APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 2 DINÁMICA DE LOS FLUIDOS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 2 DINÁMICA DE LOS FLUIDOS"

Transcripción

1 LA DINÁMICA DE LOS FLUIDOS APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 2 DINÁMICA DE LOS FLUIDOS Los fluidos en movimiento son mucho más complejos que los fluidos en reposo. Es difícil aplicar las leyes de Newton a una única «partícula» de fluido, siguiendo el movimiento de la partícula de uno a otro lado en un sistema complicado. En su lugar haremos uso de la segunda ley de Newton para encontrar las propiedades del fluido en cada punto del sistema, mientras las partículas del sistema fluyen de uno a otro lado. Así pues, la descripción del movimiento de fluido consiste en hallar su densidad, su presión y su velocidad en todos los puntos. Las magnitudes que escriben la dinámica de los fluidos, y que ya analizamos en la Unidad, son: La densidad del fluido δ r, t esta magnitud es en los fluidos análoga a la masa de una partícula, siendo la masa por unidad de volumen. La velocidad del fluido v r, t es la velocidad de un elemento pequeño del fluido en la posición r y en el tiempo t. La presión P r, t. La densidad de cantidad de movimiento J r, t esta magnitud es análoga en los fluidos a la cantidad de movimiento y se relaciona con la densidad y la velocidad por J r, t = δ r, t. v r, t Esta rama de la mecánica de fluidos se ocupa de las leyes de los fluidos en movimiento; estas leyes son enormemente complejas, y aunque la hidrodinámica tiene una importancia práctica mayor que la hidrostática, sólo podemos tratar aquí algunos conceptos básicos. Euler fue el primero en reconocer que las leyes dinámicas para los fluidos sólo pueden expresarse de forma relativamente sencilla si se supone que el fluido es incompresible e ideal.

2 FLUIDO IDEAL Cuando un fluido está en movimiento, el flujo se puede clasificar en dos tipos:. Flujo estacionario o laminar si cada partícula de fluido sigue una trayectoria uniforme y estas no se cruzan, es un flujo ideal, en este caso la velocidad en cada punto es constante. 2. Flujo turbulento es un flujo irregular con regiones donde se producen torbellinos, en este caso la densidad es constante. El flujo laminar se vuelve turbulento por efecto de la fricción que también está presente en los fluidos y surge cuando un objeto o capa del fluido que se mueve a través de él desplaza a otra porción de fluido; lo notas por ejemplo cuando corres en el agua. La fricción interna en un fluido es la resistencia que presenta cada capa de fluido a moverse respecto a otra capa. La fricción interna o roce de un fluido en movimiento se mide por un coeficiente de viscosidad η. Por efecto de la viscosidad parte de la energía cinética del fluido se transforma en energía térmica, similar al caso de los sólidos. En un principio vamos a trabajar con lo que llamaremos fluido ideal, es decir un fluido que es incompresible y que no tiene rozamiento interno o viscosidad. La hipótesis de incompresibilidad es una suposición razonable para líquidos pero no para los gases. Un gas puede tratarse como incompresible si su movimiento es tal que las diferencias de presión que aparecen no son demasiado grandes. El rozamiento interno en un fluido da lugar a esfuerzos cortantes cuando dos capas adyacentes se mueven la una sobre la otra o cuando el fluido se mueve por tubos o se encuentra a un obstáculo. En algunos casos estos esfuerzos son despreciables si se comparan con fuerzas gravitatorias o con la originadas por diferencias de presión Entonces, decimos de que estamos frente de un fluido ideal, cuando consideramos que su comportamiento es de un régimen estable, irrotacional, incompresible y no viscoso. Todo volumen v de un líquido se considera como un medio continuo formado, en reposo, por láminas superpuestas que pueden deslizarse las unas sobre las otras. La experiencia muestra que si se desplaza una de las láminas, las capas adyacentes son arrastradas. Existe, entonces, fuerzas de rozamiento internas, denominados esfuerzos tangenciales o cortantes, y el líquido se llama Viscoso. En resumen un Fluido ideal es aquel que cumple con las siguientes características:. Es incompresible, su volumen no cambia al moverse 2. La densidad δ es constante para todos los elementos de fluido y para todos los tiempos. 3. La fuerza sobre un elemento de superficie n. δ. S dentro del fluido es P. n. δ. S donde P es la Presión.

3 Se puede imaginar un líquido sin viscosidad donde las láminas líquidas, completamente independientes las unas de las otras, pueden deslizar sin rozamiento. Bien entendido, un fluido tal, llamado Líquido Perfecto, no existe; pero en ciertos casos, su estudio teórico conduce a leyes que aplicadas a líquidos reales, permite explicar o predecir con una buena aproximación los resultados experimentales. VELOCIDAD Y LÍNEAS DE CORRIENTE Al estudiar el movimiento de los fluidos, necesariamente tendremos que considerar la descripción de un campo de velocidades, la velocidad del fluido en un punto cualquiera se define como la velocidad instantánea del centro de gravedad del volumen dv que instantáneamente rodea al punto. Por lo tanto, si definimos una partícula de fluido como la pequeña masa de fluido completamente identificada que ocupa el volumen dv, podemos definir la velocidad en el punto como la velocidad instantánea de la partícula de fluido, que en el instante dado, está pasando a través de ese punto. En un instante dado el campo de velocidades, v, es una función de las coordenadas del espacio x, y, z, es decir v = v(x, y, z). La velocidad en cualquier punto del campo de flujo puede cambiar de un instante a otro. Por lo tanto, la representación completa de la velocidad (es decir, del campo de velocidades) está dado por v = v(x, y, z, t) Si las propiedades de fluido en un punto en un campo no cambian con el tiempo, se dice que el flujo es estacionario. Por otro lado, al realizar el análisis de problemas de dinámica de fluidos se hace necesario una representación visual del campo de flujo. Tal representación se puede obtener mediante las trayectorias, las líneas del trazador y las líneas de corriente. Una trayectoria está constituida por la curva trazada en su movimiento por una partícula de fluido. Para determinar una trayectoria, se puede identificar a una partícula de fluido en un instante dado, por ejemplo, mediante el uso de un colorante, y tomar fotografías de su movimiento con un tiempo de exposición adecuado. La línea trazada por la partícula constituye entonces una trayectoria. Por otra parte, podemos preferir fijar nuestra atención en un punto fijo del espacio, e identificar, empleando también un colorante, todas las partículas que pasan a través de este punto. Después de un corto periodo tendremos entonces cierta cantidad de partículas de

4 fluido identificables en el flujo, todas las cuales han pasado en algún momento a través del punto fijo previamente seleccionado. La línea que une todas estas partículas define una línea del trazador. Por su parte, las líneas de corriente son líneas dibujadas en el campo de flujo de tal manera que en un instante dado se encuentran siempre tangentes a la dirección del flujo en cada punto del campo de flujo. La forma de las líneas de corriente puede cambiar de un instante a otro si la velocidad del flujo es una función del tiempo, es decir, si se trata de un flujo no estacionario. Dado que las líneas de corriente son tangentes al vector velocidad de cada punto del flujo, el fluido nunca puede cruzar una línea de corriente. TUBOS DE CORRIENTE O DE FLUJO Para realizar el análisis es necesario dibujar una línea de corriente en cada punto del fluido, al seleccionar un número finitos de líneas de corriente, es decir un haz de flujo, y la región tubular se denomina tubo de flujo. La línea de corriente es una curva cuya tangente en un punto cualquiera tiene la dirección de la velocidad del fluido en ese punto. En el régimen estacionario las líneas de corriente coinciden con las líneas de flujo. Si dibujamos todas las líneas de corriente que pasan por el contorno de un elemento del fluido de área S o S 2 del tubo de corriente. En virtud de la definición de línea de corriente el fluido no puede atravesar las paredes de un tubo de flujo y en régimen estacionario no puede haber mezcla de fluidos de dos tubos diferentes. Se llama flujo laminar al tipo de movimiento de un fluido cuando éste es perfectamente ordenado, estratificado, suave, de manera que el fluido se mueve en láminas paralelas sin entremezclarse. Las capas adyacentes del fluido se deslizan suavemente entre sí. El mecanismo de transporte es exclusivamente molecular. Se dice que este flujo es aerodinámico. Ocurre a velocidades relativamente bajas o viscosidades altas.

5 Se llama flujo turbulento cuando se hace más irregular, caótico e impredecible, las partículas se mueven desordenadamente y las trayectorias de las partículas se encuentran formando pequeños remolinos aperiódicos. Aparece a velocidades altas o cuando aparecen obstáculos abruptos en el movimiento del fluido. Laminar Turbulento FLUJO ESTACIONARIO EN UN FLUIDO INCOMPRESIBLE En un flujo estacionario, la velocidad en cada punto del campo permanece constante con el tiempo y en consecuencia, las líneas de corriente no cambian de un instante a otro. Lo anterior implica que una partícula localizada en una línea de corriente determinada permanecerá en la misma línea de corriente. Lo que es más, partículas consecutivas que pasan a través de un punto fijo del espacio se encontrarán en la misma línea de corriente y permanecerán en ella. Se concluye, entonces, que en el caso de flujo estacionario, las trayectorias, las líneas del trazador y las líneas de corriente son idénticas para todo el campo. En el caso de un flujo no estacionario las tres curvas no coinciden. Por otro lado, este tipo de flujo se caracteriza porque las condiciones de velocidad de escurrimiento en cualquier punto no cambian con el tiempo, o sea que permanecen constantes con el tiempo o bien, si las variaciones en ellas son tan pequeñas con respecto a los valores medios. Así mismo en cualquier punto de un flujo permanente, no existen cambios en la densidad, presión o temperatura con el tiempo, es decir: δ t = 0; P t = 0; T t = 0; Dado al movimiento errático de las partículas de un fluido, siempre existen pequeñas fluctuaciones en las propiedades de un fluido en un punto, cuando se tiene flujo turbulento. Para tener en cuenta estas fluctuaciones se debe generalizar la definición de flujo permanente según el parámetro de interés, así: N t = t t 0 Ndt Donde: N t es el parámetro velocidad, densidad, temperatura, etc. El flujo permanente es más simple de analizar que el no permanente, por la complejidad que le adiciona el tiempo como variable independiente.

6 ECUACIÓN DE CONTINUIDAD. PRESIÓN Y VELOCIDAD Volviendo a la figura siguiente: En el cual áreas transversales, perpendiculares a las líneas de corriente, son S y S 2. Si las rapideces de las partículas en un fluido de densidad δ constante son v y v 2, entendiendo que este fluido pasa por las regiones y 2, en un intervalo de tiempo Δt, tan pequeño que no permita que ni v ni S cambien, tal que un elemento de fluido avanza una distancia v. Δt, definiendo la masa que avanza por las regiones y 2, de la forma siguiente: Δm = δ S. v. Δt y Δm 2 = δ S 2. v 2. Δt De forma tal que el flujo de fluido en las regiones y 2, queda representado por: Δm Δt = δ S. v y Δm 2 Δt = δ S 2. v 2. Considerando que el fluido no sale por las paredes del tubo y que no existen salidas adicionales, la masa en cualquier sección del tubo por unidad de tiempo debe ser la misma, lo que define que: Δm Δt = Δm 2 Δt y S. v = S 2. v 2 Y definitivamente, la ecuación de la continuidad viene a ser: S. v = Constante Esta expresión se conoce como Caudal, Gasto o Flujo de Volumen y se denota por la letra Φ, y la ecuación como: Φ = S. v Esto significa, que mientras mas estrecho es el tubo, las líneas de corriente están más unidas entre si y por tanto su rapidez debe ser mayor, que si las paredes estuvieran más separadas, es decir, la rapidez es menor y las líneas de corriente están más separadas entre si.

7 ECUACIÓN DE BERNOULLI REPÚBLICA BOLIVARIANA DE VENEZUELA El Teorema de Bernoulli afirma, que la energía mecánica total de un flujo incompresible y no viscoso es constante a lo largo de una línea de corriente. Esto implica una relación entre los efectos de la presión, la velocidad y la gravedad, e indica que la velocidad aumenta cuando la presión disminuye. Este principio es importante para predecir, por ejemplo, la fuerza de sustentación de un ala en vuelo. Partiendo de este esquema podemos señalar, que la dinámica de los fluidos responde al principio de la conservación de la energía, consideremos los puntos y 2, de un fluido en movimiento, determinemos la energía mecánica de este a lo largo del tobo de flujo en el que se mueve, ahora si m es la porción de masa y considerando la rapidez, Y es la altura correspondiente, tomando como base la presión P y la densidad δ en cada uno de los puntos, el teorema de conservación de la energía se puede escribir como: 2 m. v 2 + m. g. Y + P. m = δ 2 m. v m. g. Y 2 + P 2. m δ 2 Como la masa es la misma se puede suprimir, obteniendo que: 2 v 2 + g. Y + P δ = 2 v g. Y 2 + P 2 δ 2 Ahora, como consideramos que el fluido es incomprensible, es decir que la densidad es constante, se tiene: Que es la Ecuación de Bernoulli. 2 δ. v 2 + δ. g. Y + P = 2 δ. v δ. g. Y 2 + P 2

8 APLICACIÓN DE LA ECUACIÓN DE BERNOULLI Así como la estática de una partícula es un caso particular de la dinámica de la partícula, igualmente la estática de los fluidos es un caso especial de la dinámica de los fluidos, donde la velocidad es cero, lo que genera que la ecuación de Bernoulli se convierte en: P P 2 = δ. g. Y 2 Y Esta es precisamente la ecuación fundamental de la estática de los fluidos. El efecto Bernoulli es una consecuencia directa que surge a partir de la ecuación de Bernoulli: en el caso de que el fluido fluya en horizontal un aumento de la velocidad del flujo implica que la presión estática decrecerá. Un ejemplo práctico es el caso de las alas de un avión, que están diseñadas para que el aire que pasa por encima del ala fluya más velozmente que el aire que pasa por debajo del ala, por lo que la presión estática es mayor en la parte inferior y el avión se levanta. Puesto que la velocidad bajo el ala (v 2 ) es menor que sobre el ala (v), la presión bajo el ala es mayor que sobre el ala, de manera que el ala se mantiene flotando, esta es la fuerza de sustentación del avión. Otra manera de entender cómo se mantiene un avión flotando en el aire es a partir de las leyes de Newton. Al moverse el avión, el aire choca contra el ala ligeramente inclinada, empuja el aire hacia abajo y por la tercera ley de Newton (acciónreacción) el ala se impulsa hacia arriba. Otra aplicación de esta ecuación es el Tubo de estancamiento. Considere un tubo curvo, tal como el que se muestra en la Figura

9 Cuando la ecuación de Bernoulli se escribe entre los puntos y 2, se observa que Y = Y 2. Por lo tanto, la ecuación de Bernoulli se reduce a: 2 δ. v 2 + P = 2 δ. v P 2 Obsérvese también que la velocidad en el punto 2 es cero (un punto de estancamiento). De aquí que, la ecuación de Bernoulli se reduce a: 2 δ. v 2 + P = P 2 v 2 = 2 P 2 P δ Por tanto, se puede apreciar que un medio muy simple, como este tubo curvo, puede ser utilizado para medir la velocidad de flujo. Otro caso es el tubo de Pilot, que se denomina así en honor al ingeniero hidráulico francés del siglo XVIII que lo inventó, está basado en el mismo principio que el tubo de estancamiento, pero es mucho más versátil que este último. El tubo de Pilot tiene una toma de presión corriente arriba, extremo frontal del tubo, para medir la presión de estancamiento. También hay varios puertos situados en la periferia del diámetro del tubo, por el frente y detrás de la zona de corriente abajo, para medir la presión estática en el fluido, donde la velocidad es esencialmente la misma que se busca. La ecuación para medir l velocidad, partiendo la ecuación de Bernoulli, queda de la manera siguiente: T v 2 = 2 δ P P 2 Al conectar un manómetro entre las tomas que llevan los puntos y 2, resulta fácil de medir la velocidad de flujo con el tubo de Pilot. Una ventaja importante del tubo de Pilot es que se puede emplear para medir la velocidad en un tubo presurizado; un simple tubo de estancamiento no es conveniente en esta situación. Si un manómetro diferencial de presión se conecta a las tomas, la ecuación se simplifica a 2ΔP v = δ Donde ΔP es la diferencia de presión medida por el manómetro.

10 Otro caso lo representa el Tubo de Venturi, este consiste en un tubo horizontal con una estrechez, como lo apreciamos en las figuras, este dispositivo se utiliza para medir la velocidad del flujo en fluidos incomprensibles. Si con un manómetro se mide la presión en los puntos y 2, se puede calcular la rapidez del flujo que sale o entra al dispositivo. 2 δ. v 2 + P = 2 δ. v P 2 Aplicando la ecuación de la continuidad, donde A = S y A 2 = S 2 S. v = S 2. v 2 despejando a v se obtiene v = S 2. v 2 S Sustituyendo en la ecuación de Bernoulli, se obtiene: 2 δ. S 2 2. v 2 + P S = 2 δ. v P 2 v 2 = S 2 P P 2 δ S 2 S 2 2 Es necesario observar que debido a que S > S 2 entonces P > P 2, es decir, que la presión disminuye en la parte más angosta de la tubería, este hecho tiene diversas aplicaciones, por ejemplo, conectando un dispositivo como este al carburador de un automóvil, se hace pasar el vapor de gasolina a la cámara de combustión. Otra aplicación de la ecuación de Bernoulli la representa la Ley de Torricelli, si se tiene un estanque que contiene un líquido de densidad δ, que tiene un orificio pequeño a una altura Y, del fondo, tal como se ve en la figura, el aire por encima del líquido se mantiene una presión P, con estas características se puede determinar la rapidez con la que sale el fluido por el orificio, tomando en cuenta la altura h sobre el orificio.

11 Partiendo de estos elemento y analizando la figura se desprende los siguientes parámetros, A = S y A 2 = S 2, como se observa el tanque tiene una superficie mucho mayor que la de agujero A 2 A, lo que significa que la rapidez de descenso del líquido mucho mayor que la rapidez de salida por el orificio v 2 v, aplicando la ecuación de Bernoulli, en los puntos y 2, con P = presión atmosférica = P 0 y P = P 2 2 δ. v 2 + P 0 = δ. g. Y 2 Y + P como = Y 2 Y 2 δ. v 2 + P 0 = δ. g. + P 2 P P 0 v = + 2g δ Esta es la Ecuación o Ley de Torricelli. De ella se desprenden dos casos:. Si P P 0 entonces 2g 0 y v = 2P, lo que significa que la rapidez es función de la presión. δ 2. Si P = P 0 entonces v = 2g, lo que significa que la rapidez es idéntica a la adquirida por un móvil en caída libre.

Flujo estacionario laminar

Flujo estacionario laminar HIDRODINÁMICA Hidrodinámica Es una disciplina parte de la física cuyo objetivo es explicar el comportamiento de los fluidos en movimiento, para lo cual se hace necesario definir algunos conceptos importantes:

Más detalles

Dinámica de Fluidos. Mecánica y Fluidos VERANO

Dinámica de Fluidos. Mecánica y Fluidos VERANO Dinámica de Fluidos Mecánica y Fluidos VERANO 1 Temas Tipos de Movimiento Ecuación de Continuidad Ecuación de Bernouilli Circulación de Fluidos Viscosos 2 TIPOS DE MOVIMIENTO Régimen Laminar: El flujo

Más detalles

ADMINISTRACION DE EMPRESA OPERACIONES INDUSTRIALES Instructor: Ing. Luis Gomez Quispe SEMESTREIII

ADMINISTRACION DE EMPRESA OPERACIONES INDUSTRIALES Instructor: Ing. Luis Gomez Quispe SEMESTREIII ADMINISTRACION DE EMPRESA OPERACIONES INDUSTRIALES Instructor: Ing. Luis Gomez Quispe SEMESTREIII - 017 SEMANA 11 : FLUJO DE LOS FLUIDOS LIQUIDOS Inst. Ing. Luis Gomez Quispe 1 OBJETIVO GENERAL Al término

Más detalles

1. Tipos de flujo. 2. Caudal. 3. Conservación de la energía en fluidos. 4. Roce en fluidos

1. Tipos de flujo. 2. Caudal. 3. Conservación de la energía en fluidos. 4. Roce en fluidos 1. Tipos de flujo. Caudal 3. Conservación de la energía en fluidos 4. Roce en fluidos Tipos de flujos Existen diversos tipos de flujos en donde se distinguen: Flujo laminar: Ocurre cuando las moléculas

Más detalles

TEMA II.9. Ecuación de Bernoulli. Dr. Juan Pablo Torres-Papaqui

TEMA II.9. Ecuación de Bernoulli. Dr. Juan Pablo Torres-Papaqui TEMA II.9 Ecuación de Bernoulli Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas, Campus

Más detalles

HIDRODINÁMICA. Profesor: Robinson Pino H.

HIDRODINÁMICA. Profesor: Robinson Pino H. HIDRODINÁMICA Profesor: Robinson Pino H. 1 CARACTERÍSTICAS DEL MOVIMIENTO DE LOS FLUIDOS Flujo laminar: Ocurre cuando las moléculas de un fluido en movimiento siguen trayectorias paralelas. Flujo turbulento:

Más detalles

UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA

UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA UNIVERSIDAD AUTÓNOMA DE SINALOA FACULTAD DE AGRONOMÍA HIDRÁULICA UNIDAD III. HIDROCINEMÁTICA Introducción. La hidrocinemática o cinemática de los líquidos se ocupa del estudio de las partículas que integran

Más detalles

HIDRODINAMICA Fluidos en movimiento

HIDRODINAMICA Fluidos en movimiento HIDRODINAMICA Fluidos en movimiento Principio de la conservación de la masa y de continuidad. Ecuación de Bernoulli. 3/0/0 Yovany Londoño Flujo de fluidos Un fluido ideal es o o Incompresible si su densidad

Más detalles

Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli.

Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli. Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli. Dictado por: Profesor Aldo Valcarce 1 er semestre 2014 Presión de un fluido Presión depende de la profundidad P = ρ

Más detalles

TUTORIAL BÁSICO DE MECÁNICA FLUIDOS

TUTORIAL BÁSICO DE MECÁNICA FLUIDOS TUTORIAL BÁSICO DE MECÁNICA FLUIDOS El tutorial es básico pues como habréis visto en muchos de ellos es haceros entender no sólo la aplicación práctica de cada teoría sino su propia existencia y justificación.

Más detalles

Cuarta Lección. Principios de la física aplicados al vuelo.

Cuarta Lección. Principios de la física aplicados al vuelo. Capítulo II. Termodinámica y Física de los Fluidos aplicadas a procesos naturales. Tema. El proceso de vuelo de las aves y de los ingenios alados. Cuarta Lección. Principios de la física aplicados al vuelo.

Más detalles

Física General II. Guía N 2: Hidrodinámica y Viscosidad

Física General II. Guía N 2: Hidrodinámica y Viscosidad Física General II Guía N 2: Hidrodinámica y Viscosidad Problema 1: Ley de Torricelli. La figura muestra un líquido que está siendo descargado de un tanque a través de un orificio que se encuentra a una

Más detalles

1.1.ECUACION FUNDAMENTAL DE LA DINÁMICA DE FLUIDOS.

1.1.ECUACION FUNDAMENTAL DE LA DINÁMICA DE FLUIDOS. INTRODUCCIÓN Los principios físicos más útiles en las aplicaciones de la mecánica de fluidos son el balance de materia, o ecuación de continuidad, las ecuaciones del balance de cantidad de movimiento y

Más detalles

Principios de hidrodinámica

Principios de hidrodinámica Introducción Principios de hidrodinámica Adaptación: Prof. Hugo Chamorro HIDRODINÁMICA Mecánica y Fluidos Hidrodinámica Estudia los fluidos en movimientos, es decir, el flujo de los fluidos. Este estudio

Más detalles

REGIMENES DE CORRIENTES O FLUJOS

REGIMENES DE CORRIENTES O FLUJOS LINEAS DE CORRIENTE Ø Las líneas de corriente son líneas imaginarias dibujadas a través de un fluido en movimiento y que indican la dirección de éste en los diversos puntos del flujo de fluidos. Ø Una

Más detalles

TEMA 1 Técnicas básicas del análisis de los flujos

TEMA 1 Técnicas básicas del análisis de los flujos TEMA 1 Técnicas básicas del análisis de los flujos 1.1. Introducción: definición y magnitudes características FLUIDO: - no tienen forma definida - líquidos (volumen fijo) - gases (sin volumen definido,

Más detalles

HIDRÁULICA Ingeniería en Acuicultura.

HIDRÁULICA Ingeniería en Acuicultura. HIDRÁULICA Ingeniería en Acuicultura. Omar Jiménez Henríquez Departamento de Física, Universidad de Antofagasta, Antofagasta, Chile, I semestre 2011. Omar Jiménez. Universidad de Antofagasta. Chile Hidráulica

Más detalles

DINAMICA DE FLUIDOS O HIDRODINAMICA.

DINAMICA DE FLUIDOS O HIDRODINAMICA. DINAMICA DE FLUIDOS O HIDRODINAMICA. Es la rama de la mecánica de fluidos que se ocupa de las leyes de los fluidos en movimientos; estas leyes son enormemente complejas, y aunque la hidrodinámica tiene

Más detalles

Física I. Dr. Roberto Pedro Duarte Zamorano (Responsable) Dr. Mario Enrique Álvarez Ramos (Colaborador) Dr. Ezequiel Rodríguez Jáuregui (Colaborador)

Física I. Dr. Roberto Pedro Duarte Zamorano (Responsable) Dr. Mario Enrique Álvarez Ramos (Colaborador) Dr. Ezequiel Rodríguez Jáuregui (Colaborador) Física I Dr. Roberto Pedro Duarte Zamorano (Responsable) Dr. Mario Enrique Álvarez Ramos (Colaborador) Dr. Ezequiel Rodríguez Jáuregui (Colaborador) Webpage: http://paginas.fisica.uson.mx/qb 2015 Departamento

Más detalles

FUNDACIÓN EDUCACIONAL DE CHUQUICAMATA COLEGIO CHUQUICAMATA

FUNDACIÓN EDUCACIONAL DE CHUQUICAMATA COLEGIO CHUQUICAMATA FUNDACIÓN EDUCACIONAL DE CHUQUICAMATA COLEGIO CHUQUICAMATA INSTRUMENTO : GUIA DE APRENDIZAJE N 1 NIVEL (O CURSO) : CUARTO AÑO MEDIO PLAN : COMÚN UNIDAD (O EJE) : FUERZA Y MOVIMIENTO CONTENIDO(S) : ECUACIÓN

Más detalles

Mecánica de fluidos. Fis 018- Ref. Capitulo 10 Giancoli Vol II. 6ta ed. 23 de octubre de 2016

Mecánica de fluidos. Fis 018- Ref. Capitulo 10 Giancoli Vol II. 6ta ed. 23 de octubre de 2016 Mecánica de fluidos Fis 018- Ref. Capitulo 10 Giancoli Vol II. 6ta ed. 23 de octubre de 2016 ESTATICA DE FLUIDOS 1. Estados de la materia 2. Propiedades de los fluidos 3. Volumen, densidad y peso específico,

Más detalles

Guía de estudio 3. Ecuación de Bernoulli (sin interacciones). Programa de Ing. Pesquera. Unefm

Guía de estudio 3. Ecuación de Bernoulli (sin interacciones). Programa de Ing. Pesquera. Unefm PARTE I: ECUACIÓN DE BERNOULLI (SIN INTERACCIONES ENERGÉTICAS) OBJETIVOS Los objetivos de estas clases son: CONSIDERACIONES TEÓRICAS DE LA ECUACIÓN DE BERNOULLI La ecuación de Bernoulli es la siguiente:

Más detalles

Mecánica de Fluidos. Docente: Ing. Alba V. Díaz Corrales

Mecánica de Fluidos. Docente: Ing. Alba V. Díaz Corrales Mecánica de Fluidos Docente: Ing. Alba V. Díaz Corrales Mecánica de Fluidos Contenido Fluidos incompresibles Ecuación de continuidad Ecuación de Bernoulli y aplicaciones Líneas de cargas piezométricas

Más detalles

Balance de energía en un diafragma

Balance de energía en un diafragma Balance de energía en un diafragma Objetivos de la práctica! Estudiar el perfil de presiones que se produce a lo largo de una tubería en la que se encuentra instalado un diafragma.! Determinar el coeficiente

Más detalles

1. Fuerza. Leyes de Newton (Gianc )

1. Fuerza. Leyes de Newton (Gianc ) Tema 1: Mecánica 1. Fuerza. Leyes de Newton. 2. Movimiento sobreamortiguado. 3. Trabajo y energía. 4. Diagramas de energía. 5. Hidrostática: presión. 6. Principio de Arquímedes. 7. Hidrodinámica: ecuación

Más detalles

Mecánica y fluidos. Webpage: Departamento de FísicaF Universidad de Sonora. Dinámica de Fluidos

Mecánica y fluidos. Webpage: Departamento de FísicaF Universidad de Sonora. Dinámica de Fluidos Mecánica y fluidos Webpage: http://paginas.fisica.uson.mx/qb 007 Departamento de FísicaF Universidad de Sonora Dinámica de Fluidos 1 Temario 7. Dinámica de fluidos Dinámica de fluidos (.5 semanas) 1. Características

Más detalles

Mecánica y fluidos. Webpage: Departamento de FísicaF Universidad de Sonora

Mecánica y fluidos. Webpage: Departamento de FísicaF Universidad de Sonora Mecánica y fluidos Webpage: http://paginas.fisica.uson.mx/qb 007 Departamento de FísicaF Universidad de Sonora Dinámica de Fluidos Temario 7. Dinámica de fluidos Dinámica de fluidos (.5 semanas) 1. Características

Más detalles

3. Según el modelo de Atmósfera Estándar Internacional, si en la troposfera aumenta la altura:

3. Según el modelo de Atmósfera Estándar Internacional, si en la troposfera aumenta la altura: Preguntas de teoría 1. La Organización de Aviación Civil Internacional (OACI) se crea a) en 1944 a raíz de la firma del Convenio de la Haya. b) en 1944 a raíz de la firma del Convenio de Chicago. c) en

Más detalles

M E C Á N I C A. El Torbellino. El Torbellino

M E C Á N I C A. El Torbellino. El Torbellino M E C Á N I C A M E C Á N I C A Los torbellinos o vórtices se forman en fluidos (gases y líquidos) en movimiento. Para describir el movimiento de un fluido (según Euler) se necesita determinar en cada

Más detalles

Facultad de Ciencias Curso de Introducción a la Meteorología 2011

Facultad de Ciencias Curso de Introducción a la Meteorología 2011 Facultad de Ciencias Curso de Introducción a la Meteorología 011 BOLILLA 9 Dinámica de fluidos Fluido: Se denomina así al sistema de partículas que a diferencia de los sólidos, no están unidas rígidamente

Más detalles

Mediciones en Mecánica de Fluidos

Mediciones en Mecánica de Fluidos Mediciones en Mecánica de Fluidos En el laboratorio de ingeniería y en muchas situaciones industriales es importante medir las propiedades de fluidos y diversos parámetros de flujo, como presión, velocidad

Más detalles

FACULTAD DE CIENCIAS CURSO DE INTRODUCCION A LA METEOROLOGIA 2008

FACULTAD DE CIENCIAS CURSO DE INTRODUCCION A LA METEOROLOGIA 2008 BOLILLA 9 Dinámica de fluidos Fluidos: Se denomina así al sistema de partículas que a diferencia de los sólidos, no están unidas rígidamente y pueden moverse con una cierta libertad unas respecto de las

Más detalles

convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección

convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección convección El modo de transferencia de calor por convección se compone de dos mecanismos de transporte, que son, la transferencia de energía debido al movimiento aleatorio de las moléculas (difusión térmica)

Más detalles

CINEMATICA DE FLUIDOS ING. GIOVENE PEREZ CAMPOMANES

CINEMATICA DE FLUIDOS ING. GIOVENE PEREZ CAMPOMANES CINEMATICA DE FLUIDOS ING. GIOVENE PEREZ CAMPOMANES 3.1 OBJETIVOS Representar mediante ecuaciones matemáticas y gráficas el movimiento de los fluidos. Aplicar las ecuaciones fundamentales de líneas de

Más detalles

1. 2º EXAMEN. 2. Investigación 11. Fluidos. Contenido:

1. 2º EXAMEN. 2. Investigación 11. Fluidos. Contenido: SESIÓN 21 17 OCTUBRE 1. 2º EXAMEN 2. Investigación 11. Fluidos. Contenido: Estados de la materia. Características moleculares de sólidos, líquidos y gases. Fluido. Concepto de fluido incompresible. Densidad

Más detalles

Tópicos Selectos de Física.

Tópicos Selectos de Física. Tópicos Selectos de Física. Clave de la asignatura: ETF-1027 OBJETIVO GENERAL DEL CURSO Analizar, describir, solucionar problemas y aplicar los conceptos básicos de fluidos, termodinámica, ondas y óptica.

Más detalles

Estimación de la viscosidad de un líquido

Estimación de la viscosidad de un líquido Estimación de la viscosidad de un líquido Objetivos de la práctica! Estudiar la variación de la altura de un líquido viscoso con el tiempo en el interior de un tanque que descarga a través de un tubo.!

Más detalles

Transferencia de Calor Cap. 7. Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D.

Transferencia de Calor Cap. 7. Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D. Transferencia de Calor Cap. 7 Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D. Convección externa Convección externa OBJETIVOS Cuando el lector termine de estudiar este capítulo, debe ser capaz de: Distinguir

Más detalles

Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas.

Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas. Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas. Introducción y ecuaciones que rigen la propagación del oleaje. La propagación de oleaje en un fluido es un proceso no lineal. Podemos tratar

Más detalles

Viscosímetros. Explicaciones complementarias/ Versión 0.0/ MODULO 2/ CÁTEDRA DE FÍSICA/ FFYB/ UBA/

Viscosímetros. Explicaciones complementarias/ Versión 0.0/ MODULO 2/ CÁTEDRA DE FÍSICA/ FFYB/ UBA/ Viscosímetros, explicaciones complementarias 0.0/ M/ FISICA Viscosímetros Explicaciones complementarias/ Versión 0.0/ MODULO / CÁTEDRA DE FÍSICA/ FFYB/ UBA/ Cátedra de Física-FFYB-UBA [] Viscosímetros,

Más detalles

HIDRAULICA DE POTENCIA. Unidad 1. Bases físicas de la hidráulica

HIDRAULICA DE POTENCIA. Unidad 1. Bases físicas de la hidráulica HIDRAULICA DE POTENCIA Unidad 1. Bases físicas de la hidráulica Presión Este término se refiere a los efectos de una fuerza que actúa distribuida sobre una superficie. La fuerza causante de la presión

Más detalles

Fluidos Módulo 2. Dinámica de los Fluidos

Fluidos Módulo 2. Dinámica de los Fluidos A. Paniagua Física 0 Flujo de los fluidos Fluidos Módulo Dinámica de los Fluidos Se puede estudiar el movimiento de un fluido especificando la densidad!(x,y,z, t) y la velocidad v(x, y,z,t) en un punto

Más detalles

Cinemática: parte de la Física que estudia el movimiento de los cuerpos.

Cinemática: parte de la Física que estudia el movimiento de los cuerpos. CINEMÁTICA Cinemática: parte de la Física que estudia el movimiento de los cuerpos. Movimiento: cambio de posición de un cuerpo respecto de un punto de referencia que se supone fijo. Objetivo del estudio

Más detalles

Transferencia de Momentum

Transferencia de Momentum Transferencia de Momentum 1740-014-05- Última. Contenido 014-05- Factor de fricción pérdidas por fricción ecuación de Bernoulli: Ejemplo Para que sirve lo que se estudió? v l t v v p g t v G t 0 Factor

Más detalles

Movimiento de los Fluidos. M. En C. José Antonio González Moreno 4C 2 T/M 25 de Agosto del 2015

Movimiento de los Fluidos. M. En C. José Antonio González Moreno 4C 2 T/M 25 de Agosto del 2015 Movimiento de los Fluidos M. En C. José Antonio González Moreno 4C 2 T/M 25 de Agosto del 2015 Introducción: En esta presentación se explicará el movimiento de los fluidos, su forma de desplazarse y las

Más detalles

Aproximación a la Mecánica de Fluidos (La conservación de la energía en los fluidos: hidrodinámica, hidrostática y termodinámica)

Aproximación a la Mecánica de Fluidos (La conservación de la energía en los fluidos: hidrodinámica, hidrostática y termodinámica) Aproximación a la Mecánica de Fluidos (La conservación de la energía en los fluidos: hidrodinámica, hidrostática y termodinámica) Conceptos e hipótesis básicas Una de las grandes disciplinas clásicas olvidadas

Más detalles

Sugerencias para la incorporación de la fuerza de rozamiento viscoso en el estudio del movimiento de un cuerpo en un fluido.

Sugerencias para la incorporación de la fuerza de rozamiento viscoso en el estudio del movimiento de un cuerpo en un fluido. Sugerencias para la incorporación de la fuerza de rozamiento viscoso en el estudio del movimiento de un cuerpo en un fluido. Tipo de regimenes y número de Reynolds. Cuando un fluido fluye alrededor de

Más detalles

TEMA 1b: BIOMECANICA - FLUIDOS

TEMA 1b: BIOMECANICA - FLUIDOS Curso: 00-0 TEMA b: BIOMECANICA - FLUIDOS De un iceberg sólo se ve el 0% http://www.corbisimages.com/ TEMA b: BIOMECANICA - FLUIDOS Los tiburones siempre están nadando porque al no tener vejiga natatoria

Más detalles

ASPECTOS AVANZADOS EN MECÁNICA DE FLUIDOS SOLUCIONES EXACTAS

ASPECTOS AVANZADOS EN MECÁNICA DE FLUIDOS SOLUCIONES EXACTAS Problema 1 Un fluido de propiedades constantes (densidad ρ, viscosidad µ, conductividad térmica k y calor específico c) se encuentra confinado entre dos paredes horizontales infinitas separadas una distancia

Más detalles

Certamen 2 Fis130 (PAUTA) Física General III (FIS130) Mecánica de Fluidos y Calor

Certamen 2 Fis130 (PAUTA) Física General III (FIS130) Mecánica de Fluidos y Calor Certamen 2 Fis130 (PAUTA) Física General III (FIS130) Mecánica de Fluidos y Calor Pregunta 1 Un sifón es un dispositivo útil para extraer líquidos de recipientes. Para establecer el flujo, el tubo debe

Más detalles

DINAMICA DE FLUIDOS ING. GIOVENE PEREZ CAMPOMANES

DINAMICA DE FLUIDOS ING. GIOVENE PEREZ CAMPOMANES DINAMICA DE FLUIDOS ING. GIOVENE PEREZ CAMPOMANES 4.1 OBJETIVOS Aplicar los principios de la física sobre la: conservación de masa, cantidad de movimiento y de la energía. Representar los conceptos del

Más detalles

PÉRDIDAS DE CARGA FRICCIONALES

PÉRDIDAS DE CARGA FRICCIONALES PÉRDIDAS DE CARGA FRICCIONALES La pérdida de carga friccional que tiene lugar en una conducción representa la pérdida de energía de un flujo hidráulico a lo largo de la misma por efecto del rozamiento.

Más detalles

1. Introducción. Estática de Fluidos. Estudio de los Fluidos. Dinámica de Fluidos

1. Introducción. Estática de Fluidos. Estudio de los Fluidos. Dinámica de Fluidos Mecánica de Fluidos 1. Introducción.. Conceptos de densidad y presión. 3. Ecuación fundamental de la estática de fluidos. a) Principio de Pascal. b) Presión manométrica y presión atmosférica. c) Principio

Más detalles

Movimiento de los Fluidos. M. En C. José Antonio González Moreno 4D2 T/M 2 de Septiembre del 2014

Movimiento de los Fluidos. M. En C. José Antonio González Moreno 4D2 T/M 2 de Septiembre del 2014 Movimiento de los Fluidos M. En C. José Antonio González Moreno 4D2 T/M 2 de Septiembre del 2014 Introducción: En esta presentación se hablará sobre el movimiento de los fluidos, su forma de desplazarse

Más detalles

OPERACIONES UNITARIAS

OPERACIONES UNITARIAS OPERACIONES UNITARIAS UNIDAD I: MECÁNICA DE FLUIDOS INTRODUCCIÓN (CLASE TEÓRICA) DOCENTE: ING. PABLO GANDARILLA CLAURE pgandarilla@hotmail.com p.gandarilla@gmail.com Santa Cruz, noviembre de 2009 SUMARIO

Más detalles

FACULTAD DE ARQUITECTURA, DISEÑO Y ARTE U.N.A. CURSO PREPARATORIO DE ADMISION

FACULTAD DE ARQUITECTURA, DISEÑO Y ARTE U.N.A. CURSO PREPARATORIO DE ADMISION PLANEAMIENTO DE S TEÓRICAS Y PRACTICAS S TEORICAS Materia: Lógica Física. Curso: Curso Preparatorio (CPA). Grupos: Carga horaria semanal: 2 horas. Periodo Lectivo: Primer semestre/2.016. Coordinador: Ing.

Más detalles

Flujos laminares, turbulentos o una transición entre ambos

Flujos laminares, turbulentos o una transición entre ambos Flujos laminares, turbulentos o una transición entre ambos Cap. Eduardo O. Gilardoni La mayoría de las personas piensan que la presión atmosférica aumenta en una tormenta, un tornado o un huracán, pero

Más detalles

PRÁCTICA N 5: DEMOSTRACIÓN DEL TEOREMA DE BERNOULLI

PRÁCTICA N 5: DEMOSTRACIÓN DEL TEOREMA DE BERNOULLI PRÁCTICA N 5: DEMOSTRACIÓN DEL TEOREMA DE BERNOULLI INTRODUCCIÓN La dinámica de fluidos analiza los gases y líquidos en movimiento. Además, es una de las ramas más complejas de la mecánica. La conservación

Más detalles

UNIVERSIDAD POLITÉCNICA DE MADRID. ESCUELA DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO

UNIVERSIDAD POLITÉCNICA DE MADRID. ESCUELA DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO UNIVERSIDAD POLITÉCNICA DE MADRID. ESCUELA DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO Mecánica de Fluidos I Examen 6 04 2013 La figura representa dos depósitos cilíndricos de radio H que contienen agua de

Más detalles

EJERCICIOS DE FÍSICA II Profesor: José Fernando Pinto Parra

EJERCICIOS DE FÍSICA II Profesor: José Fernando Pinto Parra Ejercicios de Dinámica de los Fluidos: REPÚBLICA BOLIVARIANA DE VENEZUELA EJERCICIOS DE FÍSICA II Profesor: José Fernando Pinto Parra. Entre dos líneas de corriente bidimensionales de un escurrimiento

Más detalles

ρ p ρ f ρp = (162-12,42 2 ) 0,96 x 10 Reemplazando en las ecuaciones anteriormente descritas, tenemos: Carga debida al fluido q f = 4 ρ f (Kgf/cm)

ρ p ρ f ρp = (162-12,42 2 ) 0,96 x 10 Reemplazando en las ecuaciones anteriormente descritas, tenemos: Carga debida al fluido q f = 4 ρ f (Kgf/cm) Carga debida al fluido Reemplazando en las ecuaciones anteriormente descritas, tenemos: q f d 4 ρ f (Kgf/cm) Carga debida a la tubería: ρ f eso específico del fluido, agua ρ f 1,0 x 10-3 (Kgf/cm 3 ) q

Más detalles

COLEGIO DE BACHILLERES DEL ESTADO DE QUERÉTARO Plantel No. 7 El Marqués GUIA DE REGULARIZACIÓN DE FÍSICA II UNIDAD 1

COLEGIO DE BACHILLERES DEL ESTADO DE QUERÉTARO Plantel No. 7 El Marqués GUIA DE REGULARIZACIÓN DE FÍSICA II UNIDAD 1 UNIDAD 1 I. INTRODUCCIÓN 1. Investiga y resume los siguientes conceptos: a. HIDRODINÁMICA: b. HIDROSTÁTICA: c. HIDRÁULICA 2. Investiga y resume en qué consiste cada una de las características de los fluidos

Más detalles

UNIVERSIDAD DEL ZULIA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA DEPARTAMENTO DE INGENIERÍA QUÍMICA BÁSICA UNITARIAS I

UNIVERSIDAD DEL ZULIA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA DEPARTAMENTO DE INGENIERÍA QUÍMICA BÁSICA UNITARIAS I UNIVERSIDAD DEL ZULIA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA DEPARTAMENTO DE INGENIERÍA QUÍMICA BÁSICA LABORATORIO DE OPERACIONES UNITARIAS I PÉRDIDAS DE CARGA POR FRICCIÓN Profesora: Marianela

Más detalles

TRANSFERENCIA DE CANTIDAD DE MOVIMIENTO

TRANSFERENCIA DE CANTIDAD DE MOVIMIENTO TRANSFERENCIA DE CANTIDAD DE MOVIMIENTO Clasificación de los fluidos Un fluido es una sustancia o medio continuo que se deforma continuamente en el tiempo ante la aplicación de una solicitación o tensión

Más detalles

Mecánica de Fluidos. Análisis Diferencial

Mecánica de Fluidos. Análisis Diferencial Mecánica de Fluidos Análisis Diferencial Análisis Diferencial: Descripción y caracterización del flujo en función de la descripción de una partícula genérica del flujo. 1. Introducción 2. Movimiento de

Más detalles

COMPROBACIÓN DE LA ECUACIÓN DE BERNOULLI

COMPROBACIÓN DE LA ECUACIÓN DE BERNOULLI Laboratorio de Física de Procesos Biológicos COMPROBACIÓN DE LA ECUACIÓN DE BERNOULLI Fecha: 13/1/006 1. Obetivo de la práctica Comprobación experimental de la ecuación de Bernoulli de la dinámica de fluidos

Más detalles

Dinámica de fluidos: Fundamentos

Dinámica de fluidos: Fundamentos Capítulo 2 Dinámica de fluidos: Fundamentos Los fluidos, como genéricamente llamamos a los líquidos y los gases, nos envuelven formando parte esencial de nuestro medio ambiente. El agua y el aire son los

Más detalles

Velocidad de descarga

Velocidad de descarga Velocidad de descarga Dr. Guillermo Becerra Córdoa Uniersidad utónoma Chapingo Dpto. de Preparatoria grícola Área de Física Profesor-Inestigador 59595500 ext. 539 E-mail: gllrmbecerra@yahoo.com Km. 38.5

Más detalles

2. Ecuación de Bernoulli

2. Ecuación de Bernoulli Descargar versión para imprimir. Ecuación de Bernoulli Repaso: trabajo de una fuerza, energía potencial gravitatoria, y energía cinética 1. Trabajo de una fuerza. Uno de los efectos producido por las fuerzas

Más detalles

Mecánica de Fluidos. Docente: Ing. Alba V. Díaz Corrales

Mecánica de Fluidos. Docente: Ing. Alba V. Díaz Corrales Mecánica de Fluidos Docente: Ing. Alba V. Díaz Corrales Mecánica de Fluidos Contenido Fluidos incompresibles Ecuación de continuidad Ecuación de Bernoulli y aplicaciones Líneas de cargas piezométricas

Más detalles

UNIDAD DE FLUIDOS GUIA PARA EL PROFESOR. La dinámica de los fluidos es el estudio de un fluido en movimiento y de las fuerzas que lo producen.

UNIDAD DE FLUIDOS GUIA PARA EL PROFESOR. La dinámica de los fluidos es el estudio de un fluido en movimiento y de las fuerzas que lo producen. Jornada Enero 00 UNIDAD DE FLUIDOS GUIA ARA EL ROFESOR DINAMICA DE LOS FLUIDOS La dinámica de los fluidos es el estudio de un fluido en movimiento y de las fuerzas que lo producen. Una de las formas de

Más detalles

El tubo De Vénturi. Introducción

El tubo De Vénturi. Introducción El tubo De Vénturi Recopilado a partir de http://www.monografias.com/trabajos6/tube/tube.shtml por: Jose Carlos Suarez Barbuzano. Técnico Superior Química Ambiental. Técnico del Centro Canario del Agua

Más detalles

El principio de Bernoulli y efecto de tubo de Venturi. Mariel Romero, Edna Rodríguez, Gabriela Ruvalcaba Claudia Bernal

El principio de Bernoulli y efecto de tubo de Venturi. Mariel Romero, Edna Rodríguez, Gabriela Ruvalcaba Claudia Bernal El principio de Bernoulli y efecto de tubo de Venturi Mariel Romero, Edna Rodríguez, Gabriela Ruvalcaba Claudia Bernal FLUIDOS EN MOVIMIENTO El flujo de fluidos suele ser extremadamente complejo, como

Más detalles

MECANICA DE LOS FLUIDOS

MECANICA DE LOS FLUIDOS MECANICA DE LOS FLUIDOS 7 FUNDAMENTOS DEL FLUJO DE FLUIDOS Ing. Alejandro Mayori Flujo de Fluidos o Hidrodinámica es el estudio de los Fluidos en Movimiento Principios Fundamentales: 1. Conservación de

Más detalles

Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Mecánica de los Fluidos. Carrea de Ingeniería Civil

Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Mecánica de los Fluidos. Carrea de Ingeniería Civil Universidad Nacional de Córdoba Facultad de Ciencias Exactas Físicas y Naturales Cátedra de Mecánica de los Fluidos Carrea de Ingeniería Civil FLUJO COMPRESIBLE DR. ING. CARLOS MARCELO GARCÍA 2011 A modo

Más detalles

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE ING. MECÁNICO 2009-2 12198 MECÁNICA DE FLUIDOS PRÁCTICA No. MF-04 LABORATORIO DE NOMBRE DE LA PRÁCTICA MECÁNICA

Más detalles

Bases Físicas del Medio Ambiente. Dinámica de Fluidos

Bases Físicas del Medio Ambiente. Dinámica de Fluidos Bases Físicas del Medio Ambiente Dinámica de Fluidos Programa IV. DINÁMICA DE FLUIDOS. (3h) Introducción. Fluidos ideales. Flujo estacionario. Ecuación de continuidad. Ecuación de Bernouilli. Aplicaciones

Más detalles

RESUMEN DE FÍSICA TEMA 3: DINÁMICA. Definiciones: Una interacción entre 2 cuerpos. Una acción sobre un cuerpo hace que éste cambie su velocidad.

RESUMEN DE FÍSICA TEMA 3: DINÁMICA. Definiciones: Una interacción entre 2 cuerpos. Una acción sobre un cuerpo hace que éste cambie su velocidad. TEMA 3: DINÁMICA FUERZA: Definiciones: Una interacción entre 2 cuerpos. Una acción sobre un cuerpo hace que éste cambie su velocidad. Unidades: Newton (N). Nota: Hay otra unidad de fuerza llamada kilopondio=9.8n

Más detalles

Cinemática del sólido rígido

Cinemática del sólido rígido Cinemática del sólido rígido Teoría básica para el curso Cinemática del sólido rígido, ejercicios comentados α δ ω B B A A P r B AB A ω α O Ramírez López-Para, Pilar Loizaga Garmendia, Maider López Soto,

Más detalles

COMPROBACIÓN DE LA ECUACIÓN DE BERNOULLI

COMPROBACIÓN DE LA ECUACIÓN DE BERNOULLI Laboratorio de Física General (Fluidos) COMPROBACIÓN DE LA ECUACIÓN DE BERNOULLI Fecha: 0/10/013 1. Obetivo de la práctica Comprobación experimental de la ecuación de Bernoulli de la dinámica de fluidos

Más detalles

ESTADOS DE AGREGACIÓN DE LA MATERIA FLUIDOS

ESTADOS DE AGREGACIÓN DE LA MATERIA FLUIDOS FLUIDOS LÍQUIDOS ESTADOS DE AGREGACIÓN DE LA MATERIA FLUIDOS CONCEPTO DE FLUIDO Los líquidos y los gases son fluidos porque las partículas están dispuestas de forma más desordenada que en los sólidos,

Más detalles

Hidráulica. Temario: Tuberías Hidrostática Hidrodinámica. Energía. Perdidas de Carga Software para diseño Información en la Web

Hidráulica. Temario: Tuberías Hidrostática Hidrodinámica. Energía. Perdidas de Carga Software para diseño Información en la Web Temario: Tuberías Hidrostática Hidrodinámica Hidráulica Flujo laminar intermedio turbulento Energía Bernoulli Torricelli Ec. Gral del gasto Perdidas de Carga Software para diseño Información en la Web

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

Lección 10. Hidráulica subterránea

Lección 10. Hidráulica subterránea Lección 10. Hidráulica subterránea rincipio general de la hidrostática. Concepto de nivel piezométrico. Regímenes de flujo: flujo laminar y flujo turbulento. Velocidad crítica y número de Reynolds. Hidrodinámica:

Más detalles

REPÚBLICA DE CUBA MINISTERIO DE EDUCACIÓN DIRECCIÓN DE EDUCACIÓN TÉCNICA Y PROFESIONAL

REPÚBLICA DE CUBA MINISTERIO DE EDUCACIÓN DIRECCIÓN DE EDUCACIÓN TÉCNICA Y PROFESIONAL REPÚBLICA DE CUBA MINISTERIO DE EDUCACIÓN DIRECCIÓN DE EDUCACIÓN TÉCNICA Y PROFESIONAL CÓDIGO: ESPECIALIDAD: REFRIGERACIÓPROGRAMA: ELEMENTOS DE MECÁNICA DE LOS FLUIDOS. NIVEL MEDIO SUPERIOR TÉCNICO MEDIO.

Más detalles

Circuitos neumáticos y oleohidráulicos: Sistemas Hidráulicos. Sistemas Hidráulicos

Circuitos neumáticos y oleohidráulicos: Sistemas Hidráulicos. Sistemas Hidráulicos Circuitos neumáticos y oleohidráulicos: Sistemas Hidráulicos TEMA 4. SISTEMAS HIDRÁULICOS 1. Propiedades fluidos hidráulicos 2. Principios físicos fundamentales 3. Ventajas e inconvenientes 4. Bombas hidráulicas

Más detalles

LABORATORIO DE FENÓMENOS COLECTIVOS

LABORATORIO DE FENÓMENOS COLECTIVOS LABORATORIO DE FENÓMENOS COLECTIVOS LA VISCOSIDAD DE LOS LÍQUIDOS CRUZ DE SAN PEDRO JULIO CÉSAR RESUMEN La finalidad de esta práctica es la determinación de la viscosidad de diferentes sustancias (agua,

Más detalles

Problemas de Estática y Dinámica DINÁMICA DE FLUIDOS

Problemas de Estática y Dinámica DINÁMICA DE FLUIDOS Problemas de Estática y Dinámica DINÁMICA DE FLUIDOS (1 er Q.:prob pares, 2 ndo Q.:prob impares) 1. En el esquema adjunto las secciones de la tubería son 40 y 12 cm 2, y la velocidad del agua en la primera

Más detalles

CAPÍTULO 2 CONVECCION NATURAL SOBRE PLACAS HORIZONTALES. La transferencia de calor es la ciencia que busca predecir la transferencia de energía

CAPÍTULO 2 CONVECCION NATURAL SOBRE PLACAS HORIZONTALES. La transferencia de calor es la ciencia que busca predecir la transferencia de energía CAPÍTULO 2 CONVECCION NATURAL SOBRE PLACAS HORIZONTALES 2.1 Transferencia de Calor La transferencia de calor es la ciencia que busca predecir la transferencia de energía que puede tener lugar entre dos

Más detalles

HIDRODINAMICA. Asignatura: Física Biomecánica. Profesor: Fernando Vega. Autores: Angie Johana Torres Pedraza. Andrea Viviana Rodríguez Archila

HIDRODINAMICA. Asignatura: Física Biomecánica. Profesor: Fernando Vega. Autores: Angie Johana Torres Pedraza. Andrea Viviana Rodríguez Archila HIDRODINAMICA Asignatura: Física Biomecánica Profesor: Fernando Vega Autores: Angie Johana Torres Pedraza Andrea Viviana Rodríguez Archila María Paola Reyes Gómez Fecha: Mayo 19 /2014 INTRODUCCION Teorema

Más detalles

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 38 PRINCIPIO DE PASCAL. OBJETIVOS DEL APRENDIZAJE:

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 38 PRINCIPIO DE PASCAL. OBJETIVOS DEL APRENDIZAJE: UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 38 PRINCIPIO DE PASCAL. OBJETIVOS DEL APRENDIZAJE: ESTUDIAR LAS APLICACIONES DEL PRINCIPIO DE PASCAL. OBSERVAR LA

Más detalles

Etapa 1 Ecuación de Bernoulli

Etapa 1 Ecuación de Bernoulli Dr. Omar Olmos López Actividad de Aprendizaje Activo Ecuación de Bernoulli Instrucciones: Sigue las instrucciones que a continuación se te dan y para cada etapa documenta y analiza la situación que se

Más detalles

Hidráulica básica y dinámica de fluidos aplicados a la formación y transporte de gotas

Hidráulica básica y dinámica de fluidos aplicados a la formación y transporte de gotas Hidráulica básica y dinámica de fluidos aplicados a la formación y transporte de gotas Jornadas de actualización en tecnologías de aplicación en cultivos extensivos Contenido 1. Formación de gotas 2. Transporte

Más detalles

EL MOVIMIENTO CIENCIAS: FÍSICA PLAN GENERAL SISTEMA DE REFERENCIA DESPLAZAMIENTO PREUNIVERSITARIO POPULAR FRAGMENTOS COMUNES

EL MOVIMIENTO CIENCIAS: FÍSICA PLAN GENERAL SISTEMA DE REFERENCIA DESPLAZAMIENTO PREUNIVERSITARIO POPULAR FRAGMENTOS COMUNES EL MOVIMIENTO El movimiento siempre nos ha interesado. Por ejemplo, en el mundo de hoy consideramos el movimiento cuando describimos la rapidez de un auto nuevo o el poder de aceleración que tiene. La

Más detalles

Republica Bolivariana de Venezuela. Ministerio del Poder Popular para la Educación Superior

Republica Bolivariana de Venezuela. Ministerio del Poder Popular para la Educación Superior Republica Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Superior Universidad Nacional Experimental Politécnica de la Fuerza Armada Núcleo Zulia Autor: Ing. Marlon Arteaga 1 1.

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA A SOLUCIÓN

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA A SOLUCIÓN ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS ÍSICAS II TÉRMINO 2010-2011 PRIMERA EALUACIÓN DE ÍSICA A SOLUCIÓN Pregunta 1 (12 puntos) La trayectoria de un móvil viene descrita por las

Más detalles

CAPITULO 4 FLUIDIZACIÓN AL VACÍO. La palabra vacío se refiere a un espacio donde no existe materia. Aplicando esta

CAPITULO 4 FLUIDIZACIÓN AL VACÍO. La palabra vacío se refiere a un espacio donde no existe materia. Aplicando esta CAPITULO 4 FLUIDIZACIÓN AL VACÍO 4.1 FLUIDIZACIÓN AL VACÍO La palabra vacío se refiere a un espacio donde no existe materia. Aplicando esta definición al tema de esta tesis se podría decir que se refiere

Más detalles

TEMA II.7. Lagrange y Euler. Dr. Juan Pablo Torres-Papaqui. Departamento de Astronomía Universidad de Guanajuato DA-UG (México)

TEMA II.7. Lagrange y Euler. Dr. Juan Pablo Torres-Papaqui. Departamento de Astronomía Universidad de Guanajuato DA-UG (México) TEMA II.7 Lagrange y Euler Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas, Campus Guanajuato,

Más detalles

UNIVERSIDAD SIMÓN BOLÍVAR UNIDAD DE LABORATORIOS LABORATORIO A SECCIÓN DE MECÁNICA DE FLUIDOS

UNIVERSIDAD SIMÓN BOLÍVAR UNIDAD DE LABORATORIOS LABORATORIO A SECCIÓN DE MECÁNICA DE FLUIDOS 1. Objetivos UNIVERSIDAD SIMÓN BOLÍVAR PRÁCTICA ESTUDIO DEL FLUJO TURBULENTO EN TUBERÍAS LISAS Analizar flujo turbulento en un banco de tuberías lisas. Determinar las pérdidas de carga en tuberías lisas..

Más detalles

UNIDAD 6 F U E R Z A Y M O V I M I E N T O

UNIDAD 6 F U E R Z A Y M O V I M I E N T O UNIDAD 6 F U E R Z A Y M O V I M I E N T O 1. EL MOVIMIENTO DE LOS CUERPOS Un cuerpo está en movimiento si su posición cambia a medida que pasa el tiempo. No basta con decir que un cuerpo se mueve, sino

Más detalles