EJERCICIOS PROPUESTOS
|
|
|
- Juan Ortega Montero
- hace 8 años
- Vistas:
Transcripción
1 . FUNCINES EJERCICIS PRPUESTS. Un kilogramo de azúcar cuesta,0 euros. Completa la siguiente tabla que relaciona las magnitudes número de kilogramos y precio en euros. N.º de kilogramos Precio,0 5,50..3 Expresa el volumen de un cubo en función de su arista. V a 3 Indica si estas gráficas son funciones y, en caso afirmativo, halla su dominio y recorrido. a).4 a) Sí es función. Dominio: [, 4]. Recorrido: [, ]. No es función porque en [3, 4] toma más de un valor. En algunos países se utilizan las pulgadas para expresar longitudes. Para pasar de centímetros a pulgadas se multiplica por y se divide por 5. a) Es una función la relación entre los centímetros y las pulgadas? Forma una tabla, representa la gráfica y expresa la fórmula. a) Sí, porque para un valor en pulgadas existe un único valor en centímetros. x (cm) 0 5 f(x) (pulgadas) La fórmula que expresa la función es: f(x) 5 x.5 Estudia si son continuas las siguientes funciones. a) a) Sí No 4
2 .6 Indica en qué puntos son discontinuas estas funciones. a) a) x 3, x x 0.7 Halla la tasa de variación de estas funciones en el intervalo [, 3]. a) a) TV[, 3] f(3) f( ) 4 ( ) 5 TV[, 3] f(3) f( ) ( ).8 Para las funciones siguientes, halla la tasa de variación en los intervalos [0, ] y [3, 4]. a) f(x) 5 f(x) x 3 c) f(x) x 3 a) TV[0, ] f() f(0) TV[3, 4] f(4) f(3) TV[0, ] f() f(0) 5 3 TV[3, 4] f(4) f(3) 9 c) TV[0, ] f() f(0) 0 TV[3, 4] f(4) f(3)
3 .9 Dibuja un ejemplo de una función: a) Con tasa de variación nula en cualquier intervalo. Con tasa de variación negativa. c) Con tasa de variación positiva. Respuesta abierta. a) 0 0 c) 0.0 Analiza el crecimiento o decrecimiento de esta función en los intervalos. a) [ 3, ] [0, ] a) Creciente Decreciente. Indica dónde crece o decrece la siguiente función. Crece: [ 5, ] [6, ) Decrece: (, 5] [, 6] 6
4 . Determina los máximos y mínimos de la función. 0 Máximos relativos: (, 40), (3, 30), (6, 50) Mínimos relativos: (, 0), (4, 0), (8, 0) Máximo absoluto: (6, 50) Mínimo absoluto: (8, 0).3 Dibuja la gráfica de una función continua que tenga un máximo en el punto (, ) y un mínimo en el punto (5, 6). Respuesta abierta. (5, 6) (, ).4 Representa una función continua que tenga: Un máximo en el punto (, ). Un máximo absoluto en el punto de abscisa x =. Un mínimo en el punto de abscisa x = 0. Sin mínimo absoluto. Respuesta abierta. (, ) (, ) (0, ).5 Indica si las siguientes funciones son simétricas. a) a) Sí, es simétrica respecto al origen. Sí, es simétrica respecto al eje de ordenadas..6 Determina si es periódica la función y, en caso afirmativo, halla su período. Es periódica, con período 5. 7
5 PRBLEMAS PRPUESTS.7 En un laboratorio hay 4 probetas de igual capacidad. A B C D Se procede a llenar las 4 probetas con un grifo y se va anotando el volumen de agua y la altura alcanzada en cada probeta. Posteriormente, se representan estos datos y se obtienen las siguientes gráficas. 3 4 Asigna a cada probeta su gráfica correspondiente. A3, B, C4, D. EJERCICIS PARA ENTRENARSE Concepto de dependencia y función.8 Qué dos magnitudes están relacionadas en cada una de estas fórmulas? a) L r c) A l A r d) E 66,386 p a) La longitud de la circunferencia y su radio. El área del círculo y su radio. c) El área del cuadrado y su lado. d) El valor de los euros y el de las pesetas..9 Averigua el dominio y el recorrido de la siguiente función expresada por una gráfica. Dominio [0;,5) [4, 7); recorrido [ ; ] {, 5} 8
6 .0 La gráfica muestra el perfil de una etapa de una vuelta ciclista. Altura (m) 50 0 Distancia (km) Entre qué kilómetros la altura permanece constante? La altura permanece constante entre los 00 y 30 km.. Escribe la fórmula que convierte hectómetros en decámetros y a la inversa. Indica en cada caso cuáles son las variables dependiente e independiente. Paso de hm a dam: hm 0 dam Variable independiente: hm; variable dependiente: dam Paso de dam a hm: dam = hm 0 Variable independiente: dam; variable dependiente: hm. Halla la fórmula que permite obtener el área de un triángulo isósceles de lados 3, 3 y x centímetros, en función del lado desigual. A triángulo = base altura x h Aplicamos el teorema de Pitágoras a cualquiera de los dos triángulos rectángulos que se obtienen al trazar la altura desde el vértice que une los lados iguales: 3 h x 9 h x h 36 x 4 x 3 6 x Con lo que el área buscada es: A triángulo x 3 6 x h x Continuidad y variación de una función.3 Estudia la continuidad de la siguiente función. Continua en: (, ) (, 4) (4, ); discontinua en: {, 4} 9
7 .4 Cuál de las siguientes funciones tiene la tasa de variación mayor en el intervalo 0,? 4 a) y x y x c) y x y x y x y x f(0) 0 0 f Tasa 0,89 6 En decimales 0,065 0,5 0,89 La mayor tasa la tiene la función y x..5 Calcula la tasa de variación de la función en estos intervalos. a) [ 3, ] [, 0] c) [3, 4] a) TV[ 3, ] f( ) f( 3) 4 TV[, 0] f(0) f( ) c) TV[3, 4] f(4) f(3) Un anuncio por palabras en un diario cuesta,80 euros por palabra y se establece un mínimo de tres palabras para poder ser admitido. a) Elabora una tabla y una gráfica de la función que relaciona el número de palabras con el precio del anuncio. Es continua la función? c) Dónde se producen discontinuidades? d) Existe algún intervalo donde la función sea continua? a) N. o de palabras Precio ( ) 8,4, 4... Precio ( ) 0,4 8,4 0 No c) En todos los puntos d) No N. o de palabras.7 Une cada función con su tasa de variación en el intervalo [, 3]. Función Tasa y x 3 y x y x
8 .8 Un parking público expone este anuncio con sus tarifas.,50. a hora o fracción,5 / hora o fracción a) Elabora una tabla y una gráfica de la situación. Es continua la función? Dónde se producen discontinuidades? a) N. o de horas 0,5, Precio ( ) 0,5,5 3,75 5 6,5 7, Precio ( ),50 0 Tiempo (horas) No es continua. Las discontinuidades se producen en {}, {,5}, {}, {,5}, Crecimiento, simetría y periodicidad.9 Una función viene dada por esta gráfica. a) Indica los intervalos donde la función es creciente, constante o decreciente. Qué signo tiene la tasa de variación en los intervalos [, 3], [6, 0] y [ 5, ]? a) Crece en (6, ); decrece en (, ); es constante en (, 6). La tasa en [, 3] es igual a 0; en [6, 0] es positiva, y en [ 5, ] es negativa..30 bserva esta función y contesta a las preguntas. a) Cuáles son los máximos y mínimos de la función en el intervalo [, ]? Son absolutos o relativos? Sabiendo que la función es periódica, cuántos máximos y mínimos tiene la función? a) Máximo en (, ) y mínimo en (, ). Son absolutos y relativos. Infinitos 3
9 .3 Completa la gráfica de la siguiente función para que tenga la simetría que se indica. a) Par Impar a).3 Indica si estas funciones tienen simetría par o impar. a) f(x) x g(x) x x c) h(x) x x 4 a) Impar. f( x) f(x) x ( ) Impar. g( x) g(x) c) Par. h( x) ( x ) x ( x) x h(x) 4.33 Representa la gráfica de una función continua con un máximo absoluto en ( 3, 4), un máximo relativo en (0, 3), un mínimo absoluto en (, 0) y un mínimo relativo en (, ). Respuesta abierta. ( 3, 4) (0, 3) (, ) (, 0) 3
10 .34 Halla el valor de la siguiente función periódica en estos puntos. a) 7 6 c) 34 d) a) f(7) f( 6) c) f( 34) d) f() CUESTINES PARA ACLARARSE.35 Cuáles de estas relaciones corresponden a funciones? a) A cada número le hacemos corresponder sus divisores. A cada persona, el día de su nacimiento. c) A cada persona, el nombre de sus hijos. d) A cada hijo, el nombre de su padre. e) A cada número, su raíz cúbica. Son funciones b y e..36 Completa la tabla de esta función, sabiendo que tiene simetría impar. x y Dónde alcanzará los máximos y los mínimos una función cuyo estudio del crecimiento es el siguiente? Crece en los intervalos (, 5) y (, 4). Decrece en los intervalos ( 5, ) y (4, ). Alcanza un máximo en x 5 y otro en x 4. Alcanza un mínimo en x..38 Puede existir un mínimo con ordenada mayor que la ordenada en un máximo? un máximo con ordenada menor que la ordenada en un mínimo? Dibuja las situaciones anteriores con gráficas de funciones. Sí, ambas situaciones son posibles, como se ve en la gráfica de esta función..39 Si se establece la relación A cada número le corresponden sus factores primos, cuál tendría que ser su dominio para que fuera una función? El dominio de la función tendría que ser {}, ya que es el único valor al que le correspondería una sola imagen. 33
11 PRBLEMAS PARA APLICAR.40 bserva la gráfica y estudia las siguientes propiedades. a) Dominio y recorrido. Intervalos de continuidad y discontinuidades. c) Tasa de variación en los intervalos [ 5, 3], [, 0] y [4, 5]. d) Crecimiento y decrecimiento. e) Máximos y mínimos absolutos y relativos. f) Simetrías. a) Dom [ 8, 8]. Rec = [, 5] Es continua en [ 8, ) (, ) (, 8] y discontinua en {, }. c) TV[ 5, 3] 5 7 TV[, 0] 0 TV[4, 5] d) Crece en ( 7, 5) ( 3, ) (3, 5) (7, 8). Decrece en ( 8, 7) ( 5, 3) (, 3) (5, 7). Es constante en (, ). e) Máximos absolutos y relativos: ( 5, 5) y (5, 5) Mínimos absolutos y relativos: ( 3, ) y (3, ) f) Simetría par.4 Con un solo litro de gasolina se contaminan litros de agua. Tenemos una inmensa piscina de 0,5 kilómetros de ancho, kilómetros de largo y 0 metros de profundidad. a) Cuántos litros de gasolina contaminan toda el agua de la piscina? Un petrolero tiene una capacidad, aproximada, de toneladas de gasolina. Cuántas piscinas de las anteriores contaminaría si sus tanques se rompiesen? c) Representa la función que relaciona los litros de gasolina y los litros de agua contaminada. a) Capacidad de la piscina m L Número de litros ,3w litros hacen falta para contaminar toda la piscina Con toneladas de fuel tenemos litros de fuel. Número de piscinas c) x y Agua (litros) Gasolina (Litros) 34
12 .4 Un autobús universitario realiza cada día dos paradas, además de la inicial, para recoger estudiantes. La gráfica muestra su recorrido diario. Distancia de la estación de partida (km) 0 Tiempo (min.) a) Es periódica la función? Si la respuesta es afirmativa indica el período. A cuántos kilómetros está la universidad? c) Cuánto tiempo tarda en realizar el trayecto a la universidad? d) Cuánto tiempo está parado en todo su recorrido? e) Qué significa el decrecimiento de la gráfica? a) Sí. El período es de 80 minutos. A 6 km. c) 30 minutos d) 40 minutos e) Significa que vuelve a la estación..43 La afluencia a una piscina pública, a lo largo de un día de verano, viene dada por esta gráfica. N.º de personas Hora del día bserva la gráfica y determina estos datos. a) El horario de la piscina. El máximo número de personas en la piscina y la hora en que se produce. c) Los períodos de decrecimiento de afluencia de personas. a) De 0.00 a personas a las 9.00 c) De 9.00 a 0.00, porque se van marchando..44 La tabla relaciona el volumen de los cilindros de 0 centímetros de altura con el radio de su base. x (radio base) y (volumen cilindro) a) Halla la ecuación de la relación. Construye la gráfica de la función que relaciona el volumen de los cilindros con el radio de la base. a) y x 0 0 x Volumen del cilindro (cm3) Radio de la base (cm) 35
13 .45 Un peregrino explica a otro cómo había transcurrido la etapa del camino de Santiago que acababa de terminar: «Comencé a caminar con todo el grupo charlando tranquilamente hasta llegar a una encrucijada de caminos donde no se distinguían las señales auténticas. Estuvimos allí media hora hasta que Ricardo encontró un cruceiro con la flecha amarilla. Como andábamos retrasados, a María y a mí un lugareño nos acercó en coche hasta el siguiente pueblo. a descansados, y cuesta abajo, hicimos un tramo a bastante ritmo hasta un bosque de hayas con un río donde nos dimos un chapuzón con unos franceses. Como los franceses marchaban en bicicleta nos llevaron de paquete unos kilómetros, pero Ricardo se olvidó su carné de peregrino en el río y tuvimos que volver con los franceses a buscarlo. Les dijimos que nos llevaran las mochilas para ir más ligeros hasta el final de la etapa. Fuimos bastante rápido hasta llegar al último tramo del puerto del Cebreiro, donde llegamos exhaustos.» Dibuja la gráfica que indica la relación entre la distancia al punto de partida y el tiempo. Distancia al origen Paso lento Coche Cruce Paso rápido Pueblo Bicicleta Río Tiempo (Horas) Vuelta atrás Último tramo Paso rápido REFUERZ Función. Continuidad y tasa de variación.46 Cuáles de las siguientes gráficas representan una función? a) Solo la gráfica del apartado a.47 bserva la gráfica y estudia las siguientes propiedades. a) Dominio y recorrido. Calcula f( 3), f(4) y f(8). c) Intervalos de continuidad y discontinuidades. d) Tasa de variación en los intervalos [ 4, ], [0, 3] y [6, 8]. a) Dominio: ( 7, 0]; recorrido: [ 3, 6] f( 3),5; f(4) 4; y f(8) c) Intervalos de continuidad: ( 7, 3) (3, 8) (8, 0). Las discontinuidades están en x 3 y x 8. d) TV[ 4, ] 0 ; TV[0, 3] ( 3) 5; TV[6, 8]
14 Crecimiento, simetrías y periodicidad.48 Indica los intervalos donde la función es creciente, constante y decreciente. Creciente: [ 3, 0) (8, 3) Constante: (0, 5) Decreciente: (5, 8).49 La gráfica de una función tiene el siguiente aspecto. Es periódica? En caso afirmativo, indica su período. Sí, con período 6.50 Indica la simetría de estas funciones. a) a) Simétrica respecto al eje Simétrica respecto al origen 37
15 AMPLIACIÓN.5 Dibuja la gráfica de una función que se ajusta a las siguientes características. Dominio: ( 3, 3) Recorrido: [ 4, 5] Mínimos en (, 4) y (, 4) Máximo en (0, 5) Simetría: par Respuesta abierta..5 La fórmula y x 5x expresa el área de una familia de rectángulos de un determinado perímetro en función de la base. Cuál es el perímetro de la familia de rectángulos? Área base altura y x 5x x(5 x) Altura (5 x) Perímetro base altura Perímetro x (5 x) x 0 x Dentro del grupo de cilindros de centímetros cúbicos de volumen, halla la fórmula del área del cilindro en función del radio de la base. Área x xh x x x x 4 x Con un cartón cuadrado de 5 centímetros de lado, se construyen cajas sin tapa recortando de cada esquina cuadrados pequeños de lado x. Calcula la expresión algebraica del volumen de la caja en función del lado x. x x 5 cm 5 cm bservando la figura se tiene: a 5 x b 5 x c x v (5 x) x cm 3 38
16 PARA INTERPRETAR RESLVER.55 Vaciado de depósitos Los siguientes depósitos están llenos con la misma cantidad de agua y contienen en su base un dispositivo mecánico y un grifo que hacen que se arrojen, en los tres casos, 5 litros por minuto de forma constante. 3 Las gráficas representan la altura del nivel del agua en función del tiempo que ha pasado desde que se ha abierto el grifo. a) Nivel c) Nivel Tempo Tempo Nivel d) Nivel Tiempo Tiempo Indica cuál es la gráfica intrusa y señala a qué depósito corresponde cada una de las otras tres. La gráfica a corresponde al recipiente 3. La gráfica c corresponde al recipiente. La gráfica d corresponde al recipiente. La gráfica b es la intrusa. AUTEVALUACIÓN.A Halla el dominio, recorrido, máximos y mínimos, discontinuidades, crecimiento y decrecimiento, y simetrías de la siguiente función. Dominio: [ 6, 6] Recorrido: [, 5] Mínimos: ( 4, ), ( 3, ), (3, ) y (4, ) Máximo: ( 6, 5), (6, 5) y (0, 3) Discontinuidades: { 3, 3} Creciente: ( 4, 3) ( 3, 0) (4, 6) Decreciente: ( 6, 4) (0, 3) (3, 4) Simetría: par 39
17 .A En un triángulo equilátero de lado x, expresa mediante una fórmula la altura en función del lado. Sea h la altura y x el lado de la base. Aplicando el teorema de Pitágoras se tiene: Altura: h x x 4 x 3.A3 Un agente de seguros de una empresa aseguradora A gana un mínimo de 400 euros al mes y, además, euros por cada seguro que vende. El agente de otra aseguradora B gana 0 euros por cada seguro vendido, pero no tiene sueldo fijo. a) Expresa la ecuación de la función que relaciona el número de seguros vendidos con el sueldo, en cada aseguradora. Dibuja sus gráficas. c) A partir de cuántos seguros vendidos gana más el de la aseguradora B? a) Llamaremos x al número de seguros vendidos. La función f(x) representa el sueldo de un empleado de la aseguradora A, y g(x), el sueldo de un empleado de la aseguradora B. f(x) 400 x g(x) 0x Dinero ( ) B A N. o de seguros c) 0x 400 x x 50 A partir de 50 seguros.a4 Indica el tipo de simetría que existe en la siguiente función expresada por una tabla. x y Simetría impar.a5 Esta gráfica estudia el rendimiento de los escolares en función de la hora del día. 00 Rendimiento (%) Hora del día a) Cuándo se produce el máximo rendimiento? el menor rendimiento? En qué período de la mañana se tiene mayor concentración? c) En qué momento de la tarde consideras que se deben hacer los deberes? a) El máximo se produce a las.00, y el mínimo, a las De 9.30 a.00 c) A las
18 .A6 Si una función continua, sin ser constante en ningún intervalo, tiene un solo máximo en (, 5) y un solo mínimo en (, 3), en qué intervalos crece y en cuáles decrece? Crece en (, ) y en (, ). Decrece en (, )..A7 bserva la gráfica de esta función. Es periódica? En caso afirmativo, indica el período. Sí, es periódica, y su período es 3,5. 4
EJERCICIOS PROPUESTOS
. FUNCINES EJERCICIS PRPUESTS. Un kilogramo de azúcar cuesta,0 euros. Completa la siguiente tabla que relaciona las magnitudes número de kilogramos y precio en euros. N.º de kilogramos 5 0 0 Precio,0 5,50..3
TEMA 7. FUNCIONES. - Variables dependiente e independiente.
TEMA 7. FUNCIONES 7.1. Definiciones. - Función. - Variables dependiente e independiente. - Imagen y antiimagen. - Interpretación de gráficas. - Dominio y recorrido. 7.2. Propiedades de las funciones. -
EJERCICIOS PROPUESTOS. El (0, 1) es el único punto que tienen en común. Crece más rápidamente y 10 x.
2 FUNCINES EJERCICIS PRPUESTS 2. Representa las siguientes funciones. a) y 6 x b) y 0 x Tienen algún punto en común? Cuál crece más rápidamente? y = 0 x El (0, ) es el único punto que tienen en común.
ACTIVIDADES INICIALES
9 Funciones ACTIVIDADES INICIALES 9.I. Busca en internet cuáles son los precios que reciben los agricultores y ganaderos por cinco alimentos básicos, por ejemplo, leche, arroz, huevos, patatas y plátanos.
Funciones. 1. Indica, de forma razonada, si las siguientes gráficas corresponden a funciones. a) b) c)
Funciones 1. Indica, de forma razonada, si las siguientes gráficas corresponden a funciones.. Representa las funciones dadas a partir de las siguientes tablas. 3 1 0 4 4 1 0 1 5 6 3 0 1 3 y 7 1 14 y 6
EJERCICIOS RESUELTOS TEMA 11 Y 12. FUNCIONES. FUNCIÓN LINEAL Y CUADRÁTICA. Apellidos y Nombre:.Curso: 3º E.S.O. Grupo:.
EJERCICIS RESUELTS TEMA 11 1. FUNCINES. FUNCIÓN LINEAL CUADRÁTICA Apellidos y Nombre:.Curso: º E.S.. Grupo:. 1 El coste del recibo del teléfono depende de los minutos hablados y una cuota fija de 1 euros.
FUNCIONES. 1. Funciones y sus gráficas
FUNCINES. Funciones y sus gráficas Función es una relación entre dos variables a las que, en general se les llama x e y. x es la variable independiente. y es la variable dependiente. La función asocia
5) Aproxima a las décimas las siguientes raíces utilizando la aproximación por defecto, exceso y redondeo:
Números ) Calcula: a) [8 (6 ) ] : ( 7) b) (8 ) ( 7) ( 6) c) 8 0 : ( ) 6 : d) ( ) 8 (6 ) ( 7) ) Epresa en forma de única potencia: a) ( ) ( ) b) () ( ) c) ( ) : ( ) d) ( ) 6 : ( ) ) Simplifica las epresiones:
3º ESO TEMA 7.- FUNCIONES Y GRÁFICAS. Página web del profesor: Profesor: Rafael Núñez Nogales
3º ESO TEMA 7.- FUNCIONES Y GRÁFICAS Página web del profesor: http://www.iesmontesorientales.es/mates/ 1.-LAS FUNCIONES Y SUS GRÁFICAS. (Págs: 13 y 133) 1.1.- Qué es una función? Esta gráfica representa
Ficha 1. Formas de expresar una función
Ficha 1. Formas de expresar una función 1. En unas instalaciones deportivas cobran 5 euros por la entrada, que da derecho a la utilización de todas las dependencias salvo las pistas de tenis, por las que
12 FUNCIONES Representa las funciones y 4 x e y 7 x en los mismos ejes. Tienen algún punto en común? El punto (0, 1) es el único punto en común.
FUNCINES.5 Representa las funciones y 4 e y 7 en los mismos ejes. Tienen algún punto en común?. Representa las siguientes funciones. a) y 6 b) y 0 Tienen algún punto en común? Cuál crece más rápidamente?
8 FUNCIONES: PROPIEDADES GLOBALES
8 FUNCINES: PRPIEDADES GLBALES EJERCICIS PRPUESTS 8. Escribe las coordenadas de los puntos que aparecen en la figura. A D B C A( 3, 3) B(3, ) C(3, ) D( 3, 3) 8. Representa estos puntos en un eje de coordenadas.
EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES
EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES 1 er PARCIAL 1. Obtén los valores reales que cumplen las siguientes condiciones: x+ x 3 5 x 1/ =1. Opera y expresa el resultado en notación científic (5,
Ejercicios de números reales
Ejercicios de números reales Ejercicio nº.- Clasifica los siguientes números como naturales, enteros, racionales o reales:,7 7 4 7 Ejercicio nº.- Considera los siguientes números: 9,000000..., 8,... Clasifícalos
EJERCICIOS 2º ESO RECUPERACIÓN ESTIVAL. a) 2, b)0,
EJERCICIOS º ESO RECUPERACIÓN ESTIVAL 1º) Realiza las siguientes operaciones: [ ] + ( 1 ( 1) + ) a) : ( ) b) ( ) : 9 ( 6 + ( 1+ )) º) Resuelve el siguiente castillo: 000 ( ) 000 1000 000 7 1 + 8 º) Calcula
EJEMPLO EJERCICIOS DE NÚMEROS PARA RECUPERAR. M2. Utiliza la notación científica para representar números grandes.
EJEMPLO EJERCICIOS DE NÚMEROS PARA RECUPERAR M1. Calcula correctamente potencias de base entera y exponente natural, utilizando las propiedades de las potencias. 1º. Calcula las siguientes potencias: a)
Unidad 6: Funciones reales de variable real.
Funciones reales de variable real 1 Unidad 6: Funciones reales de variable real. 1.- Concepto de función. Expresión analítica de una función. Variables x e y Existe relación entre x e y No hay relación
2. [2014] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima.
cos() - e + a. [04] [ET-A] Sabiendo que lim 0 sen() es finito, calcula a y el valor del límte.. [04] [ET-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima..
1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones:
APLICACIONES DE DERIVADAS 1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones: a. 6 9 b. c. 2 d. 2 e. f. 1 2. Estudia los intervalos de crecimiento y decrecimiento de las siguientes
EJERCICIOS VERANO. Matemáticas Bachiller 1ºCCSS
EJERCICIOS VERANO Matemáticas Bachiller 1ºCCSS 1ª SESIÓN REPASO Semana:... 2. Representa las siguientes funciones, sabiendo que: a) Tiene pendiente 3 y ordenada en el origen 1. b) Tiene por pendiente 4
4.- Realiza las siguientes operaciones: a) 3,25 (8,23 4,2)
MATEMÁTICAS.- PRIMER CURSO ESO. Repasa durante el verano estos objetivos, realiza estos ejercicios y preséntalos el día del examen de recuperación en Septiembre. La prueba de Septiembre serán ejercicios
Características globales de las funciones
Características globales de las funciones. Funciones Considera los rectángulos con un lado de doble longitud que el otro. Expresa el perímetro y el área en función del lado menor. P = (x + x) = x A = x
Trabajo de Matemáticas AMPLIACIÓN 3º ESO
Trabajo de Matemáticas AMPLIACIÓN º ESO ACTIVIDADES DE AMPLIACIÓN TEMA : NÚMEROS FRACCIONARIOS O RACIONALES Problema nº Un grifo tarda en llenar un depósito horas y otro tarda en llenar el mismo depósito
Aplicaciones de las derivadas
11 Aplicaciones de las derivadas 1. Representación de funciones polinómicas Piensa y calcula Calcula mentalmente: a) lím ( 3 3) b) lím ( 3 3) +@ a) + @ b) @ @ Aplica la teoría Representa las siguientes
Expresa, de forma algebraica y mediante una tabla de valores, la función que asigna a cada número su cubo menos dos veces su cuadrado.
Funciones EJERCICIOS 00 Expresa, de forma algebraica y mediante una tabla de valores, la función que asigna a cada número su cubo menos dos veces su cuadrado. Expresión algebraica: y = x 3 x o f(x) = x
UNIDAD 4 Funciones. Características
UNIDAD Funciones. Características. Autoevaluación Pág. 1 de 6 I. Interpretas una función dada gráficamente y analizas los aspectos más relevantes de ella (dominio, recorrido, crecimiento, máximos y mínimos
EJERCICIOS RESUELTOS DE MÍNIMOS TEMA 6 FUNCIONES Y GRÁFICAS 3º ESO
EJERCICIOS RESUELTOS DE MÍNIMOS TEMA 6 FUNCIONES Y GRÁFICAS 3º ESO Ejercicio nº 1.- La siguiente gráfica representa una excursión en autobús de un grupo de estudiantes, reflejando el tiempo (en horas)
Funciones. En busca de Klingsor LITERATURA Y MATEMÁTICAS
Funciones LITERATURA MATEMÁTICAS En busca de Klingsor Cierta vez, un reportero preguntó a Einstein: Eiste una fórmula para obtener éito en la vida? Sí, la hay. Cuál es? preguntó el reportero, insistente.
EJERCICIOS PAU MATEMÁTICAS II ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.
FUNCIONES I: LÍMITES, CONTINUIDAD Y DERIVAVILIDAD 1- Sea : definida por a) Halla a, b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1/2 y que la recta tangente en el punto de
UNIDAD 8 Funciones. Características
Pág. de 5 I. Interpretas una función dada gráficamente y analizas los aspectos más relevantes de ella (dominio, recorrido, crecimiento, máximos y mínimos )? Observa la gráfica y contesta las cuestiones:
PROBLEMAS DE REPASO. Solución: Si llamamos x e y a las longitudes de cada uno de los catetos, sabemos que: x 2 y 2 1 y 2 1 x 2 El volumen del cono es:
PROBLEMAS DE REPASO 1. La hipotenusa de un triángulo rectángulo mide 1 dm. Hacemos girar el triángulo alrededor de uno de sus catetos. Determina la longitud de los catetos de forma que el cono engendrado
FUNCIONES DE 4º ESO (OPCIÓN A)
FUNCIONES DE 4º ESO (OPCIÓN A) DEPENDENCIA ENTRE MAGNITUDES.- RELACIONES DADAS POR TABLAS: En una clase de laboratorio un alumno ha medido la temperatura de un líquido según se calentaba. Los resultados
x 2 a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1.
. [0] [SEP-B] Sea la función f definida por f() = e- para. - a) Estudia las asíntotas de la gráfica de f. b) Halla los etremos relativos (abscisas donde se obtienen y valores que se alcanzan) y los intervalos
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 03 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
APUNTES DE GEOMETRÍA
Colegio Sagrado Corazón de Jesús Sevilla MATEMÁTICAS 2º ESO APUNTES DE GEOMETRÍA pág. 1 DEFINICIONES: 1). PUNTO: Intersección de 2 rectas. 2). LÍNEA: Intersección de dos superficies. Las líneas pueden
FORMULARIO (ÁREAS DE FIGURAS PLANAS)
FORMULARIO (ÁREAS DE FIGURAS PLANAS) Rectángulo Triángulo Paralelogramo Cuadrado Cuadrilátero cuyos lados forman ángulos de 90º. Es la porción de plano limitada por tres segmentos de recta. Cuadrilátero
Funciones y Gráficas: Actividades de recuperación
Funciones y Gráficas: Actividades de recuperación.- Indica en cada caso las variables que se comparan y si se trata de una función o no: a) Las horas del día con el calor que hace en una ciudad. b) Los
EJERCICIOS PROPUESTOS. a) En efecto, ya que a cada medida en centímetros le corresponde otra en pulgadas.
0 FUNCINES EJERCICIS PRPUESTS 0. Para pasar de centímetros a pulgadas se multiplica por y se divide por 5. a) Es una función? Escribe su epresión algebraica. c) Confecciona una tabla y representa la gráfica
Bloque 3. Funciones. 1. Análisis de funciones
Bloque 3. Funciones 1. Análisis de funciones 1. Concepto de función Una función es una relación entre dos magnitudes, de tal manera que a cada valor de la primera le corresponde un único valor de la segunda,
RELACIÓN DE EJERCICIOS PARA ALUMNOS CON LA MATERIA PENDIENTE MATEMÁTICAS 1º E.S.O. Apellidos, Nombre: NÚMEROS NATURALES. OPERACIONES.
RELACIÓN DE EJERCICIOS PARA ALUMNOS CON LA MATERIA PENDIENTE MATEMÁTICAS 1º E.S.O. Apellidos, Nombre: Ejercicio nº 1. NÚMEROS NATURALES. OPERACIONES. Aproxima a los millares, mediante truncamiento y redondeo,
14 CUERPOS GEOMÉTRICOS. VOLÚMENES
EJERCICIOS PARA ENTRENARSE Poliedros 14.33 Calcula la suma de los ángulos de las caras que concurren en un vértice de los poliedros regulares. Qué observas? TETRAEDO: En un vértice concurren tres triángulos
EJERCICIOS RECUPERACIÓN MATEMÁTICAS 2º ESO
NÚMEROS ENTEROS Ejercicio nº 1: EJERCICIOS RECUPERACIÓN MATEMÁTICAS º ESO a Calcula todos los divisores de 46. b Escribe cinco múltiplos consecutivos de 16 comprendidos entre 7 y 10. c Cuándo un número
15 cm. 5 cm 1 litro = 1,000
1) La expresión algebraica correspondiente al enunciado el largo de un rectángulo es tres unidades más que el doble de su ancho es a) l + 3 = 2a b) l = 3 + 2a c) + 3 = a d) l = + 3 2) Cuántos litros de
DATE: AND SURNAME: Ejercicio nº 2.- La siguiente gráfica corresponde al recorrido que sigue s Antonioo para ir desde su casa al trabajo:
WORKSHEET: UNIT 7. FUNCTIONS AND CHARDS YEAR: 3 DATE: NAME AND SURNAME: Ejercicio nº 2.- La siguiente gráfica corresponde al recorrido que sigue s Antonioo para ir desde su casa al trabajo: a) A qué distancia
Funciones y gráficas. Londres Atenas París Londres Múnich Barcelona. Países Hombres Mujeres
000 Atenas 96 París Londres Múnich Barcelona 94 94 97 99 Países Hombres Mujeres Londres 0 En enero hubo 00 clientes; en febrero, 50; en marzo, 00; en abril, 50; en mayo, 300; y en junio, 400. El total
FUNCIONES 1 REPRESENTACIÓN DE PUNTOS III IV C 1
FUNCIONES REPRESENTACIÓN DE PUNTOS Un punto en el plano queda localizado por sus coordenadas. Estas constituyen un par ordenado de números que se escribe entre paréntesis. El primero, x, (representado
INTERPRETACIÓN DE GRÁFICAS
INTERPRETACIÓN DE GRÁFICAS Ejercicio nº 1.- La siguiente gráfica representa una excursión en autobús de un grupo de estudiantes, reflejando el tiempo (en horas) y la distancia al instituto (en kilómetros):
EJERCICIOS DE REPASO DE MATEMÁTICAS 1º ESO
EJERCICIOS DE REPASO DE MATEMÁTICAS º ESO EJERCICIOS DE NÚMEROS NATURALES. ( + 7) + 0. ( 0 ). 6 + 7 + 8. 8 + 6 + ( 6 ) +. 6 ( 70 + 0) 600 6. : + 7 7. + 9 + 8 8. 7 ( ) 66 9. ( + 7) 8 7 0. + 6 0. + ( 9 7)
1. Calcula: a) = b) : 82 =
MATEMÁTICAS 1º ESO ACTIVIDADES de REPASO 1. Calcula: a) 906 5437 b) 572934 : 82 2. Un transportista carga en su motocarro 4 televisores y 3 minicadenas musicales. Si cada televisor pesa como 3 minicadenas
TEMA 7: FUNCIONES. 7.1 Características e interpretación de una función
TEMA 7: FUNCIONES 7.1 Características e interpretación de una función 1. Un ciclista decide salir de ruta y durante un tiempo pedalea por un camino hasta que llega a una zona de descanso en donde se detiene
Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)
Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de
1. 1. Calcula todos los divisores de los siguientes números, a partir de su descomposición en factores primos: a) 150 b) 60 c) 54 d) 196
1. 1. Calcula todos los divisores de los siguientes números, a partir de su descomposición en factores primos: a) 150 b) 60 c) 54 d) 196 2. Opera usando las propiedades de las potencias: a) ( 5) 4 ( 2)
Recuerda lo fundamental
7 Funciones y gráficas Recuerda lo fundamental Curso:... Fecha:... LAS FUNCIONES SUS GRÁFICAS DEFINICIÓN DE FUNCIÓN Una función asocia a cada valor de x...... x es la variable... y es la variable... El
MATEMÁTICAS 2º ESO. Ejercicios de recuperación para Septiembre ESTOS EJERCICIOS DEBERÁN SER ENTREGADOS AL COMIENZO DEL EXÁMEN DE SEPTIEMBRE.
MATEMÁTICAS º ESO Ejercicios de recuperación para Septiembre ESTOS EJERCICIOS DEBERÁN SER ENTREGADOS AL COMIENZO DEL EXÁMEN DE SEPTIEMBRE. SU PRESENTACIÓN SE VALORARÁ CON UN MAXIMO DE UN 10% DE LA NOTA
Ejercicios para la recuperación de matemáticas de 2º de ESO.
Ejercicios para la recuperación de matemáticas de 2º de ESO. Bloque I: Aritmética 1. Encuentra todos los números enteros que cumplen que su valor absoluto es menor que 10 y mayor que 6. 2. Calcula: a)
Pon tres ejemplos de números racionales que tengan la parte decimal de distinto tipo. Hazlo en forma de fracción y da la forma decimal también.
Numeros Reales 1 Decimal Fracciones 1 Pon tres ejemplos de números racionales que tengan la parte decimal de distinto tipo. Hazlo en forma de fracción y da la forma decimal también. Qué es la parte decimal
FUNCIONES. Recuerda: Traslaciones de funciones:
FUNCIONES Recuerda: Una función es una correspondencia entre dos conjuntos (relación entre magnitudes), de forma que a cada elemento del conjunto inicial le corresponde sólo un elemento del conjunto final.
APLICACIONES DE LA DERIVADA Y OPTIMIZACIÓN
APLICACIONES DE LA DERIVADA Y OPTIMIZACIÓN 1. Calcular, aplicando la definición de derivada: f (), siendo f (x) = 3x 1 1 f ( ), siendo f (x) = x 1 Solución: 1; 4. Determinar el dominio y la expresión de
APLICACIONES DE LA DERIVADA
APLICACIONES DE LA DERIVADA Ejercicio -Sea f: R R la función definida por f ( ) = + a + b + a) [ 5 puntos] Determina a, b R sabiendo que la gráfica de f pasa por el punto (, ) y tiene un punto de infleión
a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1.
Selectividad CCNN 0. [ANDA] [JUN-A] Sea la función f: definida por f(x) = e x (x - ). a) Calcula la asíntotas de f. b) Halla los extremos relativos (abscisas donde se obtienen y valores que se alcanzan)
Universidad Icesi Departamento de Matemáticas y Estadística
Universidad Icesi Departamento de Matemáticas y Estadística Solución del primer examen parcial del curso Cálculo de una variable Grupo: Once Período: Inicial del año 000 Prof: Rubén D. Nieto C. PUNTO 1.
Estudio local de una función.
Estudio local de una función. A partir de una cartulina cuadrada de 60 cm de lado, se va a construir una caja de base cuadrada, sin tapa, recortando cuatro cuadrados iguales en las esquinas de la cartulina
ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS
ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS Ejercicio 1 De la función se sabe que tiene un máximo en, y que su gráfica corta al eje OX en el punto de abscisa y tiene un punto de inflexión en el punto
APLICACIONES DE LA DERIVADA
7 APLICACIONES DE LA DERIVADA Página 68 Relación del crecimiento con el signo de la primera derivada Analiza la curva siguiente: f decrece f' < 0 f crece f' > 0 f decrece f' < 0 f crece f' > 0 f decrece
Funciones. f : A B. Dominio: Es el conjunto de todos los valores para los cuales está definida la función y se denota Dom(f).
Funciones Definición Sean A y B conjuntos no vacíos. Una función de A en B es una relación que asigna a cada elemento x del conjunto A uno y sólo un elemento y del conjunto B. Se expresa como: Notación:
EJERCICIOS PROPUESTOS. Halla el dominio y el recorrido de estas funciones. a) f (x) 3x 1 b) g(x) x c) h(x) x 3
0 FUNCINES EJERCICIS PRPUESTS 0. Halla el dominio y el recorrido de estas funciones. a) f () b) g() c) h() a) D(f) R; Recorrido (f) R b) D(g) R; Recorrido (g) [0, ) c) D(h) R; Recorrido (h) R 0. 0. Calcula
IES JOAQUÍN ARAÚJO 2º ESO
IES JOAQUÍN ARAÚJO º ESO 0- Como trabajo de verano planteamos la resolución de estos de ejercicios para afianzar conceptos y desarrollar competencias. El trabajo quedará recogido en un cuaderno que entregarás
Alonso Fernández Galián
Alonso Fernández Galián TEMA 3: ESTUDIO Y REPRESENTACIÓN DE FUNCIONES Para representar gráficamente una función deben estudiarse los siguientes aspectos: i) Dominio. ii) Puntos de corte con los ejes de
UNIDADES 1 y 2: FRACCIONES Y DECIMALES. POTENCIAS Y RAÍCES. NÚMEROS APROXIMADOS. 1º.- Ordena de menor a mayor las siguientes fracciones:
UNIDADES y : FRACCIONES Y DECIMALES. POTENCIAS Y RAÍCES. NÚMEROS APROXIMADOS. º.- Ordena de menor a mayor las siguientes fracciones: ; 6 5 7 4 ; 5 4 ; ; ; 8 6 9 º.- Efectúa las siguientes operaciones y
MODELO 1 EXAMEN DE CÁLCULO DIFERENCIAL. siendo a un nº real
MODELO 1 EXAMEN DE CÁLCULO DIFERENCIAL 1. Escribe la ecuación de la recta normal a la curva de ecuación: arcsen abscisa 1. Haz un estudio de todas las asíntotas de la función: 1 e f ( ). Halla los valores
Profesor: Miguel Ángel Valverde. 1.- Teniendo en cuenta la jerarquía de las operaciones, calcula: (tema 1 libro texto)
EJERCICIOS DE MATEMÁTICAS PARA 1º DE LA ESO. REPASO PARA EL VERANO 008 (Incluye ejercicios de ángulos, gráficas y funciones y geometría del plano y polígonos y cuerpos geométricos, que no se han dado en
EL BLOG DE MATE DE AIDA 4º ESO: apuntes de funciones pág. 1 FUNCIONES
EL BLOG DE MATE DE AIDA 4º ESO: apuntes de funciones pág. 1 FUNCIONES 1.- DEFINICIÓN DE FUNCIÓN Una función es una relación de dependencia entre dos variables de modo que a cada valor de la primera le
TEMA 4 FUNCIONES ELEMENTALES I
Tema 4 Funciones elementales I Ejercicios resueltos Matemáticas B 4º ESO 1 TEMA 4 FUNCIONES ELEMENTALES I DEFINICIÓN DE FUNCIÓN EJERCICIO 1 : Indica cuáles de las siguientes representaciones corresponden
8. Características globales de las funciones
9 SOLUCIONARIO 8. Características globales de las funciones. FUNCIONES PIENSA CALCULA Considera los rectángulos con un lado de doble longitud que el otro. Expresa el perímetro y el área en función del
Funciones y gráficas
Funciones y gráficas Contenidos 1. Funciones reales Concepto de función Gráfico de una función Dominio y recorrido Funciones definidas a trozos 2. Propiedades de las funciones Continuidad y discontinuidades
MATEMÁTICAS 3º E.S.O.
CUADERNO DE VERANO. MATEMÁTICAS º E.S.O. LA FONTAINE EDUCATIONIS LA FONTAINE (Burjassot) Colegio de Educación Infantil, Primaria y Secundaria Obligatoria 1 1. Calcula: 7 + 1 b) 11 + (5-) c) (11+) (5-1)
1. [2014] [EXT] Sean las funciones f(x) = eax +b
1. [01] [ET] Sean las funciones f(x) = eax +b y g(x) = + 3x+. a) Determine el dominio y el recorrido de la función g. b) Calcule para qué valores de a y b las gráficas de las dos funciones son tangentes
Ejemplos de formas de expresar una función
1.- CONCEPTO DE FUNCIÓN Definición de función Una función es una forma de hacerle corresponder a un número cualquiera x otro número y. Lo que vale la y depende de lo que vale la x. La y se llama variable
1.- Una bicicleta recorre 220 centímetros cada vez que las ruedas dan una vuelta. Qué distancia ha recorrido si las ruedas han dado cinco mil vueltas?
PROBLEMAS DE LONGITUD 1.- Una bicicleta recorre 220 centímetros cada vez que las ruedas dan una vuelta. Qué distancia ha recorrido si las ruedas han dado cinco mil vueltas? 2.-.-El lunes Jorge recorrió
6 EL LENGUAJE ALGEBRAICO. ECUACIONES
6 EL LENGUAJE ALGEBRAICO. ECUACIONES EJERCICIOS PROPUESTOS 6.1 El perímetro de un rectángulo viene dado por la epresión: y (: largo; y: ancho). Calcula el perímetro de cualquier rectángulo; el que tú elijas.
Propiedades de las funciones derivables. Representación gráfica de funciones. Determinar los puntos de inflexión. (Junio 1997)
Matemáticas II. Curso 008/009 de funciones 1 1. Determinar las asíntotas de f () =. Estudiar la concavidad y conveidad. 1 + Determinar los puntos de infleión. (Junio 1997) 1 Por un lado, lim 1 = 0 y =
ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS
ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS E J E R C I C I O S P R O P U E S T O S 1 Calcula el área de los ortoedros cuyas longitudes vienen dadas en centímetros. 2 1 2 Calcula el área total de los siguientes
13 FUNCIONES LINEALES Y CUADRÁTICAS
3 FUNCINES LINEALES CUADRÁTICAS EJERCICIS PARA ENTRENARSE Definición y caracterización de una función lineal 3.8 Una función viene dada por la siguiente tabla. x 0 3 y 0 3 6 9 Expresa la función mediante
EJERCICIOS PROPUESTOS. Escribe las expresiones algebraicas correspondientes. a) Tres números consecutivos. b) Tres números pares consecutivos.
4 POLINOMIOS EJERCICIOS PROPUESTOS 4.1 Relaciona cada enunciado con su epresión algebraica. Múltiplo de 3. Número par. El cuadrado de un número más 3. Un número más 5. El triple de un número más 7. 5 3
Página 267 EJERCICIOS Y PROBLEMAS PROPUESTOS. Dominio de definición PARA PRACTICAR UNIDAD. 1 Halla el dominio de definición de estas funciones:
0 Página 7 EJERCICIOS PROBLEMAS PROPUESTOS PARA PRACTICAR Dominio de definición Halla el dominio de definición de estas funciones: y = y = c) y = + ( ) d) y = e) y = f) y = + + 5 + Á {, 0} Á {} c) Á {
Área de Matemáticas orientadas a las enseñanzas académicas Funciones y Gráficas. Características.
Ejercicio nº 1 Considera la siguiente gráfica correspondiente a una función: a Cuál es su dominio de definición? b Tiene máximo y mínimo? En caso afirmativo, cuáles son? c En qué intervalos crece y en
2º. La diagonal de un cuadrado mide 1 metro. Cuántos centímetros mide el lado?
FIGURAS PLANAS. ÁREAS 1º. De las siguientes ternas de números, cuáles son pitagóricas? (Es decir cumplen el teorema de Pitágoras) a) 3, 4, 5 b) 4, 5, 6 c) 5, 12, 13 d) 6, 8, 14 e) 15, 20, 25 2º. La diagonal
ECUACIONES E INECUACIONES
ECUACIONES E INECUACIONES 1.- Escribe las expresiones algebraicas que representan los siguientes enunciados: a) Número de ruedas necesarias para fabricar x coches. b) Número de céntimos para cambiar x
CUADERNO Nº 11 NOMBRE: FECHA: / / Funciones. Interpretar y relacionar tabla, gráfica y fórmula de una relación funcional.
Funciones Contenidos 1. Relaciones funcionales Tablas, gráficas y fórmulas. Variables Dominio y recorrido 2. Representación gráfica A partir de tabla o fórmula Unos símbolos muy útiles 3. Propiedades generales
1. Contesta: función sea creciente? 2. Representa la función: ( ) = Representa la siguiente función definida a trozos:
IES SAULO TORÓN Matemáticas 4º ESO RECUPERACIÓN 3ª Evaluación 1. Contesta: a) Pon un ejemplo de una función de proporcionalidad directa. b) En la función () = +, explica el significado de m. Cómo debe
Funciones y Gráficas. Área de Matemáticas. Curso 2014/2015
Funciones y Gráficas. Área de Matemáticas. Curso 014/015 Ejercicio nº 1 Considera la siguiente gráfica correspondiente a una función: a Cuál es su dominio de definición? b Tiene máximo y mínimo? En caso
MATEMÁTICAS 6º PRIMARIA
CUADERNO DE ACTIVIDADES MATEMÁTICAS 6º PRIMARIA Nombre: Curso: 1 Descompón estos números. Fíjate en el ejemplo. 4.168 = 4 UM + 1 C + 6 D + 8 U 51.245 = 754.390 = 3.790.050 = 2 Rodea con rojo los múltiplos
TRABAJO DE REPASO PARA 2º ESO
TRABAJO DE REPASO PARA º ESO NOTA: EL TRABAJO SE ENTREGARÁ EL DÍA DEL EXAMEN DE SEPTIEMBRE. PUEDE SUBIR HASTA UN PUNTO LA NOTA, SIEMPRE Y CUANDO EN EL EXAMEN TENGAS UNA NOTA ENTRE 4 Y. RECUERDA QUE TAMBIÉN
Medidas de volumen. El metro cúbico es el volumen de un cubo que tiene un metro de lado. Se escribe así: m 3.
Medidas de volumen 1. El metro cúbico. El metro cúbico es el volumen de un cubo que tiene un metro de lado. Se escribe así: m 3. 2. Múltiplos del metro cúbico. Son éstos: 1 decámetro cúbico es igual a
IES Concha Méndez Cuesta. Matemáticas 3º ESO. Nombre:
Tema 1 1. Calcula las siguientes operaciones con enteros: 5 4 8: 7 3 10 6 6 54 7 3. Calcula las siguientes operaciones con fracciones: 4 1 3 1 1 : 3 4 3 3 5 5 1 1 5 : 1 6 3 4 3 3. Los 5 1 de las entradas
Funciones reales de variable real.
CONOCIMIENTOS PREVIOS. Funciones reales de variable real.. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Intervalos y sus definiciones básicas.
Aplicaciones de la derivada 7
Aplicaciones de la derivada 7 ACTIVIDADES 1. Página 160 a) La pendiente de la recta tangente es 12. b) La pendiente de la recta tangente es 3. 2. Página 160 a) La pendiente de la recta tangente es. b)
TEMA 8. FUNCIONES. 2. Esta es la gráfica de la variación de altura de los cestillos de una noria a lo largo del tiempo.
TEMA 8. FUNCIONES. 1. La siguiente gráfica muestra el volumen de aire que entra y sale de los pulmones en una prueba de espirometría realizada a un paciente. a) Cuáles son las variables independiente y
