El Teorema del Modulo Máximo

Tamaño: px
Comenzar la demostración a partir de la página:

Download "El Teorema del Modulo Máximo"

Transcripción

1 Capítulo 5 El Teorema del Modulo Máximo. El Principio del Máximo. Pruebe el siguiente Principio del Mínimo. Si f es una función analítica no constante sobre un conjunto abierto G acotado y es continua sobre G, entonces f tiene un cero en G o f asume su mínimo valor sobre G. Solución. Si f no tiene ceros en G, la función f G y por el principio del máximo f(z) máx z G f(z), z G si y sólo si mín f(z) f(z), z G. z G es analítica en 2. Sea G una región acotada y suponga que f es continua en G y analítica sobre G. Demuestre que si existe una constante c 0 tal que f(z) = c para todo z G entonces f es una función constante o bien f tiene un cero en G. Solución. Si f no tiene ceros aplicando el principio del máximo y del mínimo se tiene que c = mín f(z) f(z) máx f(z) = c z G z G lo que implica que f(z) = c para todo z G. Se sigue que f(z) = λc con λ =, para todo z G.. (a) Sea f entera no-constante. Para cualquier número real c demuestre que la clausura de {z : f(z) < c} es el conjunto {z : f(z) c}. (b) Sea p un polinomio no constante y demuestre que cada componente de {z : p(z) < c} contiene un cero de p.

2 . EL PRINCIPIO DEL MÁXIMO 2 (c) Si p es un polonimio no constante y c > 0 demuestre que {z : p(z) = c} es la unión de un número finito de caminos cerrados. Discuta el comportamiento de estos caminos cuando c. Solución. (a) Sabemos que X = X X, X = {z : f(z) < c}. Como f es entera no constante, f(c) es denso en C. Luego, existe una sucesión {z n } n= X tal que f(z n ) = c y pot la continuidad n de f ( ) c = lím f(z n ) = f lím z n = f(z0 ), n n lo que implica que z 0 X con f(z 0 ) = c. Por lo tanto, X = {z : f(z) c}. (b) Sea G = {z : p(z) < c} entonces G = {z : p(z) c}, se sigue que G{z : p(z) = c}. Por el problema 2, como p es un polinomio no constante, p tiene un vero en G en cada componente conexa. (c) Es claro que G = {z : p(z) = c} es un curva. Supongamos que G es una unión infinita de curvas, entonces en el interior de cada curva p tiene un cero, según lo probado en (b). Luego, p tiene infinitos ceros. Por otro lado, como lím p(z) = se z tiene que para cada ε > 0 existe M > 0 tal que p(z) ε para todo z M. En particular, para ε = c +, p(z) c +, z M. Se sigue que los ceros de p están todos contenidos en el disco B(0, M), como este conjunto es compacto, los ceros de p, tienen un punto de acumulación y por el principio de identidad p(z) 0 lo cual es una contradicción. 4. Sean 0 < r < R y A = {z : r z R}. Demuestre que existe un número positivo ε > 0 tal que para todo polinomio p, sup{ p(z) z : z A} ε. Esto dice que z no es el límite uniforme de polinomios en A. Solución. Sean z,..., z n los ceros de p y R > 0 tal que R z k

3 . EL PRINCIPIO DEL MÁXIMO para todo k =,..., k. Consideremos Entonces, si M < entonces M = sup zp(z). z =R zp(z) <, sobre z = R. Por el Teorema de Rouche, zp(z) y tienen la misma cantidad de ceros en { z < R}. Luego, zp(z) no tiene ceros en { z < R}, lo cual es una contradicción con que zp(z) tiene un cero en z = 0. Luego, necesariamente M. Observe que si R = z k para algún k, sea δ > 0 tal que R δ z k. Si suponemos que M R = sup zp(z) <, z k =R por el principio del máximo se obtiene que M R δ M R < lo cual contradice lo anterior. Por lo tanto, M. Ahora bien, sea z A entonces z R, luego R z sup p(z) z zp(z) = sup z A z A z R sup zp(z) z A = M R R = ε > Sea f analítica sobre B(0, R) con f(z) M para z R y f(0) = a > 0. Demuestre que ( el número ) de ceros de f en B(0, R) M es menor o igual que log 2 log. a Solución. Sean z,..., z n los ceros de f en B(0, R) y considere la función analítica [ n ) g(z) = f(z) ( ] zzk. Note que g(0) = f(0). Observe que para z = R se tiene que n [ n g(z) = f(z) z M z k ] z k n n MRn ( ) n = M 2 z k z R n 2. n

4 Sabemos que entonces a = g(0) 2π es decir, 2 n M a 2π 0. EL PRINCIPIO DEL MÁXIMO 4 g(0) = 2πi z =R g(z) z dz, g(re iθ ) ire iθ dθ = 2π g(re iθ ) dθ M Re iθ 2π 0 2, n lo que implica que n log 2 log ( ) M. a 6. Suponga que ambas f y g son analíticas en B(0, R) con f(z) = g(z) para z = R. Demuestre que si f ni g se anulan en B(0, R) entonces existe una constante λ, λ =, tal que f = λg. Solución. Considere la función h = f/g entonces h es analítica en B(0, R) y no tiene ceros. Para z = R tenemos que h(z) = f(z) g(z) =. Por problema 2, h es constante o tiene un cero en B(0, R), como h no tiene ceros implica que h(z) = λ con λ =. Por lo tanto, f = λg. 7. Sea f analítica en el disco B(0, R) y para 0 r < R defina A(r) = Ref(z). Demuestre que a menos que f sea constante, A(r) es máx z =r una función estrictamente creciente de r. Solución. Primero observe que la aplicación proyección π : R R R dada por π(x, y) = x es abierta. Luego, si f es analítica no constante, por el Teorema del mapeo abierto, f es abierta entonces h = π f = Ref es abierta. () Afirmamos que h satisface el principio del máximo, esto es, si h(a) h(z) para todo z B(0, R) entonces h es constante. En efecto, seam Ω = h(b(0, R)) y α = h(a). Por hipótesis, α ξ para todo ξ Ω entonces α Ω Ω. En particular, Ω no es abierto y por () se sigue que f es constante lo que implica que h es constante.

5 . EL PRINCIPIO DEL MÁXIMO 5 Por lo tanto, máx Ref(z) A(r). z r Ahora bien, si r < r 2 tenemos que A(r ) = máx z =r Ref(z) = máx z r Ref(z) máx Ref(z) = máx Ref(z) = A(r 2 ). z =r 2 z =r 2 Esto prueba que A(r) es creciente. Supongamos que A(r) es constante en el anillo {r < z < r 2 } entonces h mapea el anillo sobre un conjunto cerrado, lo cual contradice que h es abierta. Por lo tanto, A(r) es una función estrictamente creciente. 8. Suponga que G es una región, f : G C es analítica, y M es constante tal que cuando z está sobre G y {z n } es una sucesión en G con z = lím z n tenemos que lím sup f(z n ) M. Demuestre que f(z) M, paa cada z G. Solución. Dado a G para todo sucesión {z n } con lím z n = a se tiene que lím sup f(z n ) M. n Se sigue que lím sup f(z) M, lo cual implica según la tercera z a versión del módulo máximo que f(z) M para todo z G.

Problemas de VC para EDVC elaborados por C. Mora, Tema 4

Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Ejercicio Determinar las funciones enteras f para las que Solución f( + w) = f()f(w), w C. En primer lugar, f(0) = f(0 + 0) = f(0)f(0) = f(0) 2,

Más detalles

FUNCIONES MEROMORFAS. EL TEOREMA DE LOS RESIDUOS Y ALGUNAS DE SUS CONSECUENCIAS

FUNCIONES MEROMORFAS. EL TEOREMA DE LOS RESIDUOS Y ALGUNAS DE SUS CONSECUENCIAS FUNCIONES MEROMORFAS. EL TEOREMA DE LOS RESIDUOS Y ALGUNAS DE SUS CONSECUENCIAS. FUNCIONES MEROMORFAS Definición.. Se dice que una función es meromorfa en un abierto Ω de C si f es holomorfa en Ω excepto

Más detalles

MAT2715 VARIABLE COMPLEJA II Ayudantia 5 Rodrigo Vargas. g(z) e u(z) 1. u(z) a log z + b

MAT2715 VARIABLE COMPLEJA II Ayudantia 5 Rodrigo Vargas. g(z) e u(z) 1. u(z) a log z + b PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS MAT2715 VARIABLE COMPLEJA II Ayudantia 5 Rodrigo Vargas 1. Sea u : C R una función armónica positiva. Pruebe que u es constante. Solución:

Más detalles

El teorema de los residuos

El teorema de los residuos Tema 2 El teorema de los residuos 2. Singularidades aisladas de una función Definición 2. Sea f: A C. Se dice que f tiene una singularidad aislada en el punto α A, si existe un E(α, r tal que la función

Más detalles

Primeras aplicaciones

Primeras aplicaciones Lección 9 Primeras aplicaciones A partir de ahora vamos a ir obteniendo una serie de aplicaciones importantes de la teoría local desarrollada anteriormente. El desarrollo en serie de Taylor deja claro

Más detalles

Comenzamos recordando algunos conceptos de la topología de l - R 2. Dado a lc y ɛ > 0 se llama bola abierta de centro a y radio ɛ al conjunto

Comenzamos recordando algunos conceptos de la topología de l - R 2. Dado a lc y ɛ > 0 se llama bola abierta de centro a y radio ɛ al conjunto Capítulo 2 Funciones analíticas. Funciones armónicas. En este capítulo iniciamos el estudio de las funciones de variable compleja. Comenzamos con los conceptos de límite y continuidad en lc, conceptos

Más detalles

Índice. Tema 7: Residuos y Polos. Singularidades aisladas. Singularidades evitables. Marisa Serrano, José Ángel Huidobro

Índice. Tema 7: Residuos y Polos. Singularidades aisladas. Singularidades evitables. Marisa Serrano, José Ángel Huidobro Índice Marisa Serrano, José Ángel Huidobro 1 Universidad de Oviedo 2 email: mlserrano@uniovi.es email: jahuidobro@uniovi.es Singularidades evitables Definición 7.1 Una función f se dice que tiene en z

Más detalles

El Teorema de Baire Rodrigo Vargas

El Teorema de Baire Rodrigo Vargas El Teorema de Baire Rodrigo Vargas Teorema 1 (Baire). Sea M un espacio métrico completo. Toda intersección numerable de abiertos densos es un subconjunto denso de M. Definición 1. Sea M un espacio métrico.

Más detalles

(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0),

(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0), NÚMEROS COMPLEJOS 1. Preliminares Definición. Se llama número complejo a todo par ordenado de números reales. Si z = (a, b) es un número complejo, se dice que a es la parte real de z y b es la parte imaginaria

Más detalles

Propiedades de la integral

Propiedades de la integral Capítulo 4 Propiedades de la integral En este capítulo estudiaremos las propiedades elementales de la integral. En su mayoría resultarán familiares, pues las propiedades de la integral en R se extienden

Más detalles

1. Continuidad. Universidad de Chile Subsucesiones. Ingeniería Matemática

1. Continuidad. Universidad de Chile Subsucesiones. Ingeniería Matemática 1. Continuidad 1.1. Subsucesiones Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 08- Importante: Visita regularmente http://www.dim.uchile.cl/~calculo.

Más detalles

ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 8. Conjuntos invariantes

ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 8. Conjuntos invariantes ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 8. CONJUNTOS INVARIANTES Y CONJUNTOS LÍMITE. ESTABILIDAD POR EL MÉTODO DE LIAPUNOV. Conjuntos invariantes 1. Definición. Se dice que un conjunto D Ω es positivamente

Más detalles

Regiones en el plano complejo

Regiones en el plano complejo Regiones en el plano complejo Disco abierto, vecindad o entorno: El conjunto de puntos que satisfacen la desigualdad donde es número real positivo [ : entorno] ====================================== Recordemos

Más detalles

1. Sucesiones. Sucesiones. Compacidad. {( 1) n, n N} = { 1, 1, 1, 1, 1, 1,... } es una sucesión de elementos del conjunto { 1, 1}, y la familia

1. Sucesiones. Sucesiones. Compacidad. {( 1) n, n N} = { 1, 1, 1, 1, 1, 1,... } es una sucesión de elementos del conjunto { 1, 1}, y la familia 1.. De una manera informal, una sucesión es una familia de elementos de un conjunto, ordenada según el índice de los números naturales. Los elementos pueden estar repetidos o no. Por ejemplo la familia

Más detalles

Índice. Tema 6 Series de Taylor y de Laurent. Series de Taylor. Observación. Marisa Serrano Ortega José Ángel Huidobro Rojo

Índice. Tema 6 Series de Taylor y de Laurent. Series de Taylor. Observación. Marisa Serrano Ortega José Ángel Huidobro Rojo Tema 6 y de Laurent Marisa Serrano Ortega José Ángel Huidobro Rojo Índice 1 2 2 email: mlserrano@uniovi.es email: jahuidobro@uniovi.es 3 Observación Teorema 6.1 Sea f función analítica en D(z 0, R). Existe

Más detalles

Tema 5. Series de Potencias

Tema 5. Series de Potencias Tema 5. Series de Potencias Prof. William La Cruz Bastidas 21 de noviembre de 2002 Tema 5 Series de Potencias Definición 5.1 La sucesión de números complejos {z n } tiene un límite o converge a un número

Más detalles

Series Sucesiones y series en C

Series Sucesiones y series en C Series En este capítulo vamos a estudiar desarrollos en serie de funciones holomorfas, para lo cual vamos en primer lugar a revisar resultados de la teoría de series, adaptándolos a series de términos

Más detalles

CÁLCULO II. Grado M+I. Sucesiones y series de funciones. Sucesiones y series de funciones 1 / 27. Grado M+I () CÁLCULO II

CÁLCULO II. Grado M+I. Sucesiones y series de funciones. Sucesiones y series de funciones 1 / 27. Grado M+I () CÁLCULO II CÁLCULO II Grado M+I Sucesiones y series de funciones Sucesiones y series de funciones 1 / Sucesiones funciones. Convergencia puntual Sucesión de funciones Definición Una sucesión de funciones será cualquier

Más detalles

Funciones de Variable Compleja

Funciones de Variable Compleja U Contenido Facultad de Ingeniería Escuela de Ingeniería Eléctrica Departamento de Electrónica, Computación y Control Variable Compleja y Cálculo Operacional Funciones de Variable Compleja (Continuidad,

Más detalles

12. Ceros y singularidades aisladas.

12. Ceros y singularidades aisladas. 118 Funciones de variable compleja. Eleonora Catsigeras. 01 Julio 2006. 12. Ceros y singularidades aisladas. 12.1. Funciones racionales. Una función racional es un cociente de dos polinomios no idénticamente

Más detalles

Ejemplos y problemas resueltos de análisis complejo (2014-15)

Ejemplos y problemas resueltos de análisis complejo (2014-15) Variable Compleja I (3 o de Matemáticas y 4 o de Doble Titulación) Ejemplos y problemas resueltos de análisis complejo (04-5) Teoremas de Cauchy En estos apuntes, la palabra dominio significa, como es

Más detalles

Problemas con soluciones

Problemas con soluciones Departamento de Matemática, Universidad Técnica Federico Santa María, MAT-223. Problemas con soluciones 1) Muestre que si A es una base de una toplogía en X, entonces la topología generada por A es iqual

Más detalles

Fórmula de Cauchy Fórmula de Cauchy

Fórmula de Cauchy Fórmula de Cauchy Lección 8 Fórmula de Cauchy Llegamos al que se puede considerar como punto culminante de la teoría local de Cauchy, probando el resultado que se conoce como fórmula de Cauchy. Nos da una representación

Más detalles

Series de Laurent. En la práctica, los coeficientes de una serie de Laurent se obtienen por métodos distintos a las expresiones integrales a n

Series de Laurent. En la práctica, los coeficientes de una serie de Laurent se obtienen por métodos distintos a las expresiones integrales a n Series de Laurent En la práctica, los coeficientes de una serie de Laurent se obtienen por métodos distintos a las expresiones integrales a n y b n dadas anteriormente. Además se puede demostrar que la

Más detalles

Continuidad. 5.1 Continuidad en un punto

Continuidad. 5.1 Continuidad en un punto Capítulo 5 Continuidad 5.1 Continuidad en un punto Definición 5.1.1 (Aplicación continua en un punto). Sean (X, τ) e (Y, τ ) dos espacios topológicos, y sea f : X Y una aplicación entre ellos. Diremos

Más detalles

Así tenemos el siguiente teorema: Sea f una función analítica en un disco Entonces f admite la representación de potencias:

Así tenemos el siguiente teorema: Sea f una función analítica en un disco Entonces f admite la representación de potencias: Así tenemos el siguiente teorema: Sea f una función analítica en un disco Entonces f admite la representación de potencias: donde conocida como serie de Taylor (o serie de Maclaurin cuando ). Además la

Más detalles

2. El Teorema del Valor Medio

2. El Teorema del Valor Medio 2.24 45 2. El Teorema del Valor Medio Comenzaremos esta sección recordando dos versiones del teorema del valor medido para funciones de 1-variable y por tanto ya conocidas: 2.22 Sea f : [a, b] R R una

Más detalles

Espacios completos. 8.1 Sucesiones de Cauchy

Espacios completos. 8.1 Sucesiones de Cauchy Capítulo 8 Espacios completos 8.1 Sucesiones de Cauchy Definición 8.1.1 (Sucesión de Cauchy). Diremos que una sucesión (x n ) n=1 en un espacio métrico (X, d) es de Cauchy si para todo ε > 0 existe un

Más detalles

1. Sucesiones y redes.

1. Sucesiones y redes. 1. Sucesiones y redes. PRACTICO 7. REDES. Se ha visto que el concepto de sucesión no permite caracterizar algunas nociones topológicas, salvo en espacios métricos. Esto empieza con algunas definiciones

Más detalles

Funciones de Variable Real

Funciones de Variable Real Tema 1 Funciones de Variable Real 1.1. La Recta Real Los números reales se pueden ordenar como los puntos de una recta. Los enteros positivos {1, 2, 3, 4,...} que surgen al contar, se llaman números naturales

Más detalles

FUNCIONES REALES DE VARIABLE REAL

FUNCIONES REALES DE VARIABLE REAL FUNCIONES REALES DE VARIABLE REAL Definición. donde D R. Se define función real de variable real a una aplicación f : D R [, [. Ejemplo. Si consideramos f(x) = x entonces el dominio máximo de f es D =

Más detalles

Funciones de varias variables. Continuidad

Funciones de varias variables. Continuidad Capítulo 1 Funciones de varias variables. Continuidad 1. Topología en R n Definición (Norma, espacio vectorial normado). Una norma sobre R n es una aplicación: : R n [0,+ [ x x, que satisface las siguientes

Más detalles

En este capítulo se estudian las funciones complejas cerca de aquellos. puntos en los que la función no es holomorfa. Estos puntos se denominan

En este capítulo se estudian las funciones complejas cerca de aquellos. puntos en los que la función no es holomorfa. Estos puntos se denominan 45 Análisis matemático para Ingeniería M MOLERO; A SALVADOR; T MENARGUEZ; L GARMENDIA CAPÍTULO 5 Singularidades y residuos En este capítulo se estudian las funciones complejas cerca de aquellos puntos

Más detalles

Continuidad y Continuidad Uniforme. Aplicaciones lineales continuas.

Continuidad y Continuidad Uniforme. Aplicaciones lineales continuas. Continuidad y Continuidad Uniforme. Aplicaciones lineales continuas. Beatriz Porras 1 Límites Las definiciones de ĺımite de funciones de varias variables son similares a las de los ĺımites de funciones

Más detalles

Formulación de Galerkin El método de los elementos finitos

Formulación de Galerkin El método de los elementos finitos Clase No. 28: MAT 251 Formulación de Galerkin El método de los elementos finitos Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato e-mail: alram@ cimat.mx web: http://www.cimat.mx/

Más detalles

Soluciones de los ejercicios del examen de Análisis Matemático Primer curso de Ingeniería Informática - Febrero de 2005

Soluciones de los ejercicios del examen de Análisis Matemático Primer curso de Ingeniería Informática - Febrero de 2005 Soluciones de los ejercicios del examen de Primer curso de Ingeniería Informática - Febrero de 25 Ejercicio. A Dados los puntos A, y 2,2, calcula el camino más corto para ir de A a pasando por un punto

Más detalles

Los números complejos

Los números complejos Universidad Autónoma de Madrid Actualización en Análisis Matemático, abril de 2012 Cardano (1501 1576) Dividir un segmento de longitud 10 en dos trozos tales que el rectángulo cuyos lados tienen la longitud

Más detalles

Fórmula integral de Cauchy

Fórmula integral de Cauchy Fórmula integral de Cauchy Comentario: de acuerdo con esta fórmula, uno puede conocer el valor de f dentro del entorno, conociendo únicamente los valores que toma f en el contorno C! Fórmula integral de

Más detalles

Teoremas de Convergencia

Teoremas de Convergencia Capítulo 24 Teoremas de Convergencia El teorema de la convergencia monótona (Lema 21.3) establece ciertas condiciones sobre una sucesión de funciones medibles para que se puedan permutar los símbolos y

Más detalles

1 Continuidad uniforme

1 Continuidad uniforme Centro de Matemática Facultad de Ciencias Universidad de la República Introducción a la Topología Curso 2016 NOTAS 6: ESPACIOS MÉTRICOS II: COMPLETITUD 1 Continuidad uniforme Denición. Sean (M, d 1 ) y

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase : Series de números reales Definición de Serie Elaborado por los profesores Edgar Cabello y Marcos González Definicion Dada una sucesión de escalares (a n ), definimos su sucesión de sumas parciales

Más detalles

Tema 2 Resolución de EcuacionesNo Lineales

Tema 2 Resolución de EcuacionesNo Lineales Tema 2 Resolución de Ecuaciones No Lineales E.T.S.I. Informática Indice Introducción 1 Introducción 2 Algoritmo del método de Bisección Análisis del 3 4 5 6 Algoritmo de los métodos iterativos Interpretación

Más detalles

Sucesiones acotadas. Propiedades de las sucesiones convergentes

Sucesiones acotadas. Propiedades de las sucesiones convergentes Sucesiones acotadas. Propiedades de las sucesiones convergentes En un artículo anterior se ha definido el concepto de sucesión y de sucesión convergente. A continuación demostraremos algunas propiedades

Más detalles

16. Ejercicios resueltos sobre cálculo de residuos.

16. Ejercicios resueltos sobre cálculo de residuos. 7 Funciones de variable compleja. Eleonora Catsigeras. 3 Junio 26. 6. Ejercicios resueltos sobre cálculo de residuos. En esta sección se dan ejemplos de cálculo de integrales de funciones reales, propias

Más detalles

ELEMENTOS DE ANÁLISIS FUNCIONAL

ELEMENTOS DE ANÁLISIS FUNCIONAL ELEMENTOS DE ANÁLISIS FUNCIONAL Guillermo Ames Universidad Tecnológica Nacional - Facultad Regional Córdoba 2011 TEMA 1: NOCIONES BÁSICAS DE ESPACIOS MÉTRICOS Espacios métricos: definición y ejemplos Definición

Más detalles

Reconocer y utilizar las propiedades sencillas de la topología métrica.

Reconocer y utilizar las propiedades sencillas de la topología métrica. 3 Funciones continuas De entre todas las aplicaciones que pueden definirse entre dos espacios métrico, las aplicaciones continuas ocupan un papel preponderante. Su estudio es fundamental no sólo en topología,

Más detalles

Teorema del Valor Medio

Teorema del Valor Medio Tema 6 Teorema del Valor Medio Abordamos en este tema el estudio del resultado más importante del cálculo diferencial en una variable, el Teorema del Valor Medio, debido al matemático italo-francés Joseph

Más detalles

Continuidad 2º Bachillerato. materiales Editorial SM

Continuidad 2º Bachillerato. materiales Editorial SM Continuidad 2º Bachillerato materiales Editorial SM Continuidad en un punto: primera aproximación Estatura medida cada 5 años: hay grandes saltos entre cada punto y el siguiente. Estatura medida cada año:

Más detalles

Espacios conexos. 6.1 Conexos

Espacios conexos. 6.1 Conexos Capítulo 6 Espacios conexos 6.1 Conexos Definición 6.1.1 (Conjuntos separados). Dado un espacio topológico (X, τ) y dos subconjuntos A, B X, diremos que A y B están separados si A B = A B = Es evidente

Más detalles

Tema 6.2: Forma general del teorema de Cauchy y Fórmula general de Cauchy

Tema 6.2: Forma general del teorema de Cauchy y Fórmula general de Cauchy Tema 6.2: Forma general del teorema de Cauchy y Fórmula general de Cauchy Facultad de Ciencias Experimentales, Curso 2008-09 Enrique de Amo, Universidad de Almería Comenzamos introduciendo las de niciones

Más detalles

1.3. El teorema de los valores intermedios

1.3. El teorema de los valores intermedios Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 07-2 Importante: Visita regularmente http://www.dim.uchile.cl/calculo. Ahí encontrarás

Más detalles

Desarrollos en serie de potencias - Residuos

Desarrollos en serie de potencias - Residuos apítulo 7 Desarrollos en serie de potencias - Residuos Existen dos tipos particularmente sencillos de funciones analíticas: los polinomios p (z) a 0 + a z + + a n z n, y las funciones racionales r (z)

Más detalles

Sucesiones en R n. Ejemplos.-Considerando el espacio R 2 sea la sucesión {x k } 1 dada por x k = ( k, 1 k) podemos listar como sigue:

Sucesiones en R n. Ejemplos.-Considerando el espacio R 2 sea la sucesión {x k } 1 dada por x k = ( k, 1 k) podemos listar como sigue: Sucesiones en R n Definición. Una sucesión en R n es cualquier lista infinita de vectores en R n x, x,..., x,... algunos de los cuales o todos ellos pueden coincidir entre si. Dada una sucesión x, x,...,

Más detalles

Extensiones finitas.

Extensiones finitas. 2. EXTENSIONES ALGEBRAICAS. Hemos dividido este tema en dos secciones: Extensiones finitas, y Clausura algebraica. En la primera relacionamos extensión finita y extensión algebraica: probamos que toda

Más detalles

FAMILIAS NORMALES VARIABLE COMPLEJA #6

FAMILIAS NORMALES VARIABLE COMPLEJA #6 VARIABLE COMPLEJA #6 FAMILIAS NORMALES Recordemos que F C(D, C) es una familia normal cuando cada sucesión en F tiene una subsucesión que converge en C(D, C). Esto es lo mismo que decir que cerr(f) es

Más detalles

Problemas de VC para EDVC elaborados por C. Mora, Tema 1. Escribir en forma binómica los siguientes números complejos:, n N; 3 i ; (1+i 3) 20 ; e 1/z

Problemas de VC para EDVC elaborados por C. Mora, Tema 1. Escribir en forma binómica los siguientes números complejos:, n N; 3 i ; (1+i 3) 20 ; e 1/z Problemas de VC para EDVC elaborados por C. Mora, Tema 1 Ejercicio 1 Escribir en forma binómica los siguientes números complejos: i n, n Z; ( 1 + i ) n, n N; ( ) ( ) 4 5 1 + i 3 i ; (1+i 3) 0 ; e 1/z 1

Más detalles

MMAF: Espacios normados y espacios de Banach

MMAF: Espacios normados y espacios de Banach MMAF: Espacios normados y espacios de Banach Licenciatura en Estadística R. Álvarez-Nodarse Universidad de Sevilla Curso 2011/2012 Espacios vectoriales Definición Sea V un conjunto de elementos sobre el

Más detalles

10. Series de potencias

10. Series de potencias FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 7-2 Basado en el apunte del curso Cálculo (2do semestre), de Roberto Cominetti, Martín Matamala y Jorge San

Más detalles

Integral de Lebesgue

Integral de Lebesgue Integral de Lebesgue Problemas para examen n todos los problemas se supone que (, F, µ) es un espacio de medida. Integración de funciones simples positivas. La representación canónica de una función simple

Más detalles

Tema X: LÍMITES Y CONTINUIDAD DE FUNCIONES X.2. Límites. Tema X: LÍMITES Y CONTINUIDAD DE FUNCIONES X.2. Límites

Tema X: LÍMITES Y CONTINUIDAD DE FUNCIONES X.2. Límites. Tema X: LÍMITES Y CONTINUIDAD DE FUNCIONES X.2. Límites Tema X: LÍMITES Y CONTINUIDAD DE FUNCIONES X.2. Límites 1. Definición de límite DEF. Sea f : A R R y a A Se dice que l R es el límite de f cuando x tiende a a, si para todo entorno de l, existe un entorno

Más detalles

Kolmogorov y la teoría de la la probabilidad. David Nualart. Academia de Ciencias y Universidad de Barcelona

Kolmogorov y la teoría de la la probabilidad. David Nualart. Academia de Ciencias y Universidad de Barcelona Kolmogorov y la teoría de la la probabilidad David Nualart Academia de Ciencias y Universidad de Barcelona 1 La axiomatización del cálculo de probabilidades A. N. Kolmogorov: Grundbegriffe des Wahrscheinlichkeitsrechnung

Más detalles

Series de Laurent. R n (z) = (z z 0) n C. ( z. Para probar esta afirmación partimos de la fórmula integral de Cauchy escrita convenientemente = 1

Series de Laurent. R n (z) = (z z 0) n C. ( z. Para probar esta afirmación partimos de la fórmula integral de Cauchy escrita convenientemente = 1 Semana 3 - lase 37 Series de Laurent. Otra vez Taylor y ahora Laurent Anteriormente consideramos series complejas de potencias. En esta sección revisaremos, desde la perspectiva de haber expresado la derivada

Más detalles

Funciones de Clase C 1

Funciones de Clase C 1 Capítulo 7 Funciones de Clase C 1 Vamos a considerar ahora la extensión a varias variables del concepto de función de clase C 1. Cada vez que establezcamos una propiedad de las funciones diferenciables,

Más detalles

Normas Equivalentes. Espacios Normados de Dimensión Finita

Normas Equivalentes. Espacios Normados de Dimensión Finita Capítulo 2 Normas Equivalentes. Espacios Normados de Dimensión Finita Dos son los resultados más importantes que, sobre la equivalencia de normas, veremos en este capítulo. El primero de ellos establece

Más detalles

Espacios Metricos, Compacidad y Completez

Espacios Metricos, Compacidad y Completez 46 CAPÍTULO 3. Espacios Metricos, Compacidad y Completez Una sucesión en un conjunto X es una función N X. Si la función se llama f entonces para sucesiones acostumbra denotarse {f(n)} n N en cambio de

Más detalles

Comisión de Pedagogía - Diego Chamorro Análisis Funcional (Nivel 2).

Comisión de Pedagogía - Diego Chamorro Análisis Funcional (Nivel 2). AMARUN www.amarun.org Comisión de Pedagogía - Diego Chamorro Análisis Funcional (Nivel 2). Lección n 3: Lema de Baire y Teorema clásicos del Análisis Funcional EPN, verano 2012 Definición 1 (Espacio de

Más detalles

11.1. Funciones uniformemente continuas

11.1. Funciones uniformemente continuas Lección 11 Continuidad uniforme Completando el análisis de los principales teoremas que conocemos sobre continuidad de funciones reales de variable real, estudiamos ahora la versión general para espacios

Más detalles

Integrales impropias múltiples

Integrales impropias múltiples Integrales impropias múltiples ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Introducción 1 2. Caracterización de la integrabilidad impropia 2 3.

Más detalles

14.1 Fórmula Integral de Cauchy

14.1 Fórmula Integral de Cauchy lase 4. Fórmulas de auchy Si f es analítica en un abierto que contiene al disco cerrado definido por la circunferencia (p, r), el comportamiento de f en determina la conducta de f en el interior del disco.

Más detalles

Cálculo Infinitesimal 1. Cuestiones de examen (2010/2011 a 2015/2016)

Cálculo Infinitesimal 1. Cuestiones de examen (2010/2011 a 2015/2016) Cálculo Infinitesimal 1. Cuestiones de examen (2010/2011 a 2015/2016) 1. Justifíquese la verdad o falsedad de la siguiente afirmación: La suma de dos números irracionales iguales es irracional (enero 2011).

Más detalles

Espacios Topológicos 1. Punto de Acumulación. Al conjunto de puntos de acumulación de A se le denomina el conjunto derivado de A (A a Notación).

Espacios Topológicos 1. Punto de Acumulación. Al conjunto de puntos de acumulación de A se le denomina el conjunto derivado de A (A a Notación). Espacios Topológicos 1 Punto de Acumulación Definición: Sea A un subconjunto arbitrario de R n, se dice que x R n es un punto de acumulación de A si toda bola abierta con centro x contiene un punto A distinto

Más detalles

CONJUNTOS COMPACTOS. . En consecuencia, ninguna unión finita de {G n n N} puede contener a H H no es compacto

CONJUNTOS COMPACTOS. . En consecuencia, ninguna unión finita de {G n n N} puede contener a H H no es compacto CONJUNTOS COMPACTOS Denición. Se dice que un conjunto K es compacto si siempre que esté contenido en la unión de una colección g = {G α } de conjuntos abiertos, también esta contenido en la unión de algún

Más detalles

y valores extremos. En esta sección estudiaremos los conjuntos convexos. Recordemos que un conjunto K R n es convexo si, para todo x,y K y t [0,1],

y valores extremos. En esta sección estudiaremos los conjuntos convexos. Recordemos que un conjunto K R n es convexo si, para todo x,y K y t [0,1], Capítulo 4 Convexidad 1. Conjuntos convexos En este capítulo estudiaremos el concepto de convexidad, el cual es sumamente importante en el análisis. Estudiaremos conjuntos convexos y funcionesconvexas

Más detalles

13. Series de Laurent.

13. Series de Laurent. Funciones de variable compleja. Eleonora Catsigeras. 3 Mayo 2006. 33 3. Series de Laurent. 3.. Definición de serie de Laurent y corona de convergencia. Definición 3... Serie de Laurent. Se llama serie

Más detalles

Sobre la estrechez de un espacio topológico

Sobre la estrechez de un espacio topológico Morfismos, Vol. 5, No. 2, 2001, pp. 51 61 Sobre la estrechez de un espacio topológico Alejandro Ramírez Páramo 1 Resumen En este trabajo se muestran algunos resultados sobre la estrechez en la clase C

Más detalles

1. El Teorema de Rolle Generalizado.

1. El Teorema de Rolle Generalizado. Proyecto III: Los Teoremas de Rolle y del valor Medio Objetivos: Profundizar el estudio de algunos teoremas del cálculo diferencial 1 El Teorema de Rolle Generalizado La formulación más común del Teorema

Más detalles

Espacios conexos. Capítulo Conexidad

Espacios conexos. Capítulo Conexidad Capítulo 5 Espacios conexos 1. Conexidad En este capítulo exploraremos el concepto de conexidad en un espacio métrico, y estudiaremos algunas de sus aplicaciones. Definición 5.1. Decimos que el espacio

Más detalles

Ejercicios de Análisis I

Ejercicios de Análisis I UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS Ejercicios de Análisis I Ramón Bruzual Marisela Domínguez Caracas, Venezuela Febrero 2005 Ramón

Más detalles

Universidad Autónoma de Madrid

Universidad Autónoma de Madrid Universidad Autónoma de Madrid Máster en Matemáticas y Aplicaciones Trabajo final de Fundamentos de Análisis Matemático Espacios de Hardy y sucesiones de interpolación para funciones holomorfas Marta de

Más detalles

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL (Curso 00-00) HOJA Ejercicio. Determina en qué recintos es holomorfa la siguiente función: f(x + iy) x + ay + i(bx + cy) En este caso consideramos: u(x, y) x + ay

Más detalles

Sucesiones. Convergencia

Sucesiones. Convergencia Sucesiones. Convergencia Sucesión: Es una aplicación de IN en IR: f : IN IR n = f (n) En vez de f (n) se escribe a n, que se denomina término general de la sucesión. A la sucesión se le representa por:

Más detalles

Acerca del producto de funciones uniformemente continuas en subconjuntos de la recta real

Acerca del producto de funciones uniformemente continuas en subconjuntos de la recta real UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA Acerca del producto de funciones uniformemente continuas en subconjuntos de la recta real Trabajo Especial de Grado presentado

Más detalles

Apéndice 2: Series de Fourier.

Apéndice 2: Series de Fourier. Apéndice 2: Series de Fourier. 19 de noviembre de 2014 1. Conjuntos ortonormales y proyecciones. Sea V un espacio vectorial con un producto interno . Sea {e 1,..., e n } un conjunto ortonormal, V

Más detalles

Límites Laterales. El límite por la derecha se denota. x 2 + x 2 = 1. x 2. x + x 2. x = x + x 2. El límite por la izquierda se denota

Límites Laterales. El límite por la derecha se denota. x 2 + x 2 = 1. x 2. x + x 2. x = x + x 2. El límite por la izquierda se denota Límites Laterales Denición. Si f : D R R y x 0 es un punto de D, decimos que l d es ite de f en x 0 por la derecha si ɛ > 0 δ ɛ > 0 f(x) l d < ɛ si 0 < x x 0 < δ ɛ ɛ > 0 δ ɛ > 0 f(x) l d < ɛ si x 0 < x

Más detalles

Teorema de factorización de Hadamard para funciones enteras

Teorema de factorización de Hadamard para funciones enteras UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS FACULTAD DE CIENCIAS MATEMÁTICAS E.A.P DE MATEMÁTICA Teorema de factorización de Hadamard para funciones enteras TESIS para optar el título profesional de Licenciado

Más detalles

+ i,... es una sucesión. Otra forma de denotar la misma sucesión es {z n } n N

+ i,... es una sucesión. Otra forma de denotar la misma sucesión es {z n } n N Capítulo 6 Sucesiones y series en C Todo el trabajo de este capítulo esta destinada a mostrar que tiene sentido sumar infinitas funciones de variable compleja. En gran medida es un copy/paste de la versión

Más detalles

Funciones armónicas La parte real de una función holomorfa. Lección 10

Funciones armónicas La parte real de una función holomorfa. Lección 10 Lección 10 Funciones armónicas En una segunda serie de aplicaciones de la teoría local de Cauchy, empezamos por analizar las propiedades de la parte real e imaginaria de una función holomorfa, funciones

Más detalles

Descomposición de dos Anillos de Funciones Continuas

Descomposición de dos Anillos de Funciones Continuas Miscelánea Matemática 38 (2003) 65 75 SMM Descomposición de dos Anillos de Funciones Continuas Rogelio Fernández-Alonso Departamento de Matemáticas Universidad Autónoma Metropolitana-I 09340 México, D.F.

Más detalles

El espacio de funciones continuas

El espacio de funciones continuas Capítulo 4 El espacio de funciones continuas 1. Funciones continuas En este capítulo estudiaremos las funciones continuas en un espacio métrico, además de espacios métricos formados por funciones continuas.

Más detalles

EJERCICIOS RESUELTOS. NÚMEROS Y FUNCIONES. CONTINUIDAD Y LÍMITE FUNCIONAL.

EJERCICIOS RESUELTOS. NÚMEROS Y FUNCIONES. CONTINUIDAD Y LÍMITE FUNCIONAL. EJERCICIOS RESUELTOS. NÚMEROS Y FUNCIONES. CONTINUIDAD Y LÍMITE FUNCIONAL. 1. Estúdiese la continuidad de la función f : R R, definida por f (x) = xe(1/x) si x = 0, f (0) = 1.. Sea f : R R continua, mayorada

Más detalles

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones Semana 09 [1/28] 29 de abril de 2007 Semana 09 [2/28] Definición Sucesión Una sucesión real es una función: f : N R n f (n) Observaciones Para distinguir a una sucesión de las demás funciones, se ocupará

Más detalles

Tema III. Funciones de varias variables

Tema III. Funciones de varias variables 1 Tema III Funciones de varias variables 1. INTRODUCCIÓN Vamos a estudiar funciones de ciertos subconjuntos de R n en R m. En los temas anteriores nos hemos centrado en aplicaciones lineales y hemos trabajado

Más detalles

Tema 4.2: Teorema de Cauchy para el triángulo. Versión elemental del teorema de Cauchy y de la fórmula de Cauchy

Tema 4.2: Teorema de Cauchy para el triángulo. Versión elemental del teorema de Cauchy y de la fórmula de Cauchy Tema 4.: Teorema de Cauchy para el triángulo. Versión elemental del teorema de Cauchy y de la fórmula de Cauchy Facultad de Ciencias Experimentales, Curso 008-09 E. de Amo Comenzamos con este tema toda

Más detalles

Continuidad y monotonía

Continuidad y monotonía Tema 14 Continuidad y monotonía Generalizando lo que se hizo en su momento para sucesiones, definiremos la monotonía de una función, en forma bien fácil de adivinar. Probaremos entonces dos resultados

Más detalles

Sucesiones y convergencia

Sucesiones y convergencia Capítulo 2 Sucesiones y convergencia 1. Definiciones Una de las ideas fundamentales del análisis es la de límite; en particular, el límite de una sucesión. En este capítulo estudiaremos la convergencia

Más detalles

Espacios compactos. Capítulo Cubiertas. En este capítulo estudiaremos el concepto de compacidad en un espacio métrico.

Espacios compactos. Capítulo Cubiertas. En este capítulo estudiaremos el concepto de compacidad en un espacio métrico. Capítulo 3 Espacios compactos 1. Cubiertas En este capítulo estudiaremos el concepto de compacidad en un espacio métrico. Definición 3.1. Sea (X, d) un espacio métrico y A X. Una cubierta de A es una familia

Más detalles

Práctico Preparación del Examen

Práctico Preparación del Examen Cálculo Diferencial e Integral (Áreas Tecnológicas) Segundo Semestre 4 Universidad de la República Práctico Preparación del Examen Límites, funciones y continuidad Ejercicio Sea log(+x ) f(x) =, si x

Más detalles

Unidad 3 Límites y continuidad. Universidad Diego Portales CALCULO I

Unidad 3 Límites y continuidad. Universidad Diego Portales CALCULO I Unidad Límites y continuidad Una vista preinar Qué es el cálculo? Los dos problemas fundamentales El área del conocimiento que llamamos Cálculo gira en torno a dos problemas geométricos fundamentales que

Más detalles

Límites y continuidad. Cálculo 1

Límites y continuidad. Cálculo 1 Límites y continuidad Cálculo 1 Razones de cambio y límites La rapidez promedio de un móvil es la distancia recorrida durante un intervalo de tiempo dividida entre la longitud del intervalo. Ejemplo 1

Más detalles

Derivada de la función compuesta. Regla de la cadena

Derivada de la función compuesta. Regla de la cadena Derivada de la función compuesta. Regla de la cadena Cuando en las matemáticas de bachillerato se introduce el concepto de derivada, su significado y su interpretación geométrica, se pasa al cálculo de

Más detalles