TEMA 7 INTERPOLACIÓN
|
|
|
- Lucas Ríos Córdoba
- hace 8 años
- Vistas:
Transcripción
1 7.1 Funciones definidas por tablas TEMA 7 INTERPOLACIÓN Página 18 Ejercicios 1. Se tienen los siguientes datos sobre la evolución del índice de precios al consumo (IPC) en los últimos años. año IPC Representa gráficamente los datos y determina el máximo intervalo para el que la gráfica se aproxima a una recta. 4,5 4,5 2,5 2 1,5 1 0, Representando sobre cada año la altura que le corresponde y uniendo esos puntos me queda una línea quebrada. La gráfica se aproxima mejor a una recta desde el 200 al Tareas : Interpolación y extrapolación Página 19 Ejercicios En la gráfica de la derecha se ha representado el número de internautas, en millones, de un determinado país en los últimos años. y x 1
2 Interpolando y extrapolando gráficamente, calcula cuántos había en 200 y cuántos habrá en En 200, como es un año que está entre los años dados en la gráfica, habremos de interpolar. En 200 había 5 millones de internautas: hemos partido en vertical desde el medio del intervalo anual , hasta llegar a la línea roja, para luego ir en horizontal hasta el eje vertical. En 2009, como es un año que NO está entre los años dados en la grafica, habremos de extrapolar. En 2009, habrá 50 millones de internautas: hemos seguido el patrón de la línea roja hasta la vertical de donde se encuentra el año Interpolación lineal Página 140 Ejercicios 4 La población de cierto municipio en el año 2002 fue de habitantes, y en el año 2005 el censo era de a) Calcula mediante interpolación lineal la población que hubo en dicho municipio en el año Habremos de considerar la recta que pasa por los puntos 2002, y 2005, La ecuación de la recta será de la forma: y ax b Dado que conocemos dos puntos de la misma tenemos el siguiente sistemas de dos ecuaciones lineales con dos incógnitas: a b a b, Solution is: a , b Se resuelve aplicando uno de los tres métodos conocidos: reducción, igualación, sustitución. La recta queda y x Finalmente, en el año 2004 será habitantes. b) Calcula por extrapolación lineal la población que hubo en dicho municipio en el año En el año 2007 será habitantes. Tareas : Interpolación cuadrática Página 141 Ejercicios 6 Se tienen tres datos sobre los beneficios de una empresa en tres meses distintos: meses 1º 4º 5º beneficios (miles de euros) 0 0 a) Encuentra la función cuadrática que se ajusta a estos tres datos. La expresión general de una función cuadrática es y ax 2 bx c Al sustituir los datos, nos queda un sistema de tres ecuaciones lineales con tres incógnitas: 0 a 1 2 b 1 c a 4 2 b 4 c 0 a 5 2 b 5 c Este sería el procedimiento general para hacerlo. PERO, vamos a pensar un poquito para nuestro caso actual. Por los datos que nos proporciona la tabla, la ecuación de 2º grado 0 ax 2 bx c tiene por solución 1, 5. Es decir, será de la forma ax 1x 5 0 con a desconocido. 2
3 De todas ellas, nos interesa aquella que cumple que a a1 a a 1 Entonces la función cuadrática de interpolación pedida es y 1x 1x 5 b) Qué beneficios o pérdidas se estiman para el 6º mes? Habremos de extrapolar, dado que el 6º mes no se encuentra entre los meses dados. Será x Se estiman unas pérdidas de 5 mil euros. c) En que mes se obtiene el beneficio máximo? Tenemos una parábola con las ramas hacia abajo, dado que el coeficiente de x 2 es -1. Además, conocemos los puntos de corte de dicha parábola con el eje de las X; 1, 0,5, 0. Por lo tanto, el máximo de la función se alcanza en el vértice de la parábola que está entre los valores 1 y 5: será x Los beneficios máximos son 4 mil euros. Tareas : 7,8 EJERCICIOS FINALES DEL TEMA 9 El número de nulidades, separaciones y divorcios en España durante los últimos años se recogen en la siguiente tabla Representa gráficamene los datos anteriores, eligiendo escalas convenientes para su mejor comprensión.
4 Tareas : En un supermercado hay una oferta de yogures x2. a) Completa la tabla siguiente Nº de yogures precio por unidad b) Representa los datos gráficamente. c) Qué tipo de función ajusta estos datos? Claramente una recta que pase por dos de los puntos elegidos me deja fuera de ella a todos los demás, por lo tanto nos decantamos por la interpolación cuadrática. Pero claro, si unimos los cuatro puntos A,B,D,E con una curva, se nos queda fuera, el punto C. Esto está asociado a una interpolación de grado tres. Se trataría de una cúbica. d) Suponiendo que no hubiera oferta, encuentra una expresión matemática para la función que da el precio de los yogures en función de los que se compran. Fx 0. 60x donde x es el número de yogures que es una función lineal. Tareas :1,12 14 La siguiente gráfica muestra el desplazamiento de un móvil en el eje de abscisas en función del tiempo. 4
5 y a) Qué mágnitud física representa la pendiente de la recta entre 0 y 0 segundos? La pendiente es el cociente entre la ordenada y la abscisa, por lo que en nuestro caso, representa la velocidad, pues el cociente m/s que es una forma de medirla. b) Qué hace el móvil más allá de los 0 segundos? Tiene la velocidad constante, pues siempre va recorriendo el mismo espacio en el mismo tiempo. En los primeros 0 segundos vamos acelerando hasta obtener la velocidad de crucero. Tareas : Se ha observado que la vida media, en minutos, de una bacteria varía en función de la temperatura del medio en el que vive según la siguiente gráfica., Temperatura 6º 9º 12º 15º 16º Vida media Qué vida media estimas para un cultivo de bacterias en un medio a 10ºC? Y un 1ºC? Vamos a hacer una representación gráfica de los datos proporcionados, para tener una idea clara de tipo de interpolación hemos de aplicar. La gráfica queda de la siguiente forma. 00 x Se ve que los cuatro primeros puntos están en línea. Como los temperaturas para las cuales hemos de calcular la vida media están entre los datos 6º y 15º, vamos a utilizar la interpolación lineal usando la recta que pasa por los puntos 6, y 15, La ecuación de una recta conocidos dos de sus puntos viene dada por: y x 6 y x 6 5
6 es la pendiente de la recta 9 Así tendremos que las vidas medias pedidas son: x 10º y minutos 9 x 1º y minutos 9 Tareas : 17,18,19,20 21 Encuentra una parábola que pase por los puntos A 0,1 B 1, 2 C 2, La ecuación de una parábola es y ax 2 bx c Entonces será: A 0,1 1 a 0 2 b 0 c 1 c B 1, 2 2 a 1 2 b 1 c 2 a b c C 2, a 2 2 b 2 c 4a 2b c Es decir, nos queda un sistema de tres ecuaciones lineales con tres incógnitas. 1 c 2 a b c 4a 2b c De la primera, conocemos c para poder sustituirlo en las otras ecuaciones. 2 a b 1 4a 2b 1 a b 4 4a 2b a b 2 2a b Lo podemos resolver por el método de reducción. Ahora, si restamos en columna nos queda: 1 a a 1 Sustituimos este valor de a en una de las dos ecuaciones para hallar el correspondiente de b: 1 b b 4 Finalmente, la ecuación de la parábola es y x 2 4x 1 Tareas : 22,2 24 En un negocio de decoración sólo venden alfombras cuyo largo es el doble que su ancho. Los precios, dependiendo del largo, se muestran en esta tabla. largo (m) precio (euros) a) Calcula por interpolación cuadrática el precio de una alfombra de m de largo. La función a considerar es y ax 2 bx c donde hemos de determinar a,b,c. Por los datos proporcionados se tiene que: 1, a 1 2 b 1 c 120 a b c 2, a 2 2 b 2 c 124 4a 2b c 5, a 5 2 b 5 c a 5b c Reunidas, tenemos el siguiente sistema de tres ecuaciones lineales con tres incógnitas: 120 a b c 124 4a 2b c a 5b c, Solution is: a 1, b 1, c 118 Se resuelve (despejando c en una de las tres ecuaciones para sustituirla en las otras dos; nos quedaría un sistema de dos ecuaciones lineales con dos incógnitas a y b que se resolvería por uno de los tres métodos (reducción, igualación, sustitución)) obteniendo los siguiente 6
7 valores a 1 b 1 c 118 De ahí que la función cuadrática resultante sea y x 2 x 118 Esta última expresión la aplicamos para x euros es el precio de una alfombra de m de largo. b) Calcula por extrapolación cuadrática el precio de una alfombra de 8 m de largo. Aplicamos la expresión cuadrática para x euros es el precio de una alfombra de 8 m de largo. Tareas : 25,26 27 Un agricultor ha comprado una hectárea de terreno y quiere plantar almendros. Sabe que si planta almendros en exceso no podrá regarlos convenientemente y la producción no será abundante. Para decidir cuántos almendros plantar, ha hecho un estudio en los campos vecinos del rendimiento obtenido y ha elaborado la siguiente tabla. nº de almendros kg de almendras a) Un amigo le aconsejó que plantara 50 almendros. Cuántos kilos de almendras esperaría obtener en ese caso? Lo primero que haremos es una representación gráfica, para saber que tipo de interpolación nos interesa Esto nos induce a aplicar una interpolación cuadrática. La función será de la forma y ax 2 bx c donde hay que hallar a,b,c. Para ello tenemos que: 40, a 40 2 b 40 c a 40b c 60, a 60 2 b 60 c a 60b c 90, a 90 2 b 90 c a 90b c Esto da lugar al siguiente sistema de tres ecuaciones lineales con tres incógnitas: a 40b c a 60b c a 90b c, Solution is: a 5, b 700, c 0 Se resuelve de acuerdo con los pasos mencionados en el problema anterior para obtener que y 5x 2 700x Calculamos esta última expresión para x kg de almendras. Hemos interpolado! b) Y si planta solo 20 almendros, Cuál será su producción? Hemos de extrapolar! 7
8 Calculamos la expresión obtenida para x kg de almendras. c) Para qué número de almendros se consigue la máxima producción? Como se trata de una parábola con las ramas hacia abajo, su máximo se alcanza en el vértice. La primera coordenada del vértice es x 2a b La máxima producción se consigue con 70 almendros, que serán: kg de almendras. Tareas : 28,29,1,2,,4 0 La DGT ha hecho un estudio sobre la distancia media que un vehículo recorre al detenerse en función de la velocidad que lleva. velocidad (km/h) distancia de frenado a) Representa estos datos y decide qué tipo de interpolación es la adecuada para este problema. La gráfica queda: Si trazasemos una recta que pasase por los dos primeros puntos, el tercero se me alejaría mucho de la misma. Sin embargo, considerando la recta que pasa por el primero y el tercero, el segundo no queda muy lejos. Nos decidimos por la interpolación lineal. b) Estima la distancia de frenado para un vehículo que circula a 80 km/h Tenemos que la recta que determina el razonamiento del apartado anterior es: A 0, 12 B 90, y x 0 y x 0 Recordamos que m es la pendiente de la recta Ahora interpolamos. Calculamos la abscisa para x 80 y m es la distancia de frenado para una velocidad de 80 km/h. c) Calcula la distancia de frenado para un coche que lleva una velocidad de 150 km/h. Sería extrapolar la recta obtenida para x 150 y m es la distancia de frenado para una velocidad de 80 km/h. 8
ACTIVIDADES INICIALES
Solucionario 7 Interpolación ACTIVIDADES INICIALES 7.I. Determina las ecuaciones de las siguientes rectas, sus puntos de corte con los ejes y represéntalas: a) Pasa por A( 3, 3), con pendiente. b) Pasa
- El coeficiente de x, la m, se llama pendiente de la recta y nos indica la inclinación de la recta.
º ESO C MATEMÁTICAS ACADÉMICAS UNIDAD.- FUNCIONES LINEALES CUADRÁTICAS..- FUNCIONES CUA GRÁFICA ES UNA RECTA Funciones lineales Son aquellas cuya fórmula es del tipo y = mx, siendo m 0. - El coeficiente
Propiedad importante: Si una recta pasa por los puntos ( a, UNIDAD 7.- Funciones polinómicas (tema 7 del libro)
(tema 7 del libro) 1. FUNCIÓNES POLINÓMICAS DE PRIMER GRADO Son funciones de la forma mx n ó y mx n donde: m : se llama pendiente de la recta n : se llama ordenada en el origen. La recta pasa por el punto
EXAMEN DE INTERPOLACIÓN
EXAMEN DE INTERPOLACIÓN Se recomienda: a) Antes de hacer algo, leer todo el examen. b) Resolver antes las preguntas que se te den mejor. c) Responde a cada parte del examen en una hoja distinta. d) Es
Funciones lineales y cuadráticas
2 CLAVES PARA EMPEZAR a) 2x 8 2 8 2 2x x 3 b) 6x 8 20 6x 20 8 x 2 c) 4x 6 5x 2 4x 5x 2 6 x 2 d) 3 8 7x 3 8 7x x 3 a) c) b) d) VIDA COTIDIANA Si no tenemos en cuenta la cuota fija, una llamada de 25 segundos
Tema 5 Inecuaciones y sistemas de inecuaciones
Tema Inecuaciones y sistemas de inecuaciones. Inecuaciones lineales PÁGINA 9 EJERCICIOS. Comprueba en cada caso si el valor indicado forma parte de la solución de la inecuación. b de la inecuación Sustituimos
GUIA DE ESTUDIO FUNCIONES CUADRÁTICAS. Se llama FUNCION POLINOMICA DE SEGUNDO GRADO o FUNCION CUADRÁTICA a la función:
GUIA DE ESTUDIO FUNCIONES CUADRÁTICAS Se llama FUNCION POLINOMICA DE SEGUNDO GRADO o FUNCION CUADRÁTICA a la función: f: R R f(x) = ax + bx + c a 0 y a, b, c R El término ax se denomina término cuadrático,
unicoos Funciones lineales Objetivos 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica
10 Funciones lineales Objetivos En esta lección aprenderás a: Identificar problemas en los que intervienen magnitudes directamente proporcionales. Calcular la función que relaciona a esas magnitudes a
5.1 DISTINTOS TIPOS DE FUNCIONES LINEALES
Tema 5 : Funciones elementales - Matemáticas B 4º E.S.O. 1 TEMA 5 FUNCIONES ELEMENTALES 5.1 DISTINTOS TIPOS DE FUNCIONES LINEALES 3º 5.1.1 - FUNCIONES DE PROPORCIONALIDAD: y = mx Las funciones de proporcionalidad
Matemáticas Aplicadas a las Ciencias Sociales Rosario Ros. 1º Bachillerato A y B. IES Luis Manzanares
TEMA 7 Interpolación lineal l y cuadrática Matemáticas Aplicadas a las Ciencias Sociales Rosario Ros. 1º Bachillerato A y B. IES Luis Manzanares 1 Interpolación LINEAL Una función puede venir dada de varias
Las únicas funciones cuyas gráficas son rectas son las siguientes:
Funciones, 3º ESO () RECTAS Las únicas funciones cuyas gráficas son rectas son las siguientes: - Lineales, de fórmula y mx. Las gráficas de estas funciones pasan por el origen de coordenadas. m es la pendiente
FUNCIONES DE PROPORCIONALIDAD: y = mx. Su pendiente es 0. La recta y = 0 coincide con el eje
Funciones elementales - Matemáticas B 4º E.S.O. FUNCIONES ELEMENTALES DISTINTOS TIPOS DE FUNCIONES LINEALES FUNCIONES DE PROPORCIONALIDAD: y = mx FUNCIÓN CONSTANTE: y = n Las funciones de proporcionalidad
Nombre: Representa las gráficas de ambas funciones en los mismos ejes de coordenadas y haz una interpretación gráfica de la solución del sistema.
IES ATENEA. 1 er CONTROL. MATEMÁTICAS B. 4º ESO. Nombre: Evaluación: Segunda. Fecha: de febrero de 011 NOTA Ejercicio nº 1.- Calcula la ecuación de la recta que pasa por los puntos A (, 6) y B (,3). 1
FUNCIÓN LINEAL FUNCIÓN CONSTANTE - RELACIÓN LINEAL
FUNCIÓN LINEAL FUNCIÓN CONSTANTE - RELACIÓN LINEAL ) a) Determine pendiente, ordenada al origen y abscisa al origen, si es posible. b) Grafique. -) a) y = ( x ) aplicando propiedad distributiva y= x se
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,
Funciones elementales: polinómica, racional y con radicales
8 Funciones elementales: polinómica, racional y con radicales LECTURA INICIAL Las parábolas y las hipérbolas son elementos muy utilizados en las representaciones artísticas o arquitectónicas, para medir
Tema 4: Ecuaciones y sistemas de ecuaciones.
Tema : Ecuaciones y sistemas de ecuaciones.. Ecuaciones de º grado Ejemplo Resuelve las siguientes ecuaciones de º grado:. 0 x x a Ecuación de º grado completa con La fórmula es x b b ac a 9 9 0 b c 0
Ejercicios de funciones
Matemáticas 4º ESO. Ejercicios Tema 0. Funciones. Pág /6. Sean las funciones: Ejercicios de funciones Calcular:. Dadas las funciones: Calcular: Probar que: Probar que: 3. Dadas las funciones: Calcular:
CM2 ENRICH CREUS CARNICERO Nivel 2
CM ENRICH CREUS CARNICERO Nivel Unidad Cónicas Conocimientos previos CONOCIMIENTOS PREVIOS PARA CÓNICAS Antes de comenzar con el Trabajo Práctico, necesitás repasar algunas cuestiones como: ) graficar
III) INTERPOLACIÓN INTRODUCCIÓN
III) INTERPOLACIÓN INTRODUCCIÓN En numerosos fenómenos de la naturaleza observamos una cierta regularidad en la forma de producirse, esto nos permite sacar conclusiones de la marcha de un fenómeno en situaciones
FUNCIONES CUADRÁTICAS
FUNCIONES CUADRÁTICAS A la función polinómica de segundo grado f(x) = ax 2 + bx + c, siendo a, b, c, números reales y a 0 se la denomina función cuadrática. Dominio de una función cuadrática es el conjunto
Bloque 3. Análisis. 2. Tipos de funciones
Bloque 3. Análisis 2. Tipos de funciones 1. Función lineal Es una función polinómica de primer grado y tiene una ecuación del tipo: y = mx. Su gráfica es una línea recta que pasa por el origen de coordenadas,
TEMA 6 SISTEMAS DE ECUACIONES
TEMA 6 SISTEMAS DE ECUACIONES 6.1 Ecuaciones con dos incógnitas. Soluciones. Actividades página 11 1. Comprueba si cada uno de los pares de valores siguientes es solución de la ecuación 4x y 1 c) x 0,
( ) ( ) -3. Función Cuadrática La función cuadrática es una función real de variable real f : R R, es decir,
Función Cuadrática La función cuadrática es una función real de variable real f : R R, es decir, f : x y Definida así: f ( x) = ax + bx + c donde a, b c R.(Por un Polinomio de º grado). Su gráfica es una
Nombre: 3 (x + 2) 5 (y + 1) = 9
IES ATENEA. 1 er CONTROL. MATEMÁTICAS. º ESO. GRUPO: A Nombre: Evaluación: Tercera. Fecha: 4 de mayo de 010 Ejercicio nº 1.- Resuelve el siguiente sistema de ecuaciones: (x + ) 5 (y + 1) = 9 + y 4x + =
Nombre: y 2 (x 3y) + x = 9
IES ATENEA. 1 er CONTROL. MATEMÁTICAS. 3º ESO. GRUPO: D Nombre: Evaluación: Tercera. Fecha: 21 de mayo de 2010 NOTA Ejercicio nº 1.- Resuelve el siguiente sistema de ecuaciones por el método que consideres
MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto.
MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA ) Determinar k y h para que las rectas kxy-h=0, 4xky-=0, se corten en un punto ) La recta r: 5 x y 9 = 0, corta a la recta y = x en el punto A Obtener la ecuación
EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES
EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES 1 er PARCIAL 1. Obtén los valores reales que cumplen las siguientes condiciones: x+ x 3 5 x 1/ =1. Opera y expresa el resultado en notación científic (5,
Funciones polinómicas, racionales y exponenciales
008 _ 06-08.qd 9/7/08 9:07 Página 6 Funciones polinómicas, racionales eponenciales INTRODUCCIÓN Uno de los objetivos de esta unidad es que los alumnos aprendan a hallar la ecuación de una recta dados dos
CM2 ENRICH CREUS CARNICERO Nivel 2
CM ENRICH CREUS CARNICERO Nivel Unidad Cónicas Conocimientos previos CONOCIMIENTOS PREVIOS PARA CÓNICAS Antes de comenzar con el Trabajo Práctico N, necesitás repasar algunas cuestiones como: ) graficar
Funciones. Rectas y parábolas
0 Funciones. Rectas y parábolas. Funciones Dado el rectángulo de la figura, calcula: el perímetro. el área. P I E N S A C A L C U L A Perímetro = ( + ) = 6 Área = = Indica cuál de las siguientes gráficas
MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA
MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA 1) La recta r 1, tiene ordenada al origen 4 y forma con los ejes coordenados en el segundo cuadrante, un triángulo de área 16. Determinar la distancia del punto
La recta en el plano.
1 CONOCIMIENTOS PREVIOS. 1 La recta en el plano. 1. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Intervalos y sus definiciones básicas. Representación
f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f.
TEMA 5: FUNCIONES ELEMENTALES. 5. Función real de variable real. 5. Operaciones con funciones: composición e inversa. 5.3 Construcción de gráficas de funciones elementales y sus transformaciones. 5.4 Interpolación
TEMA 0: REPASO DE FUNCIONES
TEMA 0: REPASO DE FUNCIONES Recordamos que una función real de variable real es una aplicación de un subconjunto de los números reales A en el conjunto de los números reales de forma que a cada elemento
Tema 4: Funciones. Límites de funciones
Tema 4: Funciones. Límites de funciones 1. Concepto de función Una aplicación entre dos conjuntos A y B es una transformación que asocia a cada elemento del conjunto A un único elemento del conjunto B.
No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano.
FUNCIONES GRAFICAS No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. INTÉRVALOS Un intervalo es el conjunto de todos los números reales entre dos números
que asocia a cada número entero su triple menos dos:
Dada la función f que asocia a cada número entero su triple menos dos: a) Escribe la epresión que nos proporciona f 0,, b) Calcula la imagen para ) Dada la siguiente función : ), ) y 0) a) Calcula b) Determina
Función cuadrática. Ecuación de segundo grado completa
Función cuadrática Una función cuadrática es aquella que puede escribirse como una ecuación de la forma: f(x) = ax 2 + bx + c donde a, b y c (llamados términos) son números reales cualesquiera y a es distinto
Unidad 6: Funciones reales de variable real.
Funciones reales de variable real 1 Unidad 6: Funciones reales de variable real. 1.- Concepto de función. Expresión analítica de una función. Variables x e y Existe relación entre x e y No hay relación
En todas las representaciones el valor de la constante a nos indica para donde abre la parábola: abre hacia arriba (a > 0) o hacia abajo (a < 0):
COLEGIO COLOMBO BRITANICO DPTO DE MATEMATICAS TALLER DE FUNCION CUADRATICA Una función cuadrática se puede representar de tres formas diferentes, equivalentes entre si, cada una de las cuales suministra
Qué estudiaremos? Tema 11: Funciones cuadráticas y de proporcionalidad inversa. Tema 12: La función exponencial Grupo 4. Opción A. Funciones lineales
Tema 11: Funciones cuadráticas y de proporcionalidad inversa. Tema 12: La función exponencial Grupo 4. Opción A Qué estudiaremos? Repasamos las funciones lineales. La función cuadrática. Estudio general
13 FUNCIONES LINEALES Y CUADRÁTICAS
3 FUNCINES LINEALES CUADRÁTICAS EJERCICIS PARA ENTRENARSE Definición y caracterización de una función lineal 3.8 Una función viene dada por la siguiente tabla. x 0 3 y 0 3 6 9 Expresa la función mediante
CAPÍTULO 2. Las mediciones en la física
CAPÍTULO 2. Las mediciones en la física 2.13 Introducción a la graficación de resultados En la ciencia, la tecnología y en muchas otras actividades con frecuencia se prefiere analizar los datos por medio
Inecuaciones: Actividades de recuperación.
Inecuaciones: Actividades de recuperación. 1.- Escribe la inecuación que corresponde a los siguientes enunciados: a) El perímetro de un triángulo equilátero es menor que 4. (x = lado del triángulo) b)
TEMA 7. FUNCIONES ELEMENTALES
TEMA 7. FUNCIONES ELEMENTALES 8.1. Funciones cuya gráfica es una recta. - Función constante. - Función de proporcionalidad. - Función lineal. - Pendiente. 8.2. Función cuadrática. - Representación gráfica
1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS
1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1 1.- LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de una función f por la izquierda de un punto x = a. Es el valor al
CENTRO REGIONAL UNIVERSITARIO BARILOCHE TALLER DE MATEMATICA INGRESO 2016 LIC. ENFERMERÍA PRACTICO UNIDAD 3
PRACTICO UNIDAD 3 Nota: Los ejercicios propuestos en los prácticos deben servirle para afianzar y practicar temas. Si nota que algunos ejercicios ya los sabe hacer bien, continúe con otros que le impliquen
Tema 1. Racionales 2 2'4 0'1 2'1 1'15 3'1 1' Representa en la recta racional las siguientes fracciones:
Tema 1. Racionales 1.- Representa en la recta racional las siguientes fracciones: -1 y 4 b) - y 1. Calcula el valor de las siguientes expresiones: 7 5 4 1 4 b ) : c ) d) 8 4 1 5 5 : : 10 7 9 7 5 6 1 6
I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS
Eamen Global Análisis Matemáticas II Curso 010-011 I E S ATENEA SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL PRIMERA EVALUACIÓN ANÁLISIS Curso 010-011 1-I-011 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES
Área entre curvas. Ejercicios resueltos. 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x.
Área entre curvas Ejercicios resueltos 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x. En primer lugar hallamos los puntos de corte de las dos funciones para conocer los límites
MATEMÁTICAS III CICLO COMÚN III PARCIAL UNIDDA DIDÁCTICA #3 FUNCIÓN CUADRÁTICA RESOLUCIÓN DE PROBLEMAS APLICANDO ECUACIONES CUADRÁTICAS
UNIDDA DIDÁCTICA #3 CONTENIDO FUNCIÓN CUADRÁTICA RESOLUCIÓN DE PROBLEMAS APLICANDO ECUACIONES CUADRÁTICAS OBJETIVOS Conocer la definición de la función cuadrática. Estudiar las propiedades de las funciones
C.P.U. MATEMATICA Trabajo Práctico 2 FUNCIONES. FUNCIONES LINEAL, MÓDULO Y CUADRÁTICA. COMPOSICIÓN DE FUNCIONES Y FUNCIÓN INVERSA.
UNSAM º cuatrimestre 008 I. FUNCIONES C.P.U. MATEMATICA Trabajo Práctico FUNCIONES. FUNCIONES LINEAL, MÓDULO Y CUADRÁTICA. COMPOSICIÓN DE FUNCIONES Y FUNCIÓN INVERSA.. De acuerdo a la siguiente descripción:
Las funciones son relaciones entre dos o más variables expresadas en una ecuación algebraica.
FUNCIONES Y GRÁFICAS Las funciones son relaciones entre dos o más variables epresadas en una ecuación algebraica. or ejemplo, la epresión relaciona la variable con la variable mediante una regla de correspondencia
Completa esta parábola y señala sus elementos y sus propiedades. 1 X. El dominio de la función es todos los números reales:.
Representa la función que relaciona el área de un triángulo rectángulo isósceles la longitud del cateto. a) Cuál es la variable dependiente? b) la variable independiente? = a) La variable independiente
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 8 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio,
TRABAJO DE MATEMÁTICAS. PENDIENTES DE 3º ESO. (2ª parte)
TRABAJO DE MATEMÁTICAS PENDIENTES DE 3º ESO. (2ª parte) 1 OPERACIONES CON POLINOMIOS 1.-) Dados los polinomios: P(x) = 3x 2 + 3x - 1, Q(x) = 3x 2 + 2x + 1 y R(x) = -x 3 + 2x 2 +1. Calcular: a) P - Q R
5Soluciones a los ejercicios y problemas PÁGINA 116
Soluciones a los ejercicios y problemas PÁGINA 6 Pág. P RACTICA Funciones lineales Asocia a cada función su ecuación. Di, en cada caso, cuál es su pendiente. a) y + = 0 b) y = c) y = 6 d) y = b) y = 6
Tema 5: Funciones. Límites de funciones
Tema 5: Funciones. Límites de funciones 1. Concepto de función Una aplicación entre dos conjuntos y es una transformación que asocia a cada elemento del conjunto un único elemento del conjunto. Una función
MATEMÁTICAS I. Soluciones
EXAMEN: 3ª evaluación MATEMÁTICAS I Soluciones CURSO: 1 BCT CEED 1. Llamamos inflación a la pérdida del valor adquisitivo del dinero; es decir, si un artículo que costó 100, al cabo de un año cuesta 103,
3 Polinomios y funciones racionales
Programa Inmersión, Verano 06 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 300 y MATE 303 Clase #8: jueves, 3 de junio de 06. 3 Polinomios y funciones racionales 3. Funciones
3 Polinomios y funciones racionales
Programa Inmersión, Verano 07 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 300 y MATE 303 Clase #8: miércoles, 3 de agosto de 07. 3 Polinomios y funciones racionales 3.
Solución: Para calcular la pendiente, despejamos la y: La ordenada en el origen es n. 3 Puntos de corte con los ejes: 1 Eje Y 0, 3
EJERCICIO. Halla la pendiente, la ordenada en el origen y los puntos de corte con los ejes de coordenadas de la recta 6y 0. Represéntala gráficamente. Para calcular la pendiente, despejamos la y: 6y 0
Apuntes de Funciones
Apuntes de Funciones El concepto de función es un elemento fundamental dentro del análisis matemático, así como en sus aplicaciones. Esta idea se introdujo con el objetivo de matematizar la transformación
Si se pueden obtener las imágenes de x por simple sustitución.
TEMA 0: REPASO DE FUNCIONES FUNCIONES: TIPOS DE FUNCIONES Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción,
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva
Funciones algebraicas.
UNIDAD 9: UTILICEMOS LAS FUNCIONES ALGEBRAICAS. Funciones algebraicas..1 Funciones polinomiales. Estudiaremos las funciones siguientes: constante, lineal, cuadrática y cúbica. Función constante. Las funciones
Guía de Matemática Segundo Medio
Guía de Matemática Segundo Medio Aprendizaje Esperado:. Analizan la ecuación de la recta; establecen la dependencia entre las variables y la expresan gráfica y algebraicamente.. Identifican e interpretan
Tema 9: Funciones II. Funciones Elementales.
Tema 9: Funciones II. Funciones Elementales. Finalizamos con este tema el bloque de análisis, estudiando los principales tipos de funciones con sus respectivas características. Veremos también una ligera
TEMA 7 SISTEMAS DE ECUACIONES
TEMA 7 SISTEMAS DE ECUACIONES 7.1 Ecuaciones lineales con dos incógnitas Actividades página 111 1. Obtén dos soluciones de cada ecuación y representa las rectas correspondientes. b) x y Esto se lee como
Una función dada gráficamente proporciona una visión de conjunto de la evolución de una variable al cambiar la otra.
FUNCION NUMERICA: 5º Año-Economía- El término función proviene del latín fucto que significa acto de realizar y fue utilizado por Leibnitz en el año 1694, referido a curvas. Un siglo más tarde Euler veía
EJERCICIOS VERANO. Matemáticas Bachiller 1ºCCSS
EJERCICIOS VERANO Matemáticas Bachiller 1ºCCSS 1ª SESIÓN REPASO Semana:... 2. Representa las siguientes funciones, sabiendo que: a) Tiene pendiente 3 y ordenada en el origen 1. b) Tiene por pendiente 4
Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA
Matemática - º Cuatrimestre Año 0 FUNCIÓN CUADRÁTICA Hemos definido anteriormente la función lineal como una función f: R R de la forma f()a+b con a R y b R, que se representa en el plano mediante una
Álgebra y Trigonometría Clase 2 Ecuaciones, desigualdades y Funciones
Álgebra y Trigonometría Clase 2 Ecuaciones, desigualdades y Funciones CNM-108 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción
MATEMÁTICAS 2º DE ESO
MATEMÁTICAS 2º DE ESO LOE TEMA VII: FUNCIONES Y GRÁFICAS Coordenadas cartesianas. Concepto de función. Tabla y ecuación. Representación gráfica de una función. Estudio gráfico de una función. o Continuidad
Solución: Las rectas paralelas a estas tienen la misma pendiente, es decir 2; por tanto la ecuación es:
Representa las rectas y = x + e y = x y calcula el punto que tienen en común El punto que tienen en común estas dos rectas se obtiene resolviendo el siguiente sistema de ecuaciones: y = x + y = x 3 x =,
FUNCIÓN. La Respuesta correcta es D
FUNCIONES FUNCIÓN La Respuesta correcta es D FUNCIÓN Función Continua: Es aquella en la que su gráfica se puede recorrer en forma ininterrumpida en toda su extensión. FUNCIÓN Función Discontinua: Es aquella
CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen
CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este
MÓDULO 6: REPRESENTACIÓN GRÁFICA
MÓDULO 6: REPRESENTACIÓN GRÁFICA Física Plano cartesiano. Pares ordenados. Variable dependiente e independiente. Tablas de valores. Gráficas. Sentido físico. Gráficas por tramos. Cambios de variable. Función
Esta es la gráfica de la función lineal y = 3x + 2 Vemos que m = 3 y b = 2 (de la forma y = mx + b)
FUNCIÓN LINEAL Una función lineal es una función cuyo dominio son todos los números reales, cuyo codominio también todos los números reales, y cuya expresión analítica es un polinomio de primer grado.
Álgebra de Funciones
Funciones polinómicas Álgebra de Funciones Guía 5: Función cuadrática y racional. Profesores: Ximena Cánovas & César Fernández Un polinomio de grado n es una función f: R R tal que : n n1 n 1 f ( x) an
Revisora: María Molero
57 Capítulo 5: INECUACIONES. Matemáticas 4ºB ESO 1. INTERVALOS 1.1. Tipos de intervalos Intervalo abierto: I = (a, b) = {x a < x < b}. Intervalo cerrado: I = [a, b] = {x a x b}. Intervalo semiabierto por
Propiedad importante: Si una recta pasa por los puntos ( a, 1. FUNCIÓNES POLINÓMICAS DE PRIMER GRADO
1. FUNCIÓNES POLINÓMICAS DE PRIMER GRADO Son funciones de la forma mx n ó y mx n donde: m : se llama pendiente de la recta n : se llama ordenada en el origen. La recta pasa por el punto 0,n Ya sabemos
MATEMÁTICAS 1º BACHILLERATO Curso EJERCICIOS RESUELTOS DE INECUACIONES
MATEMÁTICAS 1º BACHILLERATO Curso 9-1 EJERCICIOS RESUELTOS DE INECUACIONES EJERCICIOS RESUELTOS DE INECUACIONES A. Inecuaciones lineales con una incógnita x x1 x3 > 1 3 4 x x1 x3 4( x ) 3( x1) 6( x3) 1
el blog de mate de aida 4º ESO: apuntes de funciones elementales pág. 1
el blog de mate de aida 4º ESO: apuntes de funciones elementales pág. 1 FUNCIONES LINEALES 1.- FUNCIÓN CONSTANTE Una función constante es aquella en la cual el valor de la variable dependiente siempre
TEMA 3 SISTEMAS DE ECUACIONES LINEALES
TEM SISTEMS DE ECUCIONES LINELES. Sistemas de ecuaciones lineales. Epresión matricial. Ejemplo Epresa en forma matricial los siguientes sistemas de ecuaciones lineales: 9 5, Solution is: 9, 9 Se trata
GIMNASIO VIRTUAL SAN FRANCISCO JAVIER Valores y Tecnología para la Formación Integral del Ser Humano UNIDAD I FUNCIONES
UNIDAD I FUNCIONES Una función es una correspondencia entre dos conjuntos, que asocia a cada elemento del primer conjunto exactamente un elemento del otro conjunto. Una función f definida entre dos conjuntos
1. a) Hallar la ecuación de una función lineal sabiendo que pasa por el punto P(1,7) b) Ídem para P(-1,3) c) Ídem para P(2,5)
FUNCIÓN DE PROPORCIONALIDAD DIRECTA (y=mx):. a) Hallar la ecuación de una función lineal sabiendo que pasa por el punto P(,7) b) Ídem para P(-,) c) Ídem para P(,5). Si se sabe que una función lineal pasa
EJERCICIOS RESUELTOS TEMA 11 Y 12. FUNCIONES. FUNCIÓN LINEAL Y CUADRÁTICA. Apellidos y Nombre:.Curso: 3º E.S.O. Grupo:.
EJERCICIS RESUELTS TEMA 11 1. FUNCINES. FUNCIÓN LINEAL CUADRÁTICA Apellidos y Nombre:.Curso: º E.S.. Grupo:. 1 El coste del recibo del teléfono depende de los minutos hablados y una cuota fija de 1 euros.
PÁGINA Representa: a) y = 2x. b) y = 2 3 x. c) y = 1 4 x. d) y = 7 3 x. 2 Representa: a) y = 3 b) y = 2 c) y = 0. d) y = 5
Soluciones a las actividades de cada epígrafe PÁGINA 6 Pág. Representa: a) y = x y = x y = x 3 b) y = 3 x c) y = x y = x d) y = 7 3 x 7 y = x 3 Representa: a) y = 3 b) y = c) y = 0 y = 3 y = 0 y = d) y
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
5 Pág. Página 5 PRACTICA Funciones cuadráticas Representa las siguientes funciones haciendo, en cada caso, una tabla de valores como esta, y di cuál es el vértice de cada parábola: y a) y = + b) y = c)
OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo que te llevará al final, serán tus pasos, no el camino. Fito y los Fitipaldis
MATEMÁTICAS º BACHILLERATO B 9--4 Lo que te llevará al final, serán tus pasos, no el camino Análisis Fito y los Fitipaldis OPCIÓN A.- a) Hallar las dimensiones que hacen mínimo el coste de un contenedor
Ejercicios de Funciones: derivadas y derivabilidad
Matemáticas 2ºBach CNyT. Ejercicios Funciones: Derivadas, derivabilidad. Pág 1/15 Ejercicios de Funciones: derivadas y derivabilidad 1. Calcular las derivadas en los puntos que se indica: 1., en x = 5.
FUNCIONES Y SUS GRÁFICAS. APLICACIONES GRADO: 11º AREA: MATEMÁTICAS.
Gestores de Calidad 05 INSTITUCIÓN EDUCATIVA DEPARTAMENTAL RURAL EL ALTICO MUNICIPIO DE COGUA ESTRUCTURA CURRICULAR TECNICO PROFESIONAL EN AGROINDUSTRIA En equipo trabajando, personas mejorando FUNCIONES
IES Francisco Ayala Modelo 2 (Septiembre) de 2008 Soluciones Germán Jesús Rubio Luna. Opción A. x - bx - 4 si x > 2
IES Francisco Ayala Modelo (Septiembre) de 008 Soluciones Germán Jesús Rubio Luna Opción A Ejercicio n 1 de la opción A de septiembre de 008 ax + x si x Sea f: R R la función definida por: f(x). x - bx
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
0 Pág. Página PRACTICA Pendiente de una recta Desde el punto A, nos movemos unidades a la derecha y unidades hacia arriba. Así llegamos al punto B. Cuál es la pendiente de la recta AB? Cuando x avanza,
Ecuaciones e inecuaciones. Sistemas de ecuaciones e inecuaciones
de ecuaciones e inecuaciones Álvarez S., Caballero M.V. y Sánchez M. a M. [email protected], [email protected], [email protected] 1 Índice 1. Definiciones 3 2. Herramientas 5 2.1. Factorización de polinomios: Regla
Ecuaciones Simultáneas de primer grado. I. Eliminación por igualación. P r o c e d i m i e n t o
Ecuaciones Simultáneas de primer grado I. Eliminación por igualación P r o c e d i m i e n t o 1. Se ordenan (alfabéticamente) y nombran las ecuaciones 2. Se despeja una de las incógnitas en ambas ecuaciones.
