Series de Laurent. R n (z) = (z z 0) n C. ( z. Para probar esta afirmación partimos de la fórmula integral de Cauchy escrita convenientemente = 1

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Series de Laurent. R n (z) = (z z 0) n C. ( z. Para probar esta afirmación partimos de la fórmula integral de Cauchy escrita convenientemente = 1"

Transcripción

1 Semana 3 - lase 37 Series de Laurent. Otra vez Taylor y ahora Laurent Anteriormente consideramos series complejas de potencias. En esta sección revisaremos, desde la perspectiva de haber expresado la derivada n-ésima de una función analítica, el equivalente a las series de Taylor para funciones complejas de variable complejas... Series de Taylor para funciones analíticas Si f(z) es analítica en un círculo de radio R, encerrado por un contorno y centrado en un punto z = z 0, entonces f(z) puede ser expandida en series de potencias (enteras positivas) para todo < R de la forma f (n) (z 0 ) con el resto R n (z) definido como (z z 0 ) n f(z 0 )f (z 0 )(z z 0 ) f (z 0 ) 2 R n (z) = () n ( ) n (ζ z). (z z 0 ) 2 f (n) (z 0 ) (z z 0 ) n R n, Para probar esta afirmación partimos de la fórmula integral de auchy escrita convenientemente = ζ z z z, () 0 de donde ζ z ( z ) ( ) z 2 ( ) z n este último corchete proviene de una forma ingeniosa de utilizar una serie geométrica de razón r =. Para entenderlo, recordemos que para una serie geométrica, se cumple que rr 2 r 3 r n = rn r Entonces: ζ z = r rn r ( z r = rr2 r 3 r n rn r. (2) n ( ) z j ( z ) n ζ z ( 0 ) ζ z Héctor Hernández / Luis Núñez Universidad de Los Andes, Mérida ) n ζ z ( 0 ) ζ z (3)

2 Semana 3 - lase 37 con lo cual donde n ( ) j ( R n (z) = () n ) ( ) j R n (z) = n ( ) n (ζ z) f (j) (z 0 ) ( ) j R n (z) (4) j! Obvio que la serie (4) converge si R n (z) 0 cuando n y de eso es fácil convencerse al acotar la ecuación (5). Esto es, considerando ζ sobre el contorno y z en el interior de R, entonces R n (z) = ( ) n ( ) n (ζ z) < n 2π ( ) n (ζ z) < n M 2π R n 2πR, donde, una vez más, hemos utilizado la forma polar ζ = ζ z 0 = Re iθ y hemos acotado ζ z < M, n con lo cual es inmediato constatar que lím n R = 0 R n (z) 0, con lo cual la serie converge. Ejemplos Expanda z, alrededor de z = z 0 z 0 ( z 0 ) 2 (z z 0) ( z 0 ) 3 (z z 0) 2 ( z 0 ) 4 (z z 0) 3 () n ( z 0 ) n = ( ) n ( z 0 ) n ln( z), alrededor de z = 0 (Serie de Maclaurin) ( ) n ln(z) = ln( z) z=0 ( z) n z n f(0)f (0)z f (0) z 2 f (0) z 3 = z z2 z=0 2 3! 2 z3 3 n= [ ] z ln, alrededor de z = 0 (Serie de Maclaurin) z [ ] ] ] ] z ln ln[z] ln[ z] = [z z2 z 2 z3 3 [ z z2 2 z3 3 = 2 [z z3 3 z5 5 2z 2n = 2n. (5) Héctor Hernández / Luis Núñez 2 Universidad de Los Andes, Mérida

3 Semana 3 - lase 37 Figura : Expansión de Laurent 2. Series de Laurent Hemos dicho que si una función f(z) es analítica en una región (digamos que circular) R, entonces puede ser expandida por series de Taylor. Sin embargo, si f(z) tiene un polo de orden p, digamos, en z = z 0, dentro de la región R, no será analítica en ese punto, mientras que la función: g(z) = (z z 0 ) p f(z) si lo será en todos los puntos de esa región. Entonces f(z) podrá ser expandida como series de potencias (de Laurent) de la forma n= u k ( ) k = u n ( ) n para: n = 0, ±, ±2, y R < < R 2. Equivalentemente u n ( ) n, con u n =, (6) ( ) n g(z) ( ) p = a p ( ) p a p ( ) p a ( ) a 0 a (z z 0 )a 2 (z z 0 ) 2 (7) La suma de todos los términos que tengan potencias negativas, vale decir u n (z z 0 ) n, se denomina parte principal de f(z). Para demostrar (6) o (7), recordamos que, tal y como muestra la figura cuadrante I, si f(z) es analítica en la regiún anular, entonces el Teorema de auchy, nos garantiza que 2 2 donde en el segundo caso hemos supuesto que ambas circulaciones tienen el mismo sentido. Héctor Hernández / Luis Núñez 3 Universidad de Los Andes, Mérida

4 Semana 3 - lase 37 Del mismo modo como procedimos en la ecuación () reescribimos el segundo par de integrales como z z 0 2 ζ z 0 y ahora invocando, una vez más la progresión geométrica (2) podemos construir expresiones de integrales equivalentes a la ecuación (3). Vale decir ( ) z n ( ) ζ n n ( ) z j ( ) ζ z 0 ζ z n ( ) ζ j 2 ( ) z z 0 ζ z y equivalentemente n (z z 0 ) j ( ) j }{{} u j R n (z) n ( ) j ( ) j R n2 (z) } 2 {{} u j (8) on lo cual queda demostrado la forma funcional de los coeficientes de la expansión de Laurent. La demostración de la convergencia, esto es n R n (z) R n2 (z) 0 sigue el mismo esquema que utilizamos para demostrar la convergencia de la ecuación (6) y se lo dejamos como ejercicio al lector. Otra manera de representar las series de Laurent es por medio de las fórmulas: donde: a k ( ) k b k ( ) k, R < < R 2. (9) k=0 a k = b k = k= f(z) dz, ( ) k k = 0,, 2,..., (0) f(z) dz, ( ) k k =, 2,.... () En este caso, se supone que la función es analítica en el dominio anular: R < < R 2 y es un contorno cerrado simple en torno a z 0 y contenido en la región anular. En el caso de b k podemos ver que el integrando se puede escribir también como f(z)( ) k. Si f es analítica en < R 2, entonces el integrando es una función analítica en dicho disco y por lo tanto b k = 0. Es decir, la serie (9) se reduce a una serie de Taylor donde los coeficientes son: a k = f(z) ( ) k dz = f (k) (z 0 ), k = 0,, 2,.... Héctor Hernández / Luis Núñez 4 Universidad de Los Andes, Mérida

5 Semana 3 - lase Algunos Ejemplos En muchos casos las expansiones en series de Laurent no se generan a partir de las ecuaciones (6) o (9) sino a partir de manipulaciones algebráicas y expansiones en Taylor moduladas por otros factores. Ejemplo : El primero lo haremos directamente, vale decir, que como lo vamos a hacer no lo haremos otra vez. Queremos hacer una representación en serie de Laurent de la función: z(z ). Utilizando las fórmulas de (8), construimos la relación u j = ( ) j = ζ j2 (ζ ) = conviertiendo a la forma polar tendremos que es decir riθe iθ dθ r j2 n e i(j2 n)θ = δ j2 n, ζ j2 u n = u n = 0 z(z ) = z z z2 z 3 ζ n = onsideremos los siguientes ejemplos de desarrollos en Series de Laurent: para n para n < ζ j2 n Ejemplo 2: La función puede escribirse en la forma: Por otro lado, sabemos que: por lo tanto: z(z 2) z 2 = 2 = 2 z 2 z(z 2) = 2 z/2 = 2 z n 2 n z(z 2). [ z ], 0 < z < 2. z 2 ( z n = 2) z n, z < 2, 2n = 2 z 4 8 z 6 z2 32 z3 64 z4 28 z5, 0 < z < 2. Héctor Hernández / Luis Núñez 5 Universidad de Los Andes, Mérida

6 Semana 3 - lase 37 Ejemplo 3: (z )() Esta función tienes polos de orden en z = y z = 3. Además, expresando f(z) como una suma de fracciones parciales, tendremos: [ (z )() = 2 z ], < z < 3, Para < z < 3. Tenemos los siguientes desarrollos: La serie es: z (z )() = z = 3 = 2 /z = z z/3 = 3 [ ( ) n =, z zn z >, ( z n = 3) z n, 3n z < 3, z n ] 3 n z n = 6 8 z 54 z2 62 z3 2 z 2 z 2 2 z 3 2 z 4. Para z > 3. En este caso no podemos utilizar el segundo desarrollo anterior, ya que éste es válido sólo para z < 3. Por lo tanto: = z 3/z = z ( ) 3 n = z 3 n, z > 3, zn podemos entonces escribir (z )() = 2 [ ] z n 3 n z n = 2 = z 2 4 z 3 3 z 4 40 z 5. 3 n z n para z <. Escribimos [ (z )() = 2 z ] = 2 z 6 z/3, Héctor Hernández / Luis Núñez 6 Universidad de Los Andes, Mérida

7 Semana 3 - lase 37 como z < y z/3 < en este dominio, entonces: Ejemplo 4: Sabemos que: por lo tanto: 2 e2z (z ) 3 = e2 e 2(z ) (z ) 3 = e2 z n 6 z n 3 n = 2 [ z n ] 3 n = z 3 27 z z z4. e z = e2z (z ) 3. z n, z <, 2 n (z ) n (z ) 3 = e2 2 n (z )n 3 [ 2 = e 2 3 (z ) 3 2 (z ) 2 2 (z ) 2 3 z 4 ] 5 (z )2, la cual es válida para: 0 < z <. Ejemplo 5: Esta función se puede escribir como: Sabemos que: entonces sen z = z sen z z 3. z 2 sen z z 3. ( ) n z2n (2n )!, z <, z 2 sen z z 3 = z 2 ( ) n z 2n z 3 (2n )! = z 2 ( ) n z2(n ) (2n )! válida para: 0 < z <. = z 2 z 2 ( ) n z2(n ) (2n )! = ( ) n z2(n ) (2n )! n= = 6 20 z z4 n= z z8, Héctor Hernández / Luis Núñez 7 Universidad de Los Andes, Mérida

Así tenemos el siguiente teorema: Sea f una función analítica en un disco Entonces f admite la representación de potencias:

Así tenemos el siguiente teorema: Sea f una función analítica en un disco Entonces f admite la representación de potencias: Así tenemos el siguiente teorema: Sea f una función analítica en un disco Entonces f admite la representación de potencias: donde conocida como serie de Taylor (o serie de Maclaurin cuando ). Además la

Más detalles

Fórmula integral de Cauchy

Fórmula integral de Cauchy Fórmula integral de Cauchy Comentario: de acuerdo con esta fórmula, uno puede conocer el valor de f dentro del entorno, conociendo únicamente los valores que toma f en el contorno C! Fórmula integral de

Más detalles

Tema 5. Series de Potencias

Tema 5. Series de Potencias Tema 5. Series de Potencias Prof. William La Cruz Bastidas 21 de noviembre de 2002 Tema 5 Series de Potencias Definición 5.1 La sucesión de números complejos {z n } tiene un límite o converge a un número

Más detalles

13. Series de Laurent.

13. Series de Laurent. Funciones de variable compleja. Eleonora Catsigeras. 3 Mayo 2006. 33 3. Series de Laurent. 3.. Definición de serie de Laurent y corona de convergencia. Definición 3... Serie de Laurent. Se llama serie

Más detalles

SUCESIONES Y SERIES INFINITAS

SUCESIONES Y SERIES INFINITAS de SUCESIONES Y SERIES INFINITAS Sergio Stive Solano Septiembre de 2012 de SUCESIONES Y SERIES INFINITAS Sergio Stive Solano Septiembre de 2012 de Una serie de potencia es aquella que tiene la forma c

Más detalles

Series Sucesiones y series en C

Series Sucesiones y series en C Series En este capítulo vamos a estudiar desarrollos en serie de funciones holomorfas, para lo cual vamos en primer lugar a revisar resultados de la teoría de series, adaptándolos a series de términos

Más detalles

16. Ejercicios resueltos sobre cálculo de residuos.

16. Ejercicios resueltos sobre cálculo de residuos. 7 Funciones de variable compleja. Eleonora Catsigeras. 3 Junio 26. 6. Ejercicios resueltos sobre cálculo de residuos. En esta sección se dan ejemplos de cálculo de integrales de funciones reales, propias

Más detalles

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6 LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE Capítulo 7 Sec. 7.5 y 7.6 El Plano Complejo Se puede utilizar un plano de coordenadas para representar números complejos. Si cada

Más detalles

Variable Compleja I ( ) Ejercicios resueltos. Convergencia de series. Series de potencias

Variable Compleja I ( ) Ejercicios resueltos. Convergencia de series. Series de potencias Variable Compleja I (04-5) Ejercicios resueltos Convergencia de series. Series de potencias Ejercicio Calcule el radio de convergencia de la serie de potencias ( ) n z n3. Solución. Observemos primero

Más detalles

Forma polar de números complejos (repaso breve)

Forma polar de números complejos (repaso breve) Forma polar de números complejos (repaso breve) Objetivos. pasar la forma polar de números complejos. quisitos. Números complejos, funciones trigonométricas, valor absoluto de números complejos, circunferencia

Más detalles

Más sobre las series geométricas. 1. Derivación de series geométricas elementales

Más sobre las series geométricas. 1. Derivación de series geométricas elementales Semana - Clase 2 4/0/0 Tema : Series Más sobre las series geométricas Las series infinitas se encuentran entre las más poderosas herramientas que se introducen en un curso de cálculo elemental. Son un

Más detalles

Un resumen de la asignatura. Junio, 2015

Un resumen de la asignatura. Junio, 2015 Un resumen de la asignatura Departamento de Matemática Aplicada a las Tecnologías de la Información y las Comunicaciones ETSIT (UPM) Junio, 2015 1 Los Números Reales(R) Los números Irracionales Continuidad

Más detalles

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL (Curso 00-00) HOJA Ejercicio. Determina en qué recintos es holomorfa la siguiente función: f(x + iy) x + ay + i(bx + cy) En este caso consideramos: u(x, y) x + ay

Más detalles

Números complejos y Polinomios

Números complejos y Polinomios Semana 13 [1/14] 23 de mayo de 2007 Forma polar de los complejos Semana 13 [2/14] Raíces de la unidad Raíz n-ésima de la unidad Sean z C y n 2. Diremos que z es una raíz n-ésima de la unidad si z n = 1

Más detalles

MAT2715 VARIABLE COMPLEJA II Ayudantia 5 Rodrigo Vargas. g(z) e u(z) 1. u(z) a log z + b

MAT2715 VARIABLE COMPLEJA II Ayudantia 5 Rodrigo Vargas. g(z) e u(z) 1. u(z) a log z + b PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS MAT2715 VARIABLE COMPLEJA II Ayudantia 5 Rodrigo Vargas 1. Sea u : C R una función armónica positiva. Pruebe que u es constante. Solución:

Más detalles

D. Teorema de Cauchy Goursat: Práctica 4

D. Teorema de Cauchy Goursat: Práctica 4 Analiticidad y transformaciones conformes ondiciones de auchy Riemann Transformaciones conformes Integración en el Plano omplejo Parametrización de arcos e integrales de contorno auchy, auchy Goursat y

Más detalles

10. Series de potencias

10. Series de potencias FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 7-2 Basado en el apunte del curso Cálculo (2do semestre), de Roberto Cominetti, Martín Matamala y Jorge San

Más detalles

Series de Taylor para funciones de variable compleja

Series de Taylor para funciones de variable compleja Series de Taylor para funciones de variable compleja Marc Farrés Pijuan 2010-11 1 1 Series de Taylor 1.1 Denición Tal y como sabemos para el ámbito de los reales, si dada una función f podemos derivarla

Más detalles

Integral de Fourier y espectros continuos

Integral de Fourier y espectros continuos 9 2 2 2 Esta expresión se denomina forma de Angulo fase (o forma armónica) de la serie de Fourier. Integral de Fourier y espectros continuos Las series de Fourier son una herramienta útil para representar

Más detalles

(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0),

(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0), NÚMEROS COMPLEJOS 1. Preliminares Definición. Se llama número complejo a todo par ordenado de números reales. Si z = (a, b) es un número complejo, se dice que a es la parte real de z y b es la parte imaginaria

Más detalles

APLICACIONES a) Calculo de limites b) Calculo de aproximaciones y estimación del error. c) Criterios de máximos y mínimos.

APLICACIONES a) Calculo de limites b) Calculo de aproximaciones y estimación del error. c) Criterios de máximos y mínimos. INTRODUCCION SERIES a) Seno b) e x c) Cotangente APLICACIONES a) Calculo de limites b) Calculo de aproximaciones y estimación del error. c) Criterios de máximos y mínimos. EXTRAS INTRODUCCION La serie

Más detalles

Lección 3. Cálculo vectorial. 5. El teorema de Stokes.

Lección 3. Cálculo vectorial. 5. El teorema de Stokes. GRADO DE INGENIERÍA AEROESPAIAL. URSO. 5. El teorema de Stokes. En esta sección estudiaremos otro de los teoremas clásicos del análisis vectorial: el teorema de Stokes. Esencialmente se trata de una generalización

Más detalles

Funciones de Variable Real

Funciones de Variable Real Tema 1 Funciones de Variable Real 1.1. La Recta Real Los números reales se pueden ordenar como los puntos de una recta. Los enteros positivos {1, 2, 3, 4,...} que surgen al contar, se llaman números naturales

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El alumno contestará a

Más detalles

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra.

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra. Integral definida Integral definida Dada una función f(x) y un intervalo [a,b], la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y las rectas verticales x =

Más detalles

Semana 2 [1/24] Derivadas. August 16, Derivadas

Semana 2 [1/24] Derivadas. August 16, Derivadas Semana 2 [1/24] August 16, 2007 Máximos y mínimos: la regla de Fermat Semana 2 [2/24] Máximos y mínimos locales Mínimo local x es un mínimo local de la función f si existe ε > 0 tal que f( x) f(x) x (

Más detalles

Series numéricas y de potencias. 24 de Noviembre de 2014

Series numéricas y de potencias. 24 de Noviembre de 2014 Cálculo Series numéricas y de potencias 24 de Noviembre de 2014 Series numéricas y de potencias Series numéricas Sucesiones de números reales Concepto de serie de números reales. Propiedades Criterios

Más detalles

Matemáticas Avanzadas para Ingeniería: Serie de Taylor. Departamento de Matemáticas. Propiedades. Tma. Taylor. Ejemplos MA3002

Matemáticas Avanzadas para Ingeniería: Serie de Taylor. Departamento de Matemáticas. Propiedades. Tma. Taylor. Ejemplos MA3002 MA3002 Intro Suponga una serie potencias a k (z z o ) k Para un valor z que pertenezca al interior l círculo convergencia dicha serie, el valor ĺımite la serie L es un número complejo perfectamente finido

Más detalles

Regiones en el plano complejo

Regiones en el plano complejo Regiones en el plano complejo Disco abierto, vecindad o entorno: El conjunto de puntos que satisfacen la desigualdad donde es número real positivo [ : entorno] ====================================== Recordemos

Más detalles

CÁLCULO II. Grado M+I. Sucesiones y series de funciones. Sucesiones y series de funciones 1 / 27. Grado M+I () CÁLCULO II

CÁLCULO II. Grado M+I. Sucesiones y series de funciones. Sucesiones y series de funciones 1 / 27. Grado M+I () CÁLCULO II CÁLCULO II Grado M+I Sucesiones y series de funciones Sucesiones y series de funciones 1 / Sucesiones funciones. Convergencia puntual Sucesión de funciones Definición Una sucesión de funciones será cualquier

Más detalles

Fórmula de Cauchy Fórmula de Cauchy

Fórmula de Cauchy Fórmula de Cauchy Lección 8 Fórmula de Cauchy Llegamos al que se puede considerar como punto culminante de la teoría local de Cauchy, probando el resultado que se conoce como fórmula de Cauchy. Nos da una representación

Más detalles

Los números complejos

Los números complejos Universidad Autónoma de Madrid Actualización en Análisis Matemático, abril de 2012 Cardano (1501 1576) Dividir un segmento de longitud 10 en dos trozos tales que el rectángulo cuyos lados tienen la longitud

Más detalles

UNIDAD DE APRENDIZAJE V

UNIDAD DE APRENDIZAJE V UNIDAD DE APRENDIZAJE V Saberes procedimentales 1. Identifica la simbología propia de la geometría y la trigonometría. 2. Identifica las unidades para medir ángulos. 3. Clasifica adecuadamente las identidades

Más detalles

Problemas de VC para EDVC elaborados por C. Mora, Tema 4

Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Ejercicio Determinar las funciones enteras f para las que Solución f( + w) = f()f(w), w C. En primer lugar, f(0) = f(0 + 0) = f(0)f(0) = f(0) 2,

Más detalles

Variable Compleja... *

Variable Compleja... * Variable ompleja... * L. A. Núñez ** entro de Física Fundamental, Departamento de Física, Facultad de iencias, Universidad de Los Andes, Mérida 5, Venezuela y entro Nacional de álculo ientífico, Universidad

Más detalles

=ángulo dirigido, en sentido antihorario, del eje polar al segmento 0P

=ángulo dirigido, en sentido antihorario, del eje polar al segmento 0P COORDENADAS POLARES INSTITUCIÓN UNIVERSITARIA DE ENVIGADO FACULTAD DE INGENIERÍAS ÁREA DE CIENCIAS BÁSICAS ÁREA DE CALCULO INTEGRAL ENVIGADO, OCTUBRE 28 2004 INTRODUCCIÓN En el desarrollo de nuestro plan

Más detalles

Cálculo Infinitesimal 1. Cuestiones de examen (2010/2011 a 2015/2016)

Cálculo Infinitesimal 1. Cuestiones de examen (2010/2011 a 2015/2016) Cálculo Infinitesimal 1. Cuestiones de examen (2010/2011 a 2015/2016) 1. Justifíquese la verdad o falsedad de la siguiente afirmación: La suma de dos números irracionales iguales es irracional (enero 2011).

Más detalles

La función, definida para toda, es periódica si existe un número positivo tal que

La función, definida para toda, es periódica si existe un número positivo tal que Métodos con series de Fourier Definición: Función periódica La función, definida para toda, es periódica si existe un número positivo tal que para toda. El número en un periodo de la función. Si existe

Más detalles

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím

Más detalles

Introducción. El uso de los símbolos en matemáticas.

Introducción. El uso de los símbolos en matemáticas. Introducción El uso de los símbolos en matemáticas. En el estudio de las matemáticas lo primero que necesitamos es conocer su lenguaje y, en particular, sus símbolos. Algunos símbolos, que reciben el nombre

Más detalles

Derivada de la función compuesta. Regla de la cadena

Derivada de la función compuesta. Regla de la cadena Derivada de la función compuesta. Regla de la cadena Cuando en las matemáticas de bachillerato se introduce el concepto de derivada, su significado y su interpretación geométrica, se pasa al cálculo de

Más detalles

Apéndice 2: Series de Fourier.

Apéndice 2: Series de Fourier. Apéndice 2: Series de Fourier. 19 de noviembre de 2014 1. Conjuntos ortonormales y proyecciones. Sea V un espacio vectorial con un producto interno . Sea {e 1,..., e n } un conjunto ortonormal, V

Más detalles

Funciones reales. Números complejos

Funciones reales. Números complejos Funciones reales. Números complejos Funciones reales 1. Encuentra todos los números reales x que verifican: a) (x 1)(x 3) > 1 b) x + 1 > 1 1 x c) x 1 + x + 1 < 1 d) 5 < x 2 14x + 5 < 26 2. Si la gráfica

Más detalles

1. INTEGRALES DEFINIDAS E IMPROPIAS

1. INTEGRALES DEFINIDAS E IMPROPIAS . INTEGRALES DEFINIDAS E IMPROPIAS. Hallar el área de la región limitada por la parábola y = y el eje OX. Los cortes de la gráfica de y = con el eje OX son los valores de tales que =, esto es, = y =. El

Más detalles

b 11 b b 1n b 21 b b 2n. b n1 b n2... b nn

b 11 b b 1n b 21 b b 2n. b n1 b n2... b nn 1429 Un cuadrado de n n números enteros se dice que es mágico si la suma de los números de cada una de sus filas o columnas, así como de cada una de las dos diagonales principales, es el mismo Encontrar

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 5

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 5 ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO 5 DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Números Complejos Se define el conjunto de los

Más detalles

Propiedades de las funciones de Bessel

Propiedades de las funciones de Bessel Capítulo 11 Propiedades de las funciones de Bessel 11.1. Relaciones de recurrencia Si partimos de la serie que define a la función de Bessel, 11.1.1. se demuestra directamente que d dx [xν J ν (x)] x ν

Más detalles

Números Complejos. Números naturales: útiles para contar cosas N={ 0, 1, 2, } Pero con ellos no podemos resolver la ecuación: X+5=2

Números Complejos. Números naturales: útiles para contar cosas N={ 0, 1, 2, } Pero con ellos no podemos resolver la ecuación: X+5=2 Números Complejos Números naturales: útiles para contar cosas N={ 0, 1, 2, } Pero con ellos no podemos resolver la ecuación: X+5=2 Números Complejos Entonces inventamos los números enteros: Z = { -2, -1,

Más detalles

CONTINUIDAD Y DERIVABILIDAD. DERIVADAS

CONTINUIDAD Y DERIVABILIDAD. DERIVADAS CONTINUIDAD Y DERIVABILIDAD. DERIVADAS. Dada la función f (), (, ), definir f () y f () de forma que f sea continua sen(π ) en todo el intervalo cerrado [, ]. : f () f () π 5 si. Estudiar la continuidad

Más detalles

1. Funciones de varias variables

1. Funciones de varias variables Coordinación de Matemáticas III (MAT 023) 1 er Semestre de 2013 1. Funciones de varias variables 1.1. Definiciones básicas Definición 1.1. Consideremos una función f : U R n R m. Diremos que: 1. f es una

Más detalles

Curso Propedéutico de Cálculo Sesión 3: Derivadas

Curso Propedéutico de Cálculo Sesión 3: Derivadas Curso Propedéutico de Cálculo Sesión 3: Joaquín Ortega Sánchez Centro de Investigación en Matemáticas, CIMAT Guanajuato, Gto., Mexico Esquema 1 2 3 4 5 6 7 Esquema 1 2 3 4 5 6 7 Introducción La derivada

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN

INSTRUCCIONES GENERALES Y VALORACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Examen-Modelo para el curso 2014-2015 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

Teoremas de convergencia y derivación bajo el signo integral

Teoremas de convergencia y derivación bajo el signo integral Capítulo 8 Teoremas de convergencia y derivación bajo el signo integral En este capítulo estudiaremos sucintamente bajo qué circunstancias puede intercambiarse el orden de la integral con las operaciones

Más detalles

NÚMEROS COMPLEJOS: C

NÚMEROS COMPLEJOS: C NÚMEROS COMPLEJOS: C Alejandro Lugon 21 de mayo de 2010 Resumen Este es un pequeño estudio de los números complejos con el objetivo de poder usar las técnicas de solución de ecuaciones y sistemas diferenciales

Más detalles

Números reales. por. Ramón Espinosa

Números reales. por. Ramón Espinosa Números reales por Ramón Espinosa Existe un conjunto R, cuyos elementos son llamados números reales. Los números reales satisfacen ciertas propiedades algebraicas y de orden que describimos a continuación.

Más detalles

Operador Diferencial y Ecuaciones Diferenciales

Operador Diferencial y Ecuaciones Diferenciales Operador Diferencial y Ecuaciones Diferenciales. Operador Diferencial Un operador es un objeto matemático que convierte una función en otra, por ejemplo, el operador derivada convierte una función en una

Más detalles

MATEMÁTICA D y D 1 Módulo I: Análisis de Variable Compleja

MATEMÁTICA D y D 1 Módulo I: Análisis de Variable Compleja Matemática D y D MATEMÁTICA D y D Módulo I: Análisis de Variable Compleja Unidad 0 Números Complejos Mag. María Inés Baragatti Números complejos. Generalidades Un número complejo es un par ordenado de

Más detalles

SISTEMAS LINEALES. Tema 6. Transformada Z

SISTEMAS LINEALES. Tema 6. Transformada Z SISTEMAS LINEALES Tema 6. Transformada Z 6 de diciembre de 200 F. JAVIER ACEVEDO javier.acevedo@uah.es TEMA 3 Contenidos. Autofunciones de los sistemas LTI discretos. Transformada Z. Región de convergencia

Más detalles

Ejemplos y problemas resueltos de análisis complejo (2014-15)

Ejemplos y problemas resueltos de análisis complejo (2014-15) Variable Compleja I (3 o de Matemáticas y 4 o de Doble Titulación) Ejemplos y problemas resueltos de análisis complejo (04-5) Teoremas de Cauchy En estos apuntes, la palabra dominio significa, como es

Más detalles

BORRADOR. Sucesiones y series numéricas Sucesiones. es un conjunto ordenado de números

BORRADOR. Sucesiones y series numéricas Sucesiones. es un conjunto ordenado de números Capítulo 4 Sucesiones y series numéricas 4.1. Sucesiones Una sucesión {s n } es un conjunto ordenado de números {s 1,s 2,s 3,...,s n,...}. Técnicamente, una sucesión puede considerarse como una aplicación

Más detalles

4 Conjunto de los números reales

4 Conjunto de los números reales Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Clase #4: viernes, 3 de junio de 2016. 4 Conjunto de los números reales 4.1

Más detalles

Alfredo González. Beatriz Rodríguez Pautt. Carlos Alfaro

Alfredo González. Beatriz Rodríguez Pautt. Carlos Alfaro Alfredo González Beatriz Rodríguez Pautt Carlos Alfaro FERNANDO DAVID ANILLO 1 1. Números reales... 03 2. Transformación de un decimal a fracción 05 3. Propiedades de los números reales. 6 4. Propiedades

Más detalles

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS B. SUCESIONES B.1 Diversos conjuntos numéricos. En

Más detalles

1 Funciones de Varias Variables

1 Funciones de Varias Variables EJECICIOS DE FUNDAMENTOS MATEMÁTICOS (DISEO) Funciones de Varias Variables. Dada f(x, y) ln ( x + ln(y) ). a) Calcular la derivada direccional en el punto (x, y) (, e 2 ) en la dirección del vector v (3,

Más detalles

Una serie de potencias es una serie de la forma. c n x n c 0 c 1 x c 2 x 2 c 3 x 3. n 0. f x c 0 c 1 x c 2 x 2 c n x n. x n 1 x x 2 x n n 0

Una serie de potencias es una serie de la forma. c n x n c 0 c 1 x c 2 x 2 c 3 x 3. n 0. f x c 0 c 1 x c 2 x 2 c n x n. x n 1 x x 2 x n n 0 SECCIÓN.8 SERIES DE POTENCIAS 73.8 SERIES DE POTENCIAS Una serie de potencias es una serie de la forma & SERIES TRIGONOMÉTRICAS Una serie de potencias es una serie en la cual cada uno de los términos es

Más detalles

1. DEFINICIÓN. ax = b, x 2 = b, 2 + 5i, 0 + ( 2)i, 2 + 3i, 5 + 0i, 1 + 1i. 0 + ( 2)i = 2i, 5 + 0i = 5, 1 + 1i = 1 + i.

1. DEFINICIÓN. ax = b, x 2 = b, 2 + 5i, 0 + ( 2)i, 2 + 3i, 5 + 0i, 1 + 1i. 0 + ( 2)i = 2i, 5 + 0i = 5, 1 + 1i = 1 + i. NÚMEROS COMPLEJOS PATRICIA KISBYE 1. DEFINICIÓN En los números reales es posible resolver cualquier ecuación lineal en una variable: ax = b, siempre que a sea distinto de 0. Pero las ecuaciones cuadráticas,

Más detalles

Límites y Continuidad de funciones de varias variables

Límites y Continuidad de funciones de varias variables 1- Se construe un depósito de propano adosando dos hemisferios a los etremos de un cilindro circular recto Epresar el volumen V de ese depósito en función del radio r del cilindro de su altura h - Determinar

Más detalles

Vectores y números complejos

Vectores y números complejos Vectores y números complejos Desde cursos anteriores nos hemos tropezado con las llamadas raíces imaginarias o complejas de polinomios. De este modo la solución a un polinomio cúbico x = 2i x 3 3x 2 +

Más detalles

Para ver una explicación detallada de cada gráfica, haga Click sobre el nombre.

Para ver una explicación detallada de cada gráfica, haga Click sobre el nombre. Para ver una explicación detallada de cada gráfica, haga Click sobre el nombre. La Parábola La Circunferencia La Elipse La Hipérbola La Parábola La parábola se define como: el lugar geométrico de los puntos

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 7 de Julio de 2000 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 7 de Julio de 2000 Primera parte ÁLULO Primer curso de Ingeniero de Telecomunicación Examen Final. 7 de Julio de 000 Primera parte Ejercicio 1. Entre todos los rectángulos del plano YOZ,inscritos en la parábola z = a y (siendo a>0) yconbaseenelejeoy

Más detalles

Cálculo Diferencial: Enero 2016

Cálculo Diferencial: Enero 2016 Cálculo Diferencial: Enero 2016 Selim Gómez Ávila División de Ciencias e Ingenierías Universidad de Guanajuato 9 de febrero de 2016 / Conjuntos y espacios 1 / 21 Conjuntos, espacios y sistemas numéricos

Más detalles

Límites y continuidad. Cálculo 1

Límites y continuidad. Cálculo 1 Límites y continuidad Cálculo 1 Razones de cambio y límites La rapidez promedio de un móvil es la distancia recorrida durante un intervalo de tiempo dividida entre la longitud del intervalo. Ejemplo 1

Más detalles

Razón de cambio. f(x 2 ) f(x 1 ) x 2 x 1. dt = lím f(x 2 ) f(x 1 )

Razón de cambio. f(x 2 ) f(x 1 ) x 2 x 1. dt = lím f(x 2 ) f(x 1 ) Razón de cambio Al denir la derivada de una función y f en un punto jo, se tiene f f f Si cambia de a tenemos que y el cambio correspondiente en y es: y f f El cociente de las diferencias y f f se llama

Más detalles

TEMA2. SUCESIONES DE NÚMEROS REALES Y COMPLEJOS

TEMA2. SUCESIONES DE NÚMEROS REALES Y COMPLEJOS TEMA2. SUCESIONES DE NÚMEROS REALES Y COMPLEJOS 2.1 SUCESIONES DE NUMEROS REALES 2.1.1 Definición de sucesión de números reales Definición: Una sucesión de números reales es una aplicación del conjunto

Más detalles

Sesión del día 11 de Marzo del 2011 y tutoría del día 12 de Marzo del 2011

Sesión del día 11 de Marzo del 2011 y tutoría del día 12 de Marzo del 2011 Especialidad La enseñanza de las matemáticas en secundaria Grupo B: Celaya Sesión del día 11 de Marzo del 2011 y tutoría del día 12 de Marzo del 2011 Álgebra Resumen de la sesión anterior. Se añadió que

Más detalles

5. ANÁLISIS MATEMÁTICO // 5.1. FUNCIONES Y

5. ANÁLISIS MATEMÁTICO // 5.1. FUNCIONES Y 5. ANÁLISIS MATEMÁTICO // 5.1. FUNCIONES Y LÍMITES. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2010-2011 5.1.1. Las magnitudes variables: funciones. 5.1.1. Las magnitudes variables:

Más detalles

La estructura de un cuerpo finito.

La estructura de un cuerpo finito. 9. CUERPOS FINITOS El objetivo de este capítulo es determinar la estructura de todos los cuerpos finitos. Probaremos en primer lugar que todo cuerpo finito tiene p n elementos, donde p es la característica

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 04 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Tema 4.3: Desarrollo de Taylor. Equivalencia entre analiticidad y holomorfía. Fórmula de Cauchy para las derivadas

Tema 4.3: Desarrollo de Taylor. Equivalencia entre analiticidad y holomorfía. Fórmula de Cauchy para las derivadas Tema 4.3 Desarrollo de Taylor. Euivalencia entre analiticidad y holomorfía. Fórmula de Cauchy para las derivadas Facultad de Ciencias Experimentales, Curso 008-09 E. de Amo Tal y como ya anunciábamos en

Más detalles

Para formar el sistema de coordenadas polares en el plano, se fija un punto O llamado polo u origen, se traza un rayo inicial llamado eje polar.

Para formar el sistema de coordenadas polares en el plano, se fija un punto O llamado polo u origen, se traza un rayo inicial llamado eje polar. Coordenadas polares. Las coordenadas polares es un sistema de coordenadas que define la posición de un punto en un espacio bidimensional en función de los ángulos directores y de la distancia al origen

Más detalles

Especialidad La enseñanza de las matemáticas en secundaria Grupo B: Celaya. Inducción. 1. Principio de Inducción

Especialidad La enseñanza de las matemáticas en secundaria Grupo B: Celaya. Inducción. 1. Principio de Inducción Especialidad La enseñanza de las matemáticas en secundaria Grupo B: Celaya Inducción 1. Principio de Inducción La inducción matemática es un método muy útil en algunas demostraciones. Se emplea generalmente

Más detalles

EXAMEN EXTRAORDINARIO 8 de julio de 2016

EXAMEN EXTRAORDINARIO 8 de julio de 2016 CÁLCULO I EXAMEN EXTRAORDINARIO 8 de julio de 16 Apellidos: Titulación: Duración del eamen: horas y 3 minutos Fecha publicación notas: 18-7-16 Fecha revisión eamen: 1-7-16 Todas las respuestas deben de

Más detalles

TERCER TRABAJO EN GRUPO Grupo 10

TERCER TRABAJO EN GRUPO Grupo 10 TERCER TRABAJO EN GRUPO Grupo 10 Problema 1.- Se considera la ecuación x 3 + x + mx 6 = 0. Utilizando el Teorema de Bolzano demostrar que: (i) Si m > 3 la ecuación tiene al menos una raíz real menor que.

Más detalles

Lección 3: Aproximación de funciones. por polinomios. Fórmula de Taylor para

Lección 3: Aproximación de funciones. por polinomios. Fórmula de Taylor para Lección 3: Aproximación de funciones por polinomios. Fórmula de Taylor para funciones escalares 3.1 Introducción Cuando es difícil trabajar con una función complicada, tratamos a veces de hallar una función

Más detalles

Espacios compactos. Capítulo Cubiertas. En este capítulo estudiaremos el concepto de compacidad en un espacio métrico.

Espacios compactos. Capítulo Cubiertas. En este capítulo estudiaremos el concepto de compacidad en un espacio métrico. Capítulo 3 Espacios compactos 1. Cubiertas En este capítulo estudiaremos el concepto de compacidad en un espacio métrico. Definición 3.1. Sea (X, d) un espacio métrico y A X. Una cubierta de A es una familia

Más detalles

Universidad de Antioquia Facultad de Ciencias Exactas y Naturales Instituto de Matemáticas

Universidad de Antioquia Facultad de Ciencias Exactas y Naturales Instituto de Matemáticas Facultad de Ciencias Exactas y Naturales Instituto de Matemáticas Algebra y Trigonometría Taller 6: Funciones Polinomiales y Racionales Teorema del residuo y del factor. Hallar los valores que se piden

Más detalles

Números complejos. por. Ramón Espinosa Armenta

Números complejos. por. Ramón Espinosa Armenta Números complejos por Ramón Espinosa Armenta En el siglo XVI, el matemático italiano Gerolamo Cardano se preguntó si tenía sentido considerar raíces cuadradas de números negativos. Tal raíz cuadrada debería

Más detalles

CÁLCULO DE DERIVADAS.

CÁLCULO DE DERIVADAS. ANÁLISIS MATEMÁTICO BÁSICO. La Función Derivada. CÁLCULO DE DERIVADAS. Definición.. Sea una función f : R R derivable. Se llama función derivada a la función f : R R x f (x). Observación.. Domf { x R :

Más detalles

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados.

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 215/216 Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. 1.1. Grupo abeliano libre. Bases. Definición 1.1. El grupo Z n con

Más detalles

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad y Laterales Curso Propedéutico de Cálculo Sesión 2: y Joaquín Ortega Sánchez Centro de Investigación en Matemáticas, CIMAT Guanajuato, Gto., Mexico y Esquema Laterales 1 Laterales 2 y Esquema Laterales

Más detalles

Los números decimales ilimitados no periódicos se llaman números irracionales, que designaremos

Los números decimales ilimitados no periódicos se llaman números irracionales, que designaremos Unidad Didáctica NÚMEROS REALES. NÚMEROS IRRACIONALES: CARACTERIZACIÓN. En el tema correspondiente a números racionales hemos visto que estos números tienen una característica esencial: su expresión decimal

Más detalles

Volumen de Sólidos de Revolución

Volumen de Sólidos de Revolución 60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido

Más detalles

crece indefinidamente y toma valores positivos cada vez, y si decrece tomando valores negativos escribimos

crece indefinidamente y toma valores positivos cada vez, y si decrece tomando valores negativos escribimos Límites infinitos y límites al infinito El símbolo se lee infinito, es de carácter posicional, no representa ningún número real. Si una variable independiente está creciendo indefinidamente a través de

Más detalles

(x a) f (n) (a) Los polinomios de Taylor en el punto a = 0, suelen denominarse polinomios de McLaurin. n,a(a) = f (k) (a):

(x a) f (n) (a) Los polinomios de Taylor en el punto a = 0, suelen denominarse polinomios de McLaurin. n,a(a) = f (k) (a): 0 Matemáticas I : Cálculo diferencial en IR Tema 0 Polinomios de Taylor Hemos visto el uso de la derivada como aproimación de la función (la recta tangente) y como indicadora del comportamiento de la función

Más detalles

CAPÍTULO 10. Teoremas Integrales.

CAPÍTULO 10. Teoremas Integrales. CAPÍTULO 10 Teoremas Integrales. Este capítulo final contiene los teoremas integrales del análisis vectorial, de amplia aplicación a la física y a la ingeniería. Los anteriores capítulos han preparado

Más detalles

3. Cambio de variables en integrales dobles.

3. Cambio de variables en integrales dobles. GADO DE INGENIEÍA AEOESPACIAL. CUSO. Lección. Integrales múltiples. 3. Cambio de variables en integrales dobles. Para calcular integrales dobles eiste, además del teorema de Fubini, otra herramienta fundamental

Más detalles

Por ser f continua y R compacto, existen x 0, y 0 en R tales que f(x 0 ) = sup{f(t) : t R} y f(y 0 ) = inf{f(t) : t R}

Por ser f continua y R compacto, existen x 0, y 0 en R tales que f(x 0 ) = sup{f(t) : t R} y f(y 0 ) = inf{f(t) : t R} Proposición. Sea un rectángulo en R n, y sea f : R una función continua. Entonces f es integrable en. Conjuntos de Demostración: Como f es continua en, y es compacto, f es acotada en, y uniformemente continua.

Más detalles

El cuerpo de los números complejos

El cuerpo de los números complejos Capítulo 1 El cuerpo de los números complejos En este primer capítulo se revisan los conceptos elementales relativos a los números complejos. El capítulo comienza con una breve nota histórica y después

Más detalles

Cálculo. Primer curso de Ingenieros de Telecomunicación. Curso Examen de Septiembre. 6 de Septiembre de 2002.

Cálculo. Primer curso de Ingenieros de Telecomunicación. Curso Examen de Septiembre. 6 de Septiembre de 2002. Cálculo. Primer curso de Ingenieros de Telecomunicación. Curso -. Examen de Septiembre. 6 de Septiembre de. Primera parte Ejercicio. Un canal abierto cuya sección es un trapecio isósceles de bases horizontales,

Más detalles

1 Ecuaciones, desigualdades y modelaje

1 Ecuaciones, desigualdades y modelaje Programa Inmersión, Verano 01 Notas escritas por Dr M Notas del cursos Basadas en los prontuarios de MATE 3001 y MATE 303 Clase #13: jueves, 1 de junio de 01 1 Ecuaciones, desigualdades y modelaje 13 Ecuaciones

Más detalles