EXAMEN DE INTERPOLACIÓN
|
|
|
- Raúl Navarro Martínez
- hace 9 años
- Vistas:
Transcripción
1 EXAMEN DE INTERPOLACIÓN Se recomienda: a) Antes de hacer algo, leer todo el examen. b) Resolver antes las preguntas que se te den mejor. c) Responde a cada parte del examen en una hoja distinta. d) Es una hoja de examen por las dos caras sobre la que no se escribe nada. e) Recuerda mostrar todas las operaciones para conseguir la puntuación completa de cada apartado. 1 El número de botellas de aceite de girasol vendidas en un supermercado ha variado según su precio. Precio (céntimos) Unidades (rep1 p) Se pide: 1.1 Halla la función de interpolación cuadrática. (1. p) 1. Extrapola las unidades que se venderían si el precio fuese de 96 céntimos. (0. p) 1.3 Interpola las unidades que se venderián si el precio fuese de 9 céntimos. (0. p) 1.4 Interpola el precio de cada unidad si las unidades vendidas han sido (0.9 p)(# 4. p) Dada la siguiente sucesión: n S(n) (rep0.7 p) Se pide:.1 Obtén la función de interpolación que representa el término general S(n), sabiendo que es una función lineal. (0.6 p). Por interpolación obtén el término primero de la sucesión. (0.4 p).3 Por extrapolación obtén el término décimo de la sucesión. (0.4 p)(#. p) 3 En la tabla siguiente se recogen los pesos ideales en función de las estaturas: x: estatura en cm y: pesos en kg 64 7 (rep0. p;rec0.6 p) 3.1 Calcula por interpolación lineal el peso para una estatura de 16 cm. (0.4 p) 3. Calcula por extrapolación lineal el peso para una estatura de 180 cm. (0.4 p)(# p) 4 Una función está definida mediante la siguiente tabla de valores: x 8 11 y Representa gráficamente los puntos de la tabla y responde: (0. p) 4.1 Crees que existe una función que relacione las cuatro parejas de valores? (0.4 p) 4. Qué tipo de función lo hace? (0.4 p)(# 1.3 p) fjsp curso 01/13 bhcs1 Examen de Interpolación 1
2 SOLUCIÓN 1 Precio (céntimos) Unidades (rep1 p) La función será de la forma y ax bc c que al sustituir los valores nos quedará: 000 a 91 b 91 c a 91b c 3000 a 89 b 89 c a 89b c 100 a 9 b 9 c a 9b c Es decir, tenemos un sistema de tres ecuaciones lineales con tres incógnitas: a 91b c a 89b c a 9b c Despejamos c en la primera ecuación y lo sustituimos en las otras dos: c a 91b a 89b a 91b a 9b a 91b a b a 4b a 1, b 11 70, Solution is: Tenemos un sistema de dos ecuaciones lineales con dos incógnitas que resolvemos por reducción: multiplicamos por la primera ecuación y sumamos en columna; a b a 4b a 4b a 4b 100 4a a Sustituimos este valor de a, para hallar el correspondiente de b: b b b Ahora sustituimos los valores de a y b para hallar c: c Entonces la función queda: y 6. x 1170x p fjsp curso 01/13 bhcs1 Examen de Interpolación
3 1. Sería evaluar la función anterior cuando x 96 y unidades 0. p 1.3 Sería evaluar la función obtenida para x 9 y unidades 0. p 1.4 Sería sustituir en la función obtenida y por 1800 para hallar el correspondiente valor de x: x 1170x x 1170x x 1170x 1887 Ecuación de º grado completa con Resolvemos aplicando la fórmula c b 1170 a 6. x b b 4ac a 6. 1 No tiene solución pues no hay raíces cuadradas reales de números negativos. Sin embargo, a partir de la gráfica, mirando en el eje vertical el valor 1800, y desplazándonos desde el hasta la curva y bajando al eje horizontal, acabaríamos cerca de 9, y ese sería el valor a considerar. Observa que se produce una discrepancia con el apartado anterior; esto se debe a que estamos hablando de aproximaciones. 0.9 p n S(n) (rep0.7 p) Tenemos la siguiente representación gráfica:.1 Por la representación gráfica, la mejor recta de interpolación es la que pasa por los cuatro puntos, que queda determninada unívocamente con dos de ellos; tomamos, 7 y, 13 Una recta es de la forma y ax b que al sustituir los dos puntos anteriores da lugar a:, 7 7 a b, a b Nos queda un sistema de dos ecuaciones lineales con dos incógnitas 13 a b 7 a b Lo resolvemos por el método de reducción, restando en columna: 6 3a a 6 3 Sustituimos este valor de a en cualquiera de las dos ecuaciones para hallar b: 13 b b Entonces la recta es y x p. El primer término será calcular el valor de y para x 1 y p.3 El décimo término será calcular el valor de y para x 10 y p fjsp curso 01/13 bhcs1 Examen de Interpolación 3
4 3 x: estatura en cm y: pesos en kg 64 7 (rep0. p) Una recta es de la forma y ax b que al sustituir los dos puntos anteriores da lugar a: 160, a b 170, a b a b Nos queda un sistema de dos ecuaciones lineales con dos incógnitas 7 170a b Lo resolvemos por el método de reducción, restando en columna: 8 10a a Sustituimos este valor de a en cualquiera de las dos ecuaciones para hallar b: b b Entonces la recta es y 4 x p 3.1 Será hallar el valor de y para x 16 y 4 3. Será hallar el valor de y para x 180 y kg 0.4 p kg 0.4 p fjsp curso 01/13 bhcs1 Examen de Interpolación 4
5 4 x 8 11 y (0. p) 4.1 Si 0.4 p 4. Una recta, pues los cuatro puntos están casi alineados 0.4 p fjsp curso 01/13 bhcs1 Examen de Interpolación
Examen de sistemas de dos ecuaciones lineales, sucesiones y progresiones.
Examen de sistemas de dos ecuaciones lineales, sucesiones y progresiones. Se recomienda: a) Antes de hacer algo, leer todo el examen. b) Resolver antes las preguntas que se te den mejor. c) Responde a
EXAMEN DE PROGRAMACIÓN LINEAL
EXAMEN DE PROGRAMACIÓN LINEAL Se recomienda: a) Antes de hacer algo, leer todo el eamen. b) Resolver antes las preguntas que se te den mejor. c) Responde a cada parte del eamen en una hoja distinta. d)
EXAMEN DE INECUACIONES Y SUS SISTEMAS
EXAMEN DE INECUACIONES Y SUS SISTEMAS Se recomienda: a) Antes de hacer algo, leer todo el examen. b) Resolver antes las preguntas que se te den mejor. c) Responde a cada parte del examen en una hoja distinta.
EXAMEN DE SISTEMAS DE ECUACIONES LINEALES Y NO LINEALES
EXAMEN DE SISTEMAS DE ECUACIONES LINEALES Y NO LINEALES Se recomienda: a) Antes de hacer algo, lee todo el examen. b) Resuelve antes las preguntas que se te den mejor. c) Responde a cada parte del examen
TEMA 7 SISTEMAS DE ECUACIONES
TEMA 7 SISTEMAS DE ECUACIONES 7.1 Ecuaciones lineales con dos incógnitas Actividades página 111 1. Obtén dos soluciones de cada ecuación y representa las rectas correspondientes. b) x y Esto se lee como
EXAMEN DE LÍMITES Y CONTINUIDAD
EXAMEN DE LÍMITES Y CONTINUIDAD Se recomienda: a) Antes de hacer algo, leer todo el eamen. b) Resolver antes las preguntas que se te den mejor. c) Responde a cada parte del eamen en una hoja distinta.
TRABAJO DE MATEMÁTICAS. PENDIENTES DE 3º ESO. (2ª parte)
TRABAJO DE MATEMÁTICAS PENDIENTES DE 3º ESO. (2ª parte) 1 OPERACIONES CON POLINOMIOS 1.-) Dados los polinomios: P(x) = 3x 2 + 3x - 1, Q(x) = 3x 2 + 2x + 1 y R(x) = -x 3 + 2x 2 +1. Calcular: a) P - Q R
TEMA 7 INTERPOLACIÓN
7.1 Funciones definidas por tablas TEMA 7 INTERPOLACIÓN Página 18 Ejercicios 1. Se tienen los siguientes datos sobre la evolución del índice de precios al consumo (IPC) en los últimos años. año 2001 2002
TEMA 6 SISTEMAS DE ECUACIONES
TEMA 6 SISTEMAS DE ECUACIONES 6.1 Ecuaciones con dos incógnitas. Soluciones. Actividades página 11 1. Comprueba si cada uno de los pares de valores siguientes es solución de la ecuación 4x y 1 c) x 0,
EXAMEN DE APLICACIONES DE LAS DERIVADAS
EXAMEN DE APLICACIONES DE LAS DERIVADAS Se recomienda: a) Antes de hacer algo, leer todo el examen. b) Resolver antes las preguntas que se te den mejor. c) Responde a cada parte del examen en una hoja
EXAMEN DE SEPTIEMBRE DE MATEMÁTICAS 3º E.S.O.
EXAMEN DE SEPTIEMBRE DE MATEMÁTICAS º E.S.O. Se recomienda: a) Antes de hacer algo, lee todo el examen. b) Resuelve antes las preguntas que se te den mejor. c) Responde a cada parte del examen en una hoja
EXAMEN DE SISTEMAS DE ECUACIONES LINEALES
EXMEN DE SISTEMS DE ECUCIONES LINELES Se recomienda: a) ntes de hacer algo, leer todo el eamen. b) Resolver antes las preguntas que se te den mejor. c) Responde a cada parte del eamen en una hoja distinta.
Tema 4: Ecuaciones y sistemas de ecuaciones.
Tema : Ecuaciones y sistemas de ecuaciones.. Ecuaciones de º grado Ejemplo Resuelve las siguientes ecuaciones de º grado:. 0 x x a Ecuación de º grado completa con La fórmula es x b b ac a 9 9 0 b c 0
Propiedad importante: Si una recta pasa por los puntos ( a, UNIDAD 7.- Funciones polinómicas (tema 7 del libro)
(tema 7 del libro) 1. FUNCIÓNES POLINÓMICAS DE PRIMER GRADO Son funciones de la forma mx n ó y mx n donde: m : se llama pendiente de la recta n : se llama ordenada en el origen. La recta pasa por el punto
Dos ecuaciones forman un sistema cuando lo que pretendemos de ellas es encontrar su solución común.
TEMA 7. SISTEMA DE ECUACIONES 1. SISTEMAS DE ECUACIONES LINEALES Dos ecuaciones forman un sistema cuando lo que pretendemos de ellas es encontrar su solución común. Cuando dos ecuaciones forman un sistema
Bloque 1. Aritmética y Álgebra
Bloque 1. Aritmética y Álgebra 12. Sistemas de ecuaciones 1. Sistemas de ecuaciones Un sistema de ecuaciones es un conjunto de dos o más ecuaciones con varias incógnitas que conforman un problema matemático
Las únicas funciones cuyas gráficas son rectas son las siguientes:
Funciones, 3º ESO () RECTAS Las únicas funciones cuyas gráficas son rectas son las siguientes: - Lineales, de fórmula y mx. Las gráficas de estas funciones pasan por el origen de coordenadas. m es la pendiente
EXAMEN DE TEOREMA DE PITÁGORAS Y SEMEJANZA
EXAMEN DE TEOREMA DE PITÁGORAS Y SEMEJANZA Se recomienda: a) Antes de hacer algo, leer todo el examen. b) Resolver antes las preguntas que se te den mejor. c) Responde a cada parte del examen en una hoja
Una igualdad se compone de dos expresiones unidas por el signo igual. Una identidad es una igualdad que es cierta para cualquier valor de las letras.
RESUMEN. ECUACIONES Igualdad Una igualdad se compone de dos expresiones unidas por el signo igual. Identidad Una identidad es una igualdad que es cierta para cualquier valor de las letras. Ecuación Una
Tema 5 Inecuaciones y sistemas de inecuaciones
Tema Inecuaciones y sistemas de inecuaciones. Inecuaciones lineales PÁGINA 9 EJERCICIOS. Comprueba en cada caso si el valor indicado forma parte de la solución de la inecuación. b de la inecuación Sustituimos
EJEMPLO OBJETIVO 1 CALCULAR TÉRMINOS EN UNA SUCESIÓN NOMBRE: CURSO: FECHA:
OBJETIVO 1 CALCULAR TÉRMINOS EN UNA SUCESIÓN NOMBRE: CURSO: ECHA: SUCESIÓN Una sucesión es un conjunto ordenado de números reales: a 1, a 2, a 3, a 4 Cada uno de los números que forman la sucesión es un
PREPARACIÓN PRUEBA DE ACCESO A CICLOS DE GRADO SUPERIOR
MATEMÁTICAS - PROFESOR: CARLOS MARTÍN ARTEAGA PREPARACIÓN PRUEBA DE ACCESO A CICLOS DE GRADO SUPERIOR SOLUCIONES 15 1.- Resuelve las siguientes preguntas: a) Indique cuál es el lugar geométrico de los
13 FUNCIONES LINEALES Y CUADRÁTICAS
3 FUNCINES LINEALES CUADRÁTICAS EJERCICIS PARA ENTRENARSE Definición y caracterización de una función lineal 3.8 Una función viene dada por la siguiente tabla. x 0 3 y 0 3 6 9 Expresa la función mediante
EXAMEN DE SISTEMAS DE ECUACIONES
EXAMEN DE SISTEMAS DE ECUACIONES Se recomienda: a) Antes de hacer algo, leer todo el examen. b) Resolver antes las preguntas que se te den mejor. c) Responde a cada parte del examen en una hoja distinta.
TEMA 9: FUNCIONES LINEALES Y CUADRÁTICAS
TEMA 9: FUNCIONES LINEALES Y CUADRÁTICAS 9.1 Función de proporcionalidad mx Ejemplo Representa sobre unos mismos ejes la siguientes funciones de proporcionalidad: 1. 3x. 6x 3. 3x. 6x. 1 3 x 6. 1 3 x 7.
Preparando la selectividad
Preparando la selectividad PRUEBA nº 3. Ver enunciados Ver Soluciones Opción A Ver Soluciones Opción B Se elegirá el ejercicio A o el ejercicio B, del ue se harán los TRES problemas propuestos. LOS TRES
TEMAS 4 LAS FUNCIONES ELEMENTALES
TEMA 4 FUNCIONES ELEMENTALES MATEMÁTICAS CCSSI º Bach. TEMAS 4 LAS FUNCIONES ELEMENTALES Son funciones? EJERCICIO : Indica cuáles de las siguientes representaciones corresponden a la gráfica de una función.
OBJETIVO 1 CONOCER LA FUNCIÓN DE PROPORCIONALIDAD DIRECTA NOMBRE: CURSO: FECHA:
OBJETIVO CONOCER LA FUNCIÓN DE PROPORCIONALIDAD DIRECTA NOMBRE: CURSO: FECHA: FUNCIÓN LINEAL Una función de proporcionalidad directa o función lineal se expresa de la forma: y = m? x, siendo m un número
Ejercicios de ecuaciones, sistemas, inecuaciones.
Matemáticas 1º Bach CCSS. Ejercicios Tema 2. Ecuaciones, sistemas. Pág 1/11 Ejercicios de ecuaciones, sistemas, inecuaciones. 1. x 4 10x 2 + 9 = 0 2. 3. x 4 61x 2 + 900 = 0 4. x 4 25x 2 + 144 = 0 6. 7.
TEMA 4 FUNCIONES ELEMENTALES
Tema 4 Funciones elementales Matemáticas CCSSI º Bachillerato TEMA 4 FUNCIONES ELEMENTALES FUNCIÓN EJERCICIO : Indica cuáles de las siguientes representaciones corresponden a la gráfica de una función.
SISTEMAS DE ECUACIONES 3x3
SISTEMAS DE ECUACIONES x DEFINICIÓN: Una ecuación con tres incógnitas es de la forma ax by cz d,con a,b,c, d. a x b y c z d Tres de este tipo: a a x b y c z d x b y c z d constituyen un SISTEMA, cuando
- El coeficiente de x, la m, se llama pendiente de la recta y nos indica la inclinación de la recta.
º ESO C MATEMÁTICAS ACADÉMICAS UNIDAD.- FUNCIONES LINEALES CUADRÁTICAS..- FUNCIONES CUA GRÁFICA ES UNA RECTA Funciones lineales Son aquellas cuya fórmula es del tipo y = mx, siendo m 0. - El coeficiente
Ax + By + C = 0. Que también puede escribirse como. ax + by + c = 0 y que se conoce como: la ecuación general de la línea recta
ECUACIÒN DE LA RECTA La idea de línea recta es uno de los conceptos intuitivos de la Geometría (como son también el punto y el plano). La recta se puede entender como un conjunto infinito de puntos alineados
Apellidos: Nombre: para x 1, determina sus asíntotas. 4. Halla el valor de los parámetros m y n para que la función f sea continua en todo.
EXAMEN DE MATEMÁTICAS CONTINUIDAD Y DERIVABILIDAD Apellidos: Nombre: Curso: º Grupo: C Día: 3- II- 6 CURSO 05-6. Halla el dominio de definición y recorrido de las funciones a) f(x)= 9 b) g(x)= 4. Calcula
Ecuaciones, inecuaciones y sistemas
008 _ 00-0.qd 9/7/08 9:7 Página 0 Ecuaciones, inecuaciones y sistemas INTRODUCCIÓN Para resolver ecuaciones de primer grado aprendemos a transponer términos, resolviendo ecuaciones de primer grado con
Sistemas de ecuaciones
. Sistemas de ecuaciones lineales Ecuación lineal con dos incógnitas Una ecuación de primer grado se denomina ecuación lineal. Una ecuación lineal con dos incógnitas es una igualdad algebraica del tipo:
SISTEMAS DE ECUACIONES
SISTEMAS DE ECUACIONES CONCEPTOS Un sistema de m ecuaciones con n incógnitas es un conjunto de m ecuaciones que se pueden escribir de la forma: f1( x1, x,..., xn) = 0 f( x1, x,..., xn) = 0... fm( x1, x,...,
Ejercicios de funciones
Matemáticas 4º ESO. Ejercicios Tema 0. Funciones. Pág /6. Sean las funciones: Ejercicios de funciones Calcular:. Dadas las funciones: Calcular: Probar que: Probar que: 3. Dadas las funciones: Calcular:
Tema 1. Racionales 2 2'4 0'1 2'1 1'15 3'1 1' Representa en la recta racional las siguientes fracciones:
Tema 1. Racionales 1.- Representa en la recta racional las siguientes fracciones: -1 y 4 b) - y 1. Calcula el valor de las siguientes expresiones: 7 5 4 1 4 b ) : c ) d) 8 4 1 5 5 : : 10 7 9 7 5 6 1 6
TEMA 3: PROGRESIONES
3. Sucesiones TEMA 3: PROGRESIONES A partir de las sucesiones del libro de la página 60, escribir cuatro términos más:., 5, 9, 3, 7,, 5, 9, 33............................ Vamos sumando cuatro siempre!
ESTRUCTURA DEL EXAMEN DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II PARA ALUMNOS DE BACHILLERATO
ESTRUCTURA DEL EXAMEN DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II PARA ALUMNOS DE BACHILLERATO El examen presentará dos opciones diferentes entre las que el alumno deberá elegir una y responder
CM2 ENRICH CREUS CARNICERO Nivel 2
CM ENRICH CREUS CARNICERO Nivel Unidad Cónicas Conocimientos previos CONOCIMIENTOS PREVIOS PARA CÓNICAS Antes de comenzar con el Trabajo Práctico, necesitás repasar algunas cuestiones como: ) graficar
EJERCICIOS RESUELTOS DE ECUACIÓN DE LA RECTA. 1. Encuentre la pendiente de la recta que pasa por los puntos A 4,3
EJERCICIOS RESUELTOS DE ECUCIÓN DE L RECT Resuelva los siguientes ejercicios justificando su respuesta. 1. Encuentre la pendiente de la recta que pasa por los puntos 4,3 y 2, 1. 2. Calcule la pendiente
Funciones algebraicas y trascendentes
7 Funciones algebraicas y trascendentes. Funciones polinómicas Piensa y calcula Dibuja una recta que tenga de pendiente y pase por el punto P(0, ) P(0, ) Aplica la teoría. Analiza de qué grado pueden ser
Tema 10: Problemas métricos en el plano
Tema 10: Problemas métricos en el plano 10.1 Relaciones angulares Construye un polígono de cinco lados, divídelo en triángulos para averiguar la suma de los ángulos interiores del pentágono. Nuestro pentágono
UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) 2a 2c 2b 2u 2w 2v. a b c. u v w. p q r. a b c.
UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) - Calcular los siguientes determinantes: 3 3 a) b) 3 5 5 3 4 5 Hoja : Matrices y sistemas de ecuaciones lineales
SISTEMAS DE ECUACIONES LINEALES TRABAJO PRÁCTICO Nº 3
BLOQUE I: SISTEMAS DE ECUACIONES LINEALES TRABAJO PRÁCTICO Nº 3 Los sistemas de ecuaciones lineales con dos incógnitas pueden ser: única solución infinitas soluciones no tienen solución rectas que se cortan
Función cuadrática. Ecuación de segundo grado completa
Función cuadrática Una función cuadrática es aquella que puede escribirse como una ecuación de la forma: f(x) = ax 2 + bx + c donde a, b y c (llamados términos) son números reales cualesquiera y a es distinto
OPCIÓN A. La empresa A (x) tiene 30 trabajadores, la B (y) 20 trabajadores y la C (z) 13 trabajadores.
PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA EL ALUMNADO DE BACHILLERATO. 159 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. JUNIO 16 EXAMEN RESUELTO POR JAVIER SUÁREZ CABALLERO (@javiersc9) OBSERVACIONES IMPORTANTES:
Breve historia de los sistemas de ecuaciones lineales.
Breve historia de los sistemas de ecuaciones lineales. Los sistemas de ecuaciones lineales fueron ya resueltos por los babilonios, los cuales llamaban a las incógnitas con palabras tales como longitud,
unicoos Funciones lineales Objetivos 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica
10 Funciones lineales Objetivos En esta lección aprenderás a: Identificar problemas en los que intervienen magnitudes directamente proporcionales. Calcular la función que relaciona a esas magnitudes a
IDENTIFICAR SISTEMAS DE ECUACIONES Y SUS ELEMENTOS
7 Y APOYO OBJETIVO 1 IDENTIFICAR SISTEMAS DE ECUACIONES Y SUS ELEMENTOS SISTEMAS DE ECUACIONES Un sistema de dos ecuaciones lineales con dos incógnitas está formado por dos ecuaciones lineales con dos
Ejemplo.- La desigualdad: 2x + 1 > x + 5, es una inecuación por que tiene una incógnita x que se verifica para valores mayores que 4.
INECUACIONES.- DEFINICION.- Una inecuación es una desigualdad en las que hay una o más cantidades desconocidas (incógnita) y que solo se verifica para determinados valores de la incógnita o incógnitas.
2. Ecuaciones de primer grado: (sencillas, con paréntesis, con denominadores).
Bloque 3. ECUACIONES Y SISTEMAS (En el libro Temas 4 y 5, páginas 63 y 81) 1. Ecuaciones: Definiciones. Reglas de equivalencia. 2. Ecuaciones de primer grado: (sencillas, con paréntesis, con denominadores).
IDENTIFICAR SISTEMAS DE ECUACIONES Y SUS ELEMENTOS
OBJETIVO 1 IDENTIFICAR SISTEMAS DE ECUACIONES Y SUS ELEMENTOS NOMBRE: CURSO: FECHA: Un sistema de dos ecuaciones lineales con dos incógnitas es un conjunto de dos ecuaciones de las que se busca una solución
Matemáticas Aplicadas a las Ciencias Sociales Rosario Ros. 1º Bachillerato A y B. IES Luis Manzanares
TEMA 7 Interpolación lineal l y cuadrática Matemáticas Aplicadas a las Ciencias Sociales Rosario Ros. 1º Bachillerato A y B. IES Luis Manzanares 1 Interpolación LINEAL Una función puede venir dada de varias
1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS
1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1 1.- LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de una función f por la izquierda de un punto x = a. Es el valor al
UANL UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN PREPARATORIA NO. 23
MATEMÁTICAS 3 Portafolio de 2da. Oportunidad. NOMBRE GRUPO CALIF. Etapa 1. Relaciones y Funciones Polinomiales I.- Determina el dominio y rango de las siguientes relaciones, posteriormente identifica si
a) x + 7 = 2 x = 2 7 Solución: x = 5
º ESO REFUERZO DE MATEMÁTICAS UNIDAD.- ECUACIONES Y SISTEMAS CURSO 0/0 Objetivo.- Usar las reglas de equivalencia para despejar variables en fórmulas Reglas de equivalencia. Para despejar una letra en
Tema 3: Expresiones algebraicas
.1 Polinomios Tema : Expresiones algebraicas Determina cuáles de las siguientes expresiones son polinomios. Cuando lo sean, dí cuáles son sus monomios(términos), su grado, término principal, término independiente,
IES CINCO VILLAS TEMA 5 SISTEMAS DE ECUACIONES 3º ESO Página 1
EJERCICIOS RESUELTOS MÍNIMOS TEMA 5 SISTEMAS DE ECUACIONES 3º ESO Ejercicio nº.- a) Representa gráficamente la recta 5x 3. b) Cuántas soluciones tiene la ecuación 5x 3? Obtén dos de sus soluciones. c)
TEMA 3 SISTEMAS DE ECUACIONES LINEALES
TEM SISTEMS DE ECUCIONES LINELES. Sistemas de ecuaciones lineales. Epresión matricial. Ejemplo Epresa en forma matricial los siguientes sistemas de ecuaciones lineales: 9 5, Solution is: 9, 9 Se trata
12 Funciones de proporcionalidad
8 _ 09-088.qxd //0 : Página 9 Funciones de proporcionalidad INTRODUCCIÓN La representación gráfica de funciones de proporcionalidad es una de las formas más directas de entender y verificar la relación
Sistemas de Ecuaciones Lineales. Método de Reducción.
Sistemas de Ecuaciones Lineales. Método de Reducción. 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Introducción a los Sistemas de Ecuaciones Lineales... 4 1.1 Tipos de sistemas
EJERCICIOS DE VERANO MATEMÁTICAS 3º ESO
EJERCICIOS DE VERANO MATEMÁTICAS 3º ESO Página 1 de 12 Entregar el día del examen de recuperación de matemáticas. Será condición indispensable para aprobar la asignatura. 1. Calcula: NUMEROS ENTEROS. FRACCIONES.
TEMA 5 ANEXO II SISTEMAS DE ECUACIONES LINEALES
TEMA 5 ANEXO II SISTEMAS DE ECUACIONES LINEALES A) INTRODUCCIÓN Una ecuación puede tener dos incógnitas. Después de simplificar nos queda una ecuación del tipo ax + by = c, donde x e y son las incógnitas,
TEMA 6. Sistemas de dos Ecuaciones de Primer grado con dos Incógnitas
TEMA 6 Sistemas de dos Ecuaciones de Primer grado con dos Incógnitas 1. Ecuación de Primer grado con dos incógnitas Vamos a intentar resolver el siguiente problema: En una bolsa hay bolas azules y rojas,
4 Ecuaciones e inecuaciones
Ecuaciones e inecuaciones INTRODUCCIÓN Comenzamos esta unidad diferenciando entre identidades y ecuaciones, y definiendo los conceptos asociados a cualquier ecuación: miembros, términos, coeficientes,
3.2 Calcula el número de soluciones de las siguientes ecuaciones SIN resolverlas: d) 2x 2 + 8x + 8 = 0 e) x 2 + 2x + 4 = 0 f) x 2 x + 1 = 0
3. ECUACIONES, INECUACIONES Y SISTEMAS: Ecuaciones polinómicas, logarítmicas, exponenciales e irracionales. Sistemas de ecuaciones lineales y no lineales. Inecuaciones 3.1 Resuelve las siguientes ecuaciones:
PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos.
PAU Madrid. Matemáticas II. Año 22. Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. Se considera una varilla AB de longitud 1. El extremo A de esta varilla recorre completamente la circunferencia
RESOLUCIÓN DE SISTEMAS DE ECUACIONES E INECUACIONES CON DOS INCÓGNITAS. Prof. Esther Morales
1 U N E X P O UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA ANTONIO JOSÉ DE SUCRE VICE-RECTORADO PUERTO ORDAZ DEPARTAMENTO DE ESTUDIOS GENERALES SECCIÓN DE MATEMÁTICA RESOLUCIÓN DE SISTEMAS DE ECUACIONES
TEMA 7 SISTEMAS DE ECUACIONES
TEMA 7 SISTEMAS DE ECUACIONES 7.1 Ecuaciones de primer grado con dos incógnitas PÁGINA 156 Actividades 1. Averigua cuáles de los siguientes pares de valores son soluciones de la ecuación x 4y 8 x f) y
PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL SEPTIEMBRE 2014 PARTE COMÚN MATERIA: FUNDAMENTOS DE MATEMÁTICAS
CALIFICACIÓN: Consejería de Educación, PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL SEPTIEMBRE 2014 Apellidos Nombre Centro de examen PARTE COMÚN MATERIA: FUNDAMENTOS
MATEMÁTICAS 1º BACHILLERATO Curso EJERCICIOS RESUELTOS DE INECUACIONES
MATEMÁTICAS 1º BACHILLERATO Curso 9-1 EJERCICIOS RESUELTOS DE INECUACIONES EJERCICIOS RESUELTOS DE INECUACIONES A. Inecuaciones lineales con una incógnita x x1 x3 > 1 3 4 x x1 x3 4( x ) 3( x1) 6( x3) 1
A1.- Determina a y b sabiendo que el sistema de ecuaciones. x + 3y +z = 1 -x + y +2z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas.
A1.- Determina a y b sabiendo que el sistema de ecuaciones x + 3y +z = 1 -x + y +z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas. Para que el sistema tenga, al menos, dos soluciones distintas
Bloque 2. Geometría. 3. La recta. 1. Definición de recta
Bloque 2. Geometría 3. La recta 1. Definición de recta Para representar puntos en un plano (superficie de dos dimensiones) utilizamos dos rectas graduadas y perpendiculares, cuyo corte es el punto 0 de
MATEMÁTICAS III CICLO COMÚN III PARCIAL UNIDDA DIDÁCTICA #3 FUNCIÓN CUADRÁTICA RESOLUCIÓN DE PROBLEMAS APLICANDO ECUACIONES CUADRÁTICAS
UNIDDA DIDÁCTICA #3 CONTENIDO FUNCIÓN CUADRÁTICA RESOLUCIÓN DE PROBLEMAS APLICANDO ECUACIONES CUADRÁTICAS OBJETIVOS Conocer la definición de la función cuadrática. Estudiar las propiedades de las funciones
EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector
EJERCICIOS DE GEOMETRÍA PLANA Hallar las ecuaciones paramétricas de la recta r que pasa por el punto (, ) tiene como vector director el vector v i j A y x a + vt La ecuación paramétrica de una recta es
Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 5 Las letras y los números, un cóctel perfecto (2)
Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 5 Las letras y los números, un cóctel perfecto (2) Ahora que ya sabes resolver ecuaciones, nos adentramos en los sistemas de ecuaciones donde vamos
CM2 ENRICH CREUS CARNICERO Nivel 2
CM ENRICH CREUS CARNICERO Nivel Unidad Cónicas Conocimientos previos CONOCIMIENTOS PREVIOS PARA CÓNICAS Antes de comenzar con el Trabajo Práctico N, necesitás repasar algunas cuestiones como: ) graficar
Sistemas de Ecuaciones
3. Métodos de resolución Resolver un sistema por el método de reducción consiste en encontrar otro sistema, con las mismas soluciones, que tenga los coeficientes de una misma incógnita iguales o de signo
Ejercicio 7: Hallar las coordenadas del punto B sabiendo que M es el punto medio del segmento [AB], A(7,8), M(3,-2).
Geometría Analítica Investiga 1- Qué significa geometría analítica? Cómo surge? Quién es considerado el padre de la geometría analítica? Por qué? Qué otros matemáticos puedes encontrar en su historia?
PÁGINA Resuelve las siguientes ecuaciones: a) 10x 2 3x 1 = 0 b) x 2 20x = 0 c) 3x 2 + 5x + 11 = 0 d) 2x 2 8x + 8 = 0
Soluciones a las actividades de cada epígrafe PÁGINA Pág. 1 1 Resuelve las siguientes ecuaciones: a) 10x x 1 0 b) x 0x + 100 0 c) x + 5x + 11 0 d) x 8x + 8 0 a) x ± 9 + 0 0 ± 9 0 ± 7 0 Las soluciones son:
EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES
EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES 1 er PARCIAL 1. Obtén los valores reales que cumplen las siguientes condiciones: x+ x 3 5 x 1/ =1. Opera y expresa el resultado en notación científic (5,
La circunferencia y el círculo
Unidad 7.5: Geometría Tema 1: El círculo Lección.1: Circunferencia y círculo La circunferencia y el círculo La circunferencia es una línea curva cerrada y plana con todos sus puntos a igual distancia del
FUNCIONES CUADRÁTICAS
FUNCIONES CUADRÁTICAS A la función polinómica de segundo grado f(x) = ax 2 + bx + c, siendo a, b, c, números reales y a 0 se la denomina función cuadrática. Dominio de una función cuadrática es el conjunto
f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f.
TEMA 5: FUNCIONES ELEMENTALES. 5. Función real de variable real. 5. Operaciones con funciones: composición e inversa. 5.3 Construcción de gráficas de funciones elementales y sus transformaciones. 5.4 Interpolación
; b) Calcular el resultado de las siguientes operaciones lo más simplificado posible: ; b) 2
MATEMÁTICAS - SEPTIEMBRE TAREA DE VERANO 4º E.S.O.-B 4 1. Simplificar potencias: a) 4 ( ) 5 5 81 9 ; b) 4 0 5 9 5 4 ; c) 4 0 15 5 5 4 ; d) 9000 0'000000006 6000000 0'0007. Calcular el resultado de las
Inecuaciones: Actividades de recuperación.
Inecuaciones: Actividades de recuperación. 1.- Escribe la inecuación que corresponde a los siguientes enunciados: a) El perímetro de un triángulo equilátero es menor que 4. (x = lado del triángulo) b)
Para encontrar el valor de k sustituimos el valor de h en la función inicial.
.3.4 GRÁFICAS DE FUNCIONES CUADRÁTICAS COMPLETAS. Ejemplo 1. Construir la gráfica de la siguiente función f()= -4-5, estableciendo su dominio, rango, las coordenadas de su vértice sus raíces (método de
Solución: Las rectas paralelas a estas tienen la misma pendiente, es decir 2; por tanto la ecuación es:
Representa las rectas y = x + e y = x y calcula el punto que tienen en común El punto que tienen en común estas dos rectas se obtiene resolviendo el siguiente sistema de ecuaciones: y = x + y = x 3 x =,
7Soluciones a los ejercicios y problemas
PÁGINA Pág. P RACTICA Sistemas lineales Comprueba si el par (3, ) es solución de alguno de los siguientes sistemas: x + y 5 x y 5 a) b) 3x y 4x + y El par (3, ) es solución de un sistema si al sustituir
MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto.
MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA ) Determinar k y h para que las rectas kxy-h=0, 4xky-=0, se corten en un punto ) La recta r: 5 x y 9 = 0, corta a la recta y = x en el punto A Obtener la ecuación
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
Circunferencias. d) A( 1, 5) y d = X = (x, y) punto genérico del lugar geométrico. b) dist (X, A) = d
Circunferencias 6 Halla, en cada caso, el lugar geométrico de los puntos del plano cuya distancia al punto A es d. a) A(, ) y d = b) A(, ) y d = 1 c) A(, ) y d = 1 d) A( 1, ) y d = X = (x, y) punto genérico
Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice
Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice 1. ECUACIONES... 2 1.1. Ecuaciones de primer grado... 2 1.2. Ecuaciones de segundo grado... 3 1.2.1. Ecuación de segundo grado completa...
OPCIÓN A. 1. (1 punto) Representa en la recta real el conjunto de valores reales x tales que 2 x y determínala mediante un intervalo.
EXAMEN: TEMAS 1 y BCT 1º 30/11/010 OPCIÓN A 1. (1 punto) Representa en la recta real el conjunto de valores reales x tales que x 1 3 1 y determínala mediante un intervalo. En primer lugar, desarrollamos
La suma de n términos de una progresión. aritmética es: Sn= El producto de n términos de una progresión. geométrica es: P = ( a a ).
Progresiones INTRODUCCIÓN Las sucesiones aparecen en diversos campos, tales como la medicina (evolución de un cultivo bacteriano), genética (distribución de los caracteres), informática (utilización de
