con ecuaciones) Linealidad: Para verificar si un sistema es lineal requerimos que le sistema sea homogéneo y aditivo es decir, cumplir con la superposición. Método: Dada una
PLAN DE TRABAJO 9 Período 3/09/07 al 28/09/07
PLAN DE TRABAJO 9 Período 3/09/07 al 28/09/07 TEMAS A ESTUDIAR En esta guía nos dedicaremos a estudiar el tema de Estimación por intervalo y comenzaremos a estudiar las pruebas de hipótesis paramétricas.
Métodos Estadísticos de la Ingeniería Tema 7: Momentos de Variables Aleatorias Grupo B
Métodos Estadísticos de la Ingeniería Tema 7: Momentos de Variables Aleatorias Grupo B Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Marzo 2010 Contenidos...............................................................
Expliquemos con exactitud qué queremos decir con valores máximos y mínimos.
Introducción: Ahora que conocemos las reglas de derivación nos encontramos en mejor posición para continuar con las aplicaciones de la derivada. Veremos cómo afectan las derivadas la forma de la gráfica
UNIVERSIDAD DE CIENCIAS EMPRESARIALES Y SOCIALES
UNIVERSIDAD DE CIENCIAS EMPRESARIALES Y SOCIALES Carrera: LICENCIATURA EN COMERCIO EXTERIOR Asignatura: ESTADÍSTICA APLICADA A LOS NEGOCIOS ESTADÍSTICA DE LOS NEGOCIOS Curso: 1º AÑO Año lectivo: 2016 Carga
UNIVERSIDAD DEL NORTE
UNIVERSIDAD DEL NORTE 1. IDENTIFICACIÓN DIVISIÓN ACADÉMICA DIVISIÓN DE CIENCIAS BÁSICAS DEPARTAMENTO MATEMÁTICAS Y ESATADÍSTICA. PROGRAMA ACADÉMICO ESTADÍSTICA I-AD CÓDIGO DE LA ASIGNATURA EST 1022 PRE-REQUISITO
Tema 4: Variable aleatoria. Métodos Estadísticos
Tema 4: Variable aleatoria. Métodos Estadísticos Definición de v.a. Definición: Una variable aleatoria (v.a.) es un número real asociado al resultado de un experimento aleatorio, es decir, una función
8.2.5. Intervalos para la diferencia de medias de dos poblaciones
8.. INTERVALOS DE CONFIANZA PARA LA DISTRIBUCIÓN NORMAL 89 distribuye de modo gaussiana. Para ello se tomó una muestra de 5 individuos (que podemos considerar piloto), que ofreció los siguientes resultados:
Variables Aleatorias. Introducción
Variables Aleatorias Introducción Concepto de variable aleatoria Es conveniente que los resultados de un experimento aleatorio estén expresados numéricamente. Se prueban tres componentes electrónicos,
4. NÚMEROS PSEUDOALEATORIOS.
4. NÚMEROS PSEUDOALEATORIOS. En los experimentos de simulación es necesario generar valores para las variables aleatorias representadas estas por medio de distribuciones de probabilidad. Para poder generar
INSTITUTO POLITÉCNICO NACIONAL SECRETARIA ACADEMICA DIRECCIÓN DE ESTUDIOS PROFESIONALES EN INGENIERÍA Y CIENCIAS FÍSICO MATEMÁTICAS
ESCUELA: UPIICSA CARRERA: INGENIERÍA EN TRANSPORTE ESPECIALIDAD: COORDINACIÓN: ACADEMIAS DE MATEMÁTICAS DEPARTAMENTO: CIENCIAS BÁSICAS PROGRAMA DE ESTUDIO ASIGNATURA: ESTADÍSTICA APLICADA CLAVE: TMPE SEMESTRE:
Estadística Avanzada y Análisis de Datos
1-1 Estadística Avanzada y Análisis de Datos Javier Gorgas y Nicolás Cardiel Curso 2006-2007 2007 Máster Interuniversitario de Astrofísica 1-2 Introducción En ciencia tenemos que tomar decisiones ( son
Poblaciones multietáneas
: Estado biológico Dinámica de poblaciones: crecimiento de poblaciones multietáneas José Antonio Palazón Ferrando [email protected] http://fobos.bio.um.es/palazon Departamento de Ecología e Hidrología Universidad
Relación de Problemas. Tema 6
Relación de Problemas. Tema 6 1. En una urna hay 5 bolas blancas y 2 negras y se sacan tres bolas sin reemplazamiento. a) Calcular la distribución conjunta del número de bolas blancas y negras de entre
Prueba Integral Lapso /6
Prueba Integral Lapso 2 009-2 76 - /6 Universidad Nacional Abierta Probabilidad y Estadística I (76) Vicerrectorado Académico Cód. Carrera: 06-20 - 508 Fecha: 2-2 - 2 009 MODELO DE RESPUESTAS Objetivos,
ESTADÍSTICA I, curso Problemas Tema 4
ESTADÍSTICA I, curso 007-008 Problemas Tema 4 1. En un problema de una prueba aplicada a niños pequeños se les pide que hagan corresponder tres dibujos de animales con la palabra que identifica a ese animal.
INDICE Capítulo I: Conceptos Básicos Capitulo II: Estadística Descriptiva del Proceso
INDICE Capítulo I: Conceptos Básicos 1.- Introducción 3 2.- Definición de calidad 7 3.- Política de calidad 10 4.- Gestión de la calidad 12 5.- Sistema de calidad 12 6.- Calidad total 13 7.- Aseguramiento
SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES
SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES RELACIONES BINARIAS PAR ORDENADO Es un arreglo de dos elementos que tienen un orden determinado donde a es llamada al primera componente y b es llamada la
Medidas de Tendencia Central.
Medidas de Tendencia Central www.jmontenegro.wordpress.com MEDIDAS DE RESUMEN MDR MEDIDAS DE TENDENCIA CENTRAL MEDIA MEDIANA MODA CUARTILES,ETC. MEDIDAS DE DISPERSIÓN RANGO DESVÍO EST. VARIANZA COEFIC.
Generación de Variables Aleatorias. UCR ECCI CI-1453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides
Generación de Variables Aleatorias UCR ECCI CI-453 Investigación de Operaciones Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción Las variables aleatorias se representan por medio de distribuciones
Rafael Arce Mesén Escuela de Geografía Universidad de Costa Rica Junio, 2001.
Rafael Arce Mesén Escuela de Geografía Universidad de Costa Rica Junio, 2001. 2 MÉTODOS DE INTERPOLACIÓN ESPACIAL Método de los medias (promedios) móviles ponderados Este método consiste en estimar el
1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA
MODELO DE REGRESIÓN LOGÍSTICA Introducción A grandes rasgos, el objetivo de la regresión logística se puede describir de la siguiente forma: Supongamos que los individuos de una población pueden clasificarse
Tema 5 Algunas distribuciones importantes
Algunas distribuciones importantes 1 Modelo Bernoulli Distribución Bernoulli Se llama experimento de Bernoulli a un experimento con las siguientes características: 1. Se realiza un experimento con dos
FACULTAD DE INGENIERÍA UNAM PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro [email protected] T E M A S DEL CURSO. Análisis Estadístico de datos muestrales.. Fundamentos de la Teoría de
Cálculo de tiempo óptimo de finalización de un proyecto de obras: Construcción de buques; implantación de sistemas de telecomunicación^)
Cálculo de tiempo óptimo de finalización de un proyecto de obras: Construcción de buques; implantación de sistemas de telecomunicación^) INTRODUCCIÓN DIEGO PAZOS Profesor de Economía de la Empresa de la
NOCIONES DE ESTADÍSTICA CURSO PRÁCTICO DE CLIMATOLOGÍA 2011
NOCIONES DE ESTADÍSTICA CURSO PRÁCTICO DE CLIMATOLOGÍA 2011 CÓMO CARACTERIZAR UNA SERIE DE DATOS? POSICIÓN- dividen un conjunto ordenado de datos en grupos con la misma cantidad de individuos CENTRALIZACIÓN-
Variable Aleatoria. Relación de problemas 6
Relación de problemas 6 Variable Aleatoria. Consideremos el experimento aleatorio consistente en lanzar dos dados equilibrados y observar el número máximo de los dos números obtenidos en ellos. Si X es
Conjuntos, relaciones y funciones Susana Puddu
Susana Puddu 1. Repaso sobre la teoría de conjuntos. Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros. Dados dos conjuntos A y B decimos que A está contenido en B o también
DISTRIBUCIONES DE PROBABILIDAD DISCRETA (PARTE 2)
Probabilidad DISTRIBUCIONES DE PROBABILIDAD DISCRETA (PARTE 2) Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. 4.1-1 EJEMPLO Calcular σ y σ 2 para una variable aleatoria discreta
INDICE. Prólogo a la Segunda Edición
INDICE Prólogo a la Segunda Edición XV Prefacio XVI Capitulo 1. Análisis de datos de Negocios 1 1.1. Definición de estadística de negocios 1 1.2. Estadística descriptiva r inferencia estadística 1 1.3.
VARIABLES ALEATORIAS DISCRETAS
VARIABLES ALEATORIAS DISCRETAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Variables Aleatorias Variables Aleatorias Definición:
