Resolución de problemas
|
|
|
- María Pilar Fidalgo Pérez
- hace 7 años
- Vistas:
Transcripción
1 1º Introducción La resolución de problemas en matemáticas es posiblemente la parte más difícil de dominar. Es complicado traducir el texto al lenguaje algebraico, ya que la única forma posible de aprender a hacerlo es practicar mucho. Pero también es la más necesaria pues, de hecho, una definición de matemáticas podría ser la ciencia que se encarga de resolver problemas. Es una definición muy simplificada, pero se aproxima mucho a la realidad. Para poder resolver correctamente un problema, es casi imprescindible pasar por las siguientes fases: 1) Entender el enunciado. Si no comprendemos el texto del problema, difícilmente podremos resolver el ejercicio. Conviene leer el problema entero al menos una vez antes de tomar datos. 2) Traducir el problema al lenguaje algebraico. Esta es la parte más difícil, pero con práctica se acaba cogiendo soltura. Después haremos problemas detallando esta parte. 3) Resolución: Una vez traducido al lenguaje algebraico, deberemos plantear una ecuación, o sistema. 4) Responder a la pregunta que se pide: Un fallo bastante común es quedarse en la resolución de la ecuación, pero eso nunca suele ser la pregunta que nos hacen. Cuando creáis que habéis terminado un problema, volver a leerlo, a ver si es cierto que respondéis a lo que se os pregunta. 2º El lenguaje algebraico. Como hemos comentado en el apartado anterior, la transformación al idioma de las matemáticas es la parte más complicada del proceso de resolución. Veamos unos ejemplos de cómo llevar esto a cabo. Lo primero que tenemos que tener en cuenta es que usar el lenguaje algebraico implica usar letras (bien dicho, monomios) para llevar a cabo la traducción. Cuando decimos, Escribe todos los números pares la solución es 2 n, siendo n cualquier número. Y eso porque es así? Pues porqué al sustituir la letra n por cualquier número, el resultado es un número que es el doble de otro, y esto es siempre par. Fíjate en la tabla de valores para comprobar que es cierto n 2n
2 Si ahora nos piden Escribe todo número impar Puede que nuestro primer impulso sea escribir 3 n, pero la siguiente tabla de valores nos demuestra que no es verdad: n 3n Observamos que el primer caso, cuando n=0, el triple de 0 es 0 que es PAR. Por si fuera poco, el doble de 2 es 6 que también es par. Entonces, 3 n no es siempre impar, por lo que no sirve. Pensando un poco, se nos puede ocurrir la solución. Como 2 n es siempre par, y el siguiente de un número par es siempre impar Pues 2 n+1 va a ser siempre impar. Lo comprobamos con la tabla siguiente. n 3n Resumimos y ponemos más ejemplos: En lengua castellana Un número cualquiera n Un número par 2n Un número impar 2n+1 Dos números consecutivos n, n+1 Dos números pares consecutivos 2n, 2n+2 El cuadrado de un número n 2 El cubo de un número n 3 El doble de un número menos su triple Un número cualquiera menos el tercio de otro número El producto de un número y su opuesto En lenguaje algebraico 2n-3n n m 3 n (-n) 3º Distintos ejemplos de problemas Ahora vamos a ver unos cuantos problemas con distintas técnicas que se pueden aplicar para la resolución de problemas. En cursos superiores, iremos viendo nuevos tipos de problemas que se solucionaran con nuevas técnicas, por eso conviene que domines todas las que aquí proponemos. Empecemos: 2
3 Un padre tiene el triple de la edad de su hijo. Si tuviera el padre 30 años menos y el hijo 8 años más, los dos tendrían las mismas edades. Cuál es la edad de cada uno? Damos por supuesto que todos entendemos el enunciado. Empecemos pues con la segunda fase: Como nos preguntan por las edades de un padre y un hijo, vamos a llamar x a la edad del hijo, por ejemplo. Y lo escribimos así: Edad del hijo: x De la edad del padre, nos dan una información: es el triple que la del hijo. Como a la del hijo la hemos llamado x, la del padre será: Edad del padre: 3 x (Esto se lee como el triple de la edad del hijo ) A continuación se nos dice: Si tuviera el padre 30 años menos (es decir, 3x-30) y el hijo 8 años más (es decir x+8), los dos tendrían las mismas edades. Lo transformamos en: 3x-30=x+8 Ahora pasamos a la fase de resolución, en la que resolvemos la ecuación: 3x-30=x+8 3x-x=8+30 2x=38 x=19 Pero aún no hemos resuelto el problema. Nos falta responder a la pregunta: Edad del hijo: 19 años Edad del padre: 3 19=57 años. Las edades de dos niños suman 16 años. Dentro de un año, la edad del uno será el doble de la del otro. Cuáles son sus edades? En problemas en los que nos hablan del pasado o/y el futuro, es útil hacer una tabla: Niños Edad en el presente Edad dentro de un año 1º x x+1 2º 16-x 16-x+1 = 17-x Como dentro de un año la edad de uno será el doble que la del otro: 3
4 2 (x+1)=17-x 2x+2=17-x 3x=15 x=5 La edad del primer niño será 5 años y la del segundo 16-5= 11 años. La suma de tres números impares consecutivos es igual al doble del menor más 9. Hallar dichos números Un número impar: 2x+1 El siguiente mayor es: 2x+3 El siguiente mayor es: 2x+5 El doble del menor más nueve: 2 (2x+1)+9 2x+1 + 2x+3 + 2x+5 = 2 (2x+1)+9 6x+9=4x+11 2x=2 x =1 Un número impar: 2 1+1=3 El siguiente mayor es: 2 1+3=5 El siguiente mayor es: 2 1+5=7 Si nos dicen que una botella de vino vale 10 euros y que el vino que contiene cuesta 9 euros más que el envase, cuánto cuestan el vino y el envase por separado? Precio del envase: x Precio del vino: x+9 x + x+9 = 10 2x=1 x=0 5 Luego el envase cuesta 0 50 y el vino Iba un campesino quejándose de lo pobre que era y dijo: Daría todo lo que fuera si alguien me ayudara. De pronto se le aparece el demonio y le propuso lo siguiente: Ves aquel puente? Si lo pasas en cualquier dirección, tendrás el doble de monedas de las que tienes ahora, pero hay una condición: debes tirar 24 monedas cada vez que cruces el puente. Pasó el campesino una vez, contó su dinero y tenía el doble. Tiró 24 monedas, volvió a cruzar el puente y duplicó de nuevo su dinero, así que tiró de nuevo 24 monedas. Cruzó por tercera vez el puente y resultó que tenía 24 monedas exactas, y tuvo que tirarlas al río y se quedó sin nada. Cuántas monedas tenía el campesino antes de cruzar el puente por primera vez? 4
5 El campesino tiene x monedas antes de pasar por primera vez. Pasa la primera vez, con lo que dobla su dinero: 2x Tira 24 monedas: 2x-24 Pasa por segunda vez el puente, con lo que duplica su dinero: 2 (2x-24) = 4x-48 Tira 24 monedas: 4x-48-24=4x-72 Pasa por tercera vez, con lo que dobla su dinero: 2 (4x-72) = 8x-144 Le quedan justo 24 monedas, es decir: 8x-144=24 8x=168 x=21 El campesino tenía 21 monedas antes de empezar. 5
Ámbito Científico-tecnológico Módulo III Bloque 3 Unidad 4 Fácil, fácil, fácil. Pon una ecuación en tu vida
Ámbito Científico-tecnológico Módulo III Bloque 3 Unidad 4 Fácil, fácil, fácil. Pon una ecuación en tu vida Siempre se ha dicho que las ecuaciones son muy difíciles. Casi con pronunciar su nombre ya da
Una expresión algebraica es una combinación de números y letras combinados mediante las operaciones matemáticas.
TEMA 6 EXPRESIONES ALGEBRAICAS Una expresión algebraica es una combinación de números y letras combinados mediante las operaciones matemáticas. Ejemplo: 2 x, 2 a + 3, m (n - 3),... Usamos las expresiones
EL LENGUAJE ALGEBRAICO
LENGUAJE ALGEBRAICO Guillermo Ruiz Varela - PT EL LENGUAJE ALGEBRAICO Hasta ahora siempre hemos trabajado en matemáticas con números y signos, es lo que se llama lenguaje numérico. A partir de ahora, vamos
Curso º ESO. UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón
2º ESO UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón OBJETIVOS CONTENIDOS PROCEDIMIENTOS Lenguaje algebraico. Normas y Traducción
TEMA 7 PROBLEMAS DE ECUACIONES DE PRIMER GRADO
Nueva del Carmen,. 0 Valladolid. Tel Fax e-mail [email protected] Matemáticas º ESO TEMA PROBLEMAS DE ECUACIONES DE PRIMER GRADO NOMBRE Y APELLIDOS... HOJA - FECHA... Las ecuaciones sirven para
ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA
ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA Recordar: Una ecuación es una igualdad algebraica en la que aparecen letras (incógnitas) con valor desconocido. El grado de una ecuación viene dado por el eponente
Expresiones algebraicas
Expresiones algebraicas Contenidos 1. Lenguaje algebraico Expresiones algebraicas Traducción de enunciados Valor numérico 2. Monomios Características Suma y resta Producto 3. Ecuaciones Solución de una
Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto
Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto En esta unidad vas a comenzar el estudio del álgebra, el lenguaje de las matemáticas. Vas a aprender
Alumno Fecha Actividad 13 Expresiones algebraicas 1º ESO
Alumno Fecha Actividad 1 Expresiones algebraicas 1º ESO Las expresiones que resultan de combinar números y letras relacionándolos con las operaciones habituales se llaman expresiones algebraicas y se utilizan
4 Ecuaciones e inecuaciones
Ecuaciones e inecuaciones INTRODUCCIÓN Comenzamos esta unidad diferenciando entre identidades y ecuaciones, y definiendo los conceptos asociados a cualquier ecuación: miembros, términos, coeficientes,
Expresiones algebraicas (1º ESO)
Epresiones algebraicas (º ESO) Lenguaje numérico y lenguaje algebraico. El lenguaje en el que intervienen números y signos de operaciones se denomina lenguaje numérico. Lenguaje usual Lenguaje numérico
ax 2 + bx + c = 0, con a 0
RESOLUCIÓN DE ECUACIONES DE SEGUNDO GRADO Las ecuaciones de segundo grado son de la forma: a + bx + c = 0, con a 0 1. Identificación de coeficientes: Al empezar con las ecuaciones de segundo grado, resulta
Bloque 1. Aritmética y Álgebra
Bloque 1. Aritmética y Álgebra 12. Sistemas de ecuaciones 1. Sistemas de ecuaciones Un sistema de ecuaciones es un conjunto de dos o más ecuaciones con varias incógnitas que conforman un problema matemático
CUADERNO Nº 6 NOMBRE:
Ecuaciones Contenidos 1. Ecuaciones: ideas básicas Igualdades y ecuaciones Elementos de una ecuación Ecuaciones equivalentes 2. Reglas para resolver una ecuación Sin denominadores Con denominadores Resolución
Tema 6 Lenguaje Algebraico. Ecuaciones
Tema 6 Lenguaje Algebraico. Ecuaciones 1. El álgebra El álgebra es una rama de las matemáticas que emplea números y letras con las operaciones aritméticas de sumar, restar, multiplicar, dividir, potencias
Definición: Una expresión algebraica es una combinación de números, letras y paréntesis, relacionados con operaciones. o Ejemplo: 3! + 5! 3!
Expresiones algebraicas. Definición: Una expresión algebraica es una combinación de números, letras y paréntesis, relacionados con operaciones. o Ejemplo: 3 + 5 3 (9 3) - 12 " Elementos de una expresión
TRABAJO DE MATEMÁTICAS. PENDIENTES DE 1º ESO. (2ª parte)
TRABAJO DE MATEMÁTICAS PENDIENTES DE 1º ESO. (2ª parte) NÚMEROS RACIONALES REDUCCIÓN DE FRACCIONES AL MISMO DENOMINADOR Para reducir varias fracciones al mismo denominador se siguen los siguientes pasos:
Si a los lados de un cuadrado se les aumenta el 10% de su medida. en qué porcentaje se incrementa su área?
Ejercicio 75 Si a los lados de un cuadrado se les aumenta el 10% de su medida. en qué porcentaje se incrementa su área? Respuesta Si el lado del cuadrado es x Area= lado por lado El área del nuevo cuadrado
6 EL LENGUAJE ALGEBRAICO. ECUACIONES
6 EL LENGUAJE ALGEBRAICO. ECUACIONES EJERCICIOS PROPUESTOS 6.1 El perímetro de un rectángulo viene dado por la epresión: y (: largo; y: ancho). Calcula el perímetro de cualquier rectángulo; el que tú elijas.
RESUMEN PARA EL ESTUDIO
RESUMEN PARA EL ESTUDIO 1. Números de siete cifras U. millón CM DM UM C D U Cómo se lee 2 8 9 6 7 8 2 Cómo se descompone: 2.896.782 = 2 U. millón + 8 CM + 9 DM + 6 UM + 7 C + 8 D + 2 U Cómo se compone:
Ecuaciones de Primer Grado con una Incógnita
Tema 5 Ecuaciones de Primer Grado con una Incógnita Una ecuación es una igualdad ( = ) que sólo se verifica para unos valores concretos de una variable, generalmente llamada x. Cuando sólo aparece una
APÉNDICE MATEMÁTICO DEL MÓDULO DE: GESTIÓN FINANCIERA
APÉNDICE MATEMÁTICO DEL MÓDULO DE: GESTIÓN FINANCIERA 1º CURSO DEL CICLO DE GRADO SUPERIOR DE ADMINISTRACIÓN Y FINANZAS. CONTENIDO: Números enteros Fracciones Potencias Igualdades algebraicas notables
COLEGIO EL LIMONAR. MÁLAGA DEPARTAMENTO DE MÁTEMÁTICAS RELACIONES DE EJERCICIOS. 1º ESO
COLEGIO EL LIMONAR. MÁLAGA DEPARTAMENTO DE MÁTEMÁTICAS RELACIONES DE EJERCICIOS. º ESO RELACIÓN 5: ALGEBRA Lenguaje algebraico, monomios polinomios EXPRESIÓN ALGEBRAICA Es un conjunto de números letras
ACTIVIDADES DE REFUERZO DE MATEMÁTICAS 1º DE E.S.O. TEMA 7 : ÁLGEBRA
ACTIVIDADES DE REFUERZO DE MATEMÁTICAS 1º DE E.S.O. TEMA 7 : ÁLGEBRA ACTIVIDAD Nº: 1 ECUACIONES FECHA:. Las soluciones de una ecuación son los valores que hemos de dar a las incógnitas para que se cumpla
a) Factoriza el monomio común. En este caso 6 se puede dividir de cada término:
Materia: Matemática de 5to Tema: Factorización y Resolución de ecuaciones 1) Factorización Marco Teórico Decimos que un polinomio está factorizado completamente cuando no podemos factorizarlo más. He aquí
1. ESQUEMA - RESUMEN Página EJERCICIOS DE INICIACIÓN Página EJERCICIOS DE DESARROLLO Página EJERCICIOS DE REFUERZO Página 25
1. ESQUEMA - RESUMEN Página. EJERCICIOS DE INICIACIÓN Página 6. EJERCICIOS DE DESARROLLO Página 17 5. EJERCICIOS DE REFUERZO Página 5 1 1. ESQUEMA - RESUMEN Página 1.1. EXPRESIONES ALGEBRAICAS. 1.. VALOR
. De R (Reales) a C (Complejos)
INTRODUCCIÓN Los números complejos se introducen para dar sentido a la raíz cuadrada de números negativos. Así se abre la puerta a un curioso y sorprendente mundo en el que todas las operaciones (salvo
2. ECUACIONES LINEALES O DE PRIMER GRADO
. ECUACIONES LINEALES O DE PRIMER GRADO El objetivo de este capítulo es repasar las ecuaciones lineales o de primer grado y resolver ecuaciones lineales por medio de propiedades vistas en la unidad nº
MATEMÁTICAS Nivel 2º E.S.O.
Tema º Ecuaciones MATEMÁTICAS Nivel º E.S.O. Tema º ECUACIONES Conocimientos que puedes adquirir:. Concepto de ecuación.. Ecuaciones equivalentes.. Ecuaciones de er grado con una incógnita.. Resolución
Matemáticas 2º E.S.P.A. Pág.1 C.E.P.A. Plus Ultra. Logroño
ALGEBRA 1. LETRAS EN VEZ DE NÚMEROS En muchas tareas de las matemáticas es preciso trabajar con números de valor desconocido o indeterminado. En esos casos, los números se representan por letras y se operan
open green road Guía Matemática ECUACIÓN DE PRIMER GRADO profesor: Nicolás Melgarejo .co
Guía Matemática ECUACIÓN DE PRIMER GRADO profesor: Nicolás Melgarejo.co 1. Relación de igualdad En Matemática cuando dos expresiones tienen el mismo valor o representan lo mismo, diremos que existe una
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. 1 PÁGINA 191 EJERCICIOS Epresiones algebraicas 1 Haz corresponder cada enunciado con su epresión algebraica: La mitad de un número. El triple de la mitad de un número. La distancia recorrida en horas
lím lím Veamos como ejemplo el límite de la función polinómica f(x)=3x 2-8 en 1: x 1 (3x2 )-lím 8 x 1 =2 x 1 x)2 -lím x 1 8 =
LÍMITES LECCIÓN 7 Índice: Cálculo de ites en un punto. Epresión indeterminada L/0. Epresión indeterminada 0/0. Algunos ites de funciones irracionales. Otras técnicas básicas para el cálculo de ites. Problemas..-
UNA ECUACIÓN, SU GRADO Y SU SOLUCIÓN
86 _ 087-098.qxd 7//07 : Página 88 IDENTIICAR OBJETIVO UNA ECUACIÓN, SU GRADO Y SU SOLUCIÓN NOMBRE: CURSO: ECHA: Dado el polinomio P(x) x +, ya sabemos cómo se calcula su valor numérico: x P() + x P( )
TEST DE RAZONAMIENTO NUMÉRICO. Consejos generales
TEST DE RAZONAMIENTO NUMÉRICO Consejos generales 1 I. INTRODUCCIÓN En lo relativo a los cálculos de porcentajes, es fundamental tener en cuenta que los porcentajes, en realidad, son referencias abstractas,
Se distinguen tres métodos algebraicos de resolución de sistemas:
MÉTODOS DE RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES Se distinguen tres métodos algebraicos de resolución de sistemas: Sustitución Igualación Reducción Notas: 1) Es importante insistir en que la solución
TEMA 4: EXPRESIONES ALGEBRAICAS.
TEMA 4: EXPRESIONES ALGEBRAICAS. Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León. CURSO 2011-2012 Página 1 de 14 Profesor: Manuel González de León Curso
UD Trigonometría Ejercicios Resueltos y Propuestos Col La Presentación
En este documento se da una relación de los tipos de ejercicios que nos podemos encontrar en el tema de Trigonometría de º de Bachillerato. En todo el documento se sigue el mismo esquema: Enunciado tipo
TRABAJO DE SEPTIEMBRE DE MATEMÁTICAS 2º ESO... NOMBRE Y APELLIDOS...
TRABAJO DE SEPTIEMBRE DE MATEMÁTICAS 2º ESO... NOMBRE Y APELLIDOS... 1ª Realizar las siguientes divisiones: a) 345,83 : 6 = b) 23 : 0, 5 = c) 0,18 : 0,12 = d) 34,15 : 5 = e) 2,16 : 1,8 = f) 13,02 : 0,25=
Ecuaciones de primer grado
i Ecuaciones de primer grado M. Dolores Guadalupe Duarte Marinas José Navarro Cáceres e-lectolibris 18 de febrero de 2014 Ecuaciones de primer grado Considera la siguiente expresión: 2x + 1 = 7, observa
Introducción al Álgebra
Capítulo 3 Introducción al Álgebra L a palabra álgebra deriva del nombre del libro Al-jebr Al-muqābāla escrito en el año 825 D.C. por el matemático y astrónomo musulman Mohamad ibn Mūsa Al-Khwārizmī. El
Ecuaciones de segundo grado
Ecuaciones de segundo grado Contenidos 1. Expresiones algebraicas Identidad y ecuación Solución de una ecuación. Ecuaciones de primer grado Definición Método de resolución Resolución de problemas 3. Ecuaciones
TEMA 6. Sistemas de dos Ecuaciones de Primer grado con dos Incógnitas
TEMA 6 Sistemas de dos Ecuaciones de Primer grado con dos Incógnitas 1. Ecuación de Primer grado con dos incógnitas Vamos a intentar resolver el siguiente problema: En una bolsa hay bolas azules y rojas,
DIVISION: Veamos una división: Tomamos las dos primeras cifra de la izquierda del dividendo (57).
DIVISION: Dividir es repartir un número en grupos iguales (del tamaño que indique el divisor). Por ejemplo: 45/ 5 es repartir 45 en grupos de 5. Los términos de la división son: Dividendo: es el número
UNIDAD 10: ECUACIONES DE SEGUNDO GRADO.
UNIDAD 10: ECUACIONES DE SEGUNDO GRADO. 10.1 Estudio elemental de la ecuación de segundo grado. Expresión general. 10.2 Resolución de ecuaciones de segundo grado completas e incompletas. 10.3 Planteamiento
UNIDAD 6.- PROGRAMACIÓN LINEAL
UNIDAD 6.- PROGRAMACIÓN LINEAL 1. INECUACIONES LINEALES CON DOS INCÓGNITAS Una inecuación de primer grado con dos incógnitas es una inecuación que en forma reducida se puede expresar de la siguiente forma:
UNIDAD 5: LA DIVISIÓN.
UNIDAD 5: LA DIVISIÓN. ÍNDICE 5.1 Repaso de la división de números naturales. 5.1.1 Términos de la división 5.1.2 Palabras clave de la división 5.1.3 Prueba de la división 5.1.4 Tipos de divisiones según
SISTEMAS DE ECUACIONES. Nacho Jiménez
SISTEMAS DE ECUACIONES Nacho Jiménez 1. Ecuaciones con dos incógnitas. Soluciones. 1.1 Representación gráfica. Sistemas de ecuaciones. Sistemas equivalentes..1 Sistemas compatibles determinados. Sistemas
Problemas de Ecuaciones de Primer Grado con una Incógnita
Problemas de Ecuaciones de Primer Grado con una Incógnita Son problemas que se resuelven planteando y resolviendo una ecuación de 1º grado con una incógnita. Es aconsejable seguir los siguientes pasos
Nombre y apellidos:... Curso:... Fecha:... MONOMIOS. EJEMPLOS: 5a 2 3 EJEMPLOS: 2a 2 4a = 2 6x x 3 = POLINOMIOS SUMA Y RESTA DE POLINOMIOS
Epresiones algebraicas Esquema de la unidad Curso:... Fecha:... MONOMIOS Un monomio es el producto... EJEMPLOS: 4y, Dos monomios son semejantes cuando tienen EJEMPLOS: a b y a b, 4 SUMA Y RESTA DE MONOMIOS
I.E.S. Tierra de Ciudad Rodrigo Departamento de Matemáticas TEMA 6. POLINOMIOS
TEMA 6. POLINOMIOS Una expresión algebraica es un conjunto de letras y números unidos por los signos matemáticos. Las expresiones algebraicas surgen de traducir al lenguaje matemático enunciados en los
UNA ECUACIÓN es una igualdad de dos expresiones algebraicas.
UNA EXPRESIÓN ALGEBRAICA es una combinación de números, variables (o símbolos) y operaciones como la suma, resta, multiplicación, división, potenciación y radicación. Ejemplos. UNA ECUACIÓN es una igualdad
EXPRESIONES ALGEBRAICAS
EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Una epresión algebraica es aquella en la que se operan números conocidos y números desconocidos representados por las letras a, b, c,, y, z,..., que se denominan
Matemáticas Orientadas a las Enseñanzas Aplicadas IES
Matemáticas Orientadas a las Enseñanzas Aplicadas IES Los números enteros y racionales. Contenidos 1. Números enteros. Representación y orden. Operaciones. Problemas. 2. Fracciones y decimales. Fracciones
EXPRESIONES ALGEBRAICAS ECUACIONES
EXPRESIONES ALGEBRAICAS ECUACIONES I. Expresiones Algebraicas Una expresión algebraica es una combinación de números y letras, o sólo de letras, unidos por los signos de las operaciones aritméticas. x
CUADERNO Nº 5 NOMBRE: FECHA: / / Progresiones. Reconocer y distinguir las progresiones aritméticas y geométricas.
Progresiones Contenidos 1. Sucesiones Definición. Regla de formación Término general 2. Progresiones Aritméticas Definición Término general Suma de n términos 3. Progresiones Geométricas Definición Término
Mó duló 04: Á lgebra Elemental I
INTERNADO MATEMÁTICA 016 Guía para el Estudiante Mó duló 04: Á lgebra Elemental I Objetivo: Identificar y utilizar conceptos matemáticos asociados al estudio del álgebra elemental. Problema 1 La edad de
MATEMÁTICAS ÁLGEBRA (TIC)
COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS ÁLGEBRA (TIC) GRADO:8 O A, B DOCENTE: Nubia E. Niño C. FECHA: 23 / 02 / 15 GUÍA UNIFICADA: # 1 5; # 1-6 y 1-7 DESEMPEÑOS:
12 Funciones de proporcionalidad
8 _ 09-088.qxd //0 : Página 9 Funciones de proporcionalidad INTRODUCCIÓN La representación gráfica de funciones de proporcionalidad es una de las formas más directas de entender y verificar la relación
Destrezas algebraicas: de lo concreto a lo abstracto MARIA DE L. PLAZA BOSCANA
Destrezas algebraicas: de lo concreto a lo abstracto MARIA DE L. PLAZA BOSCANA INTRODUCCION Hoy trabajaremos con los Algeblocks, un manipulativo que te ayudará a descubrir las reglas de enteros y a entender
I.E.S. CUADERNO Nº 3 NOMBRE: FECHA: / / Polinomios. Hallar la expresión en coeficientes de un polinomio y operar con ellos.
Polinomios Contenidos 1. Polinomios Grado. Expresión en coeficientes Valor numérico de un polinomio 2. Operaciones con polinomios Suma diferencia, producto División. 3. Identidades notables (a+b) 2 (a
Unidad didáctica: Leer para aprender. Asignatura: Matemáticas. Título: La División
Unidad didáctica: Leer para aprender. Asignatura: Matemáticas Título: La División Curso: 3º E.P Profesor/a: Objetivo: Que el alumno comprenda el concepto de división como reparto en partes iguales. Contenidos
RESUMEN DE CONCEPTOS
RESUMEN DE CONCEPTOS 1º ESO MATEMÁTICAS NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número exacto de veces. Ejemplo: 16 es múltiplo
TEMA 05 - EXPRESIONES ALGEBRAICAS
º ESO TEMA 05 - EXPRESIONES ALGEBRAICAS 1º. Indica las expresiones algebraicas correspondientes a los siguientes enunciados, utilizando una sola letra (x): a) El siguiente de un número, más tres unidades.
2. Ecuaciones de primer grado: (sencillas, con paréntesis, con denominadores).
Bloque 3. ECUACIONES Y SISTEMAS (En el libro Temas 4 y 5, páginas 63 y 81) 1. Ecuaciones: Definiciones. Reglas de equivalencia. 2. Ecuaciones de primer grado: (sencillas, con paréntesis, con denominadores).
2º. Rellena los huecos que faltan y determina la constante de proporcionalidad:
TRABAJO DE RECUPERACIÓN DE MATEMÁTICAS PENDIENTES DE º ESO ª EVALUACIÓN CURSO: 3º ESO PROPORCIONALIDAD NUMÉRICA 1º. Busca los valores para que las siguientes proporciones sean ciertas:... 0 45 5 45 5............,...
La ecuación de segundo grado para resolver problemas.
La ecuación de segundo grado para resolver problemas. Como bien sabemos, una técnica potente para modelizar y resolver algebraicamente los problemas verbales es el uso de letras para expresar cantidades
Ecuaciones de primer grado o lineales
CATÁLOGO MATEMÁTICO POR JUAN GUILLERMO BUILES GÓMEZ BASE 8: ECUACIONES DE PRIMER Y DE SEGUNDO GRADO RESOLUCIÓN DE PROBLEMAS ECUACIONES DE PRIMER GRADO O LINEALES CON UNA SOLA INCÓGNITA: Teoría tomada de
cómo expresarías?. ÁLGEBRA Álgebra Unidad 4. El lenguaje algebraico. TEMA 4: POLINOMIOS Grupo: 3º A Expresiones algebraicas Álgebra vs Aritmética
16/01/01 ÁLGEBRA Álgebra Unidad 4. El lenguaje algebraico. TEMA 4: POLINOMIOS Grupo: º A cómo expresarías?. La altura de mi hermano si te digo que mide 10 cm más que mi hermana: El perímetro de un triángulo
Contenidos Mínimos MATEMÁTICAS 3º ESO ENSEÑANZAS ACADÉMICAS. U 1 Fracciones y decimales. CRITERIOS DE EVALUACIÓN. ESTÁNDARES DE APRENDIZAJE EVALUABLES
Septiembre 2.016 Contenidos Mínimos MATEMÁTICAS 3º ESO ENSEÑANZAS ACADÉMICAS U 1 Fracciones y decimales. Números racionales. Expresión fraccionaria - Números enteros. - Fracciones. - Fracciones propias
Tema 7. Problemas de ecuaciones de primero y segundo grado
Mat º ESO Tema 7. Problemas de ecuaciones de primero y segundo grado Llámale x La x es la letra más famosa entre los números. La letra x suele emplearse para sustituir a un número del que no se sabe su
TEMA 3 ECUACIONES, INECUACIONES Y SISTEMAS
Tema Ecuaciones, Inecuaciones y Sistemas Matemáticas B º ESO 1 TEMA ECUACIONES, INECUACIONES Y SISTEMAS RESOLUCIÓN DE ECUACIONES EJERCICIO 1 : Resuelve las siguientes ecuaciones: 1 1 1 a) b) + = 0 c).(
ECUACIONES.
. ECUACIONES... Introducción. Recordemos que el valor numérico de un polinomio (y, en general, de cualquier epresión algebraica) se calcula sustituyendo la/s variable/s por números (que, en principio,
DIAGRAMAS DE FLECHAS: De la aritmética al álgebra. Observaciones:
DIAGRAMAS DE FLECHAS: De la aritmética al álgebra Observaciones: El paso de la aritmética al álgebra requiere tomar conciencia de la importancia del lenguaje simbólico y, por lo tanto, de las reglas de
MATEMÁTICAS II CC III PARCIAL
UNIDAD DIDÁCTICA #3 CONTENIDO ECUACIONES LINEALES CON UNA INCOGNITA TIPOS DE ECUACIONES RESOLUCION DE ECUACIONES LINEALES INECUACIONES LINEALES 1 ECUACIONES LINEALES CON UNA INCOGNITA Una ecuación es una
Materia: Matemática de séptimo Tema: Triángulos
Materia: Matemática de séptimo Tema: Triángulos Kevin y Jake comenzaron a examinar una escultura mientras que las chicas examinaban un cuadro. La escultura que veían los chicos está llena de triángulos.
Ficha de Repaso: Lenguaje Algebraico
Ficha de Repaso: Lenguaje Algebraico 1º) Traduce las siguientes afirmaciones al lenguaje algebraico: a) El doble de un número b) El cubo de un número c) El cuadrado de un número menos su doble d) Un número
TEMA 3 SISTEMAS DE ECUACIONES LINEALES
TEM SISTEMS DE ECUCIONES LINELES. Sistemas de ecuaciones lineales. Epresión matricial. Ejemplo Epresa en forma matricial los siguientes sistemas de ecuaciones lineales: 9 5, Solution is: 9, 9 Se trata
Sistemas de ecuaciones.
1 CONOCIMIENTOS PREVIOS. 1 Sistemas de ecuaciones. 1. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Operaciones básicas con polinomios. Resolución
9 + 4 = Posteriormente, se podría proponer a los alumnos que representaran la ecuación 2x + 7 = 21. La cual se podría representar como:
a) El uso del lenguaje icónico de las balanzas: Un método algebraico que puede facilitar y permite visualizar el proceso de resolución de ecuaciones consiste en representar una igualdad por una balanza
GUÍAS DE ESTUDIO PROGRAMA DE ALFABETIZACIÓN, EDUCACIÓN BÁSICA Y MEDIA PARA JÓVENES Y ADULTOS
GUÍAS DE ESTUDIO Código PGA-0-R0 1 INSTITUCIÓN EDUCATIVA CASD PROGRAMA DE ALFABETIZACIÓN, EDUCACIÓN BÁSICA Y MEDIA PARA JÓVENES Y ADULTOS UNIDAD DE TRABAJO Nº PERIODO 1 ÁREA INTEGRADA: MATEMÁTICAS. ASIGNATURA:
ESCRIBIR ECUACIONES 4.1.1
ESCRIBIR ECUACIONES 4.1.1 En esta lección, los alumnos tradujeron información escrita que generalmente representaba situaciones cotidianas con símbolos algebraicos y ecuaciones lineales. Los alumnos usaron
UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN CURSO PROPEDEÚTICO ÁREA: MATEMÁTICAS
UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN CURSO PROPEDEÚTICO ÁREA: MATEMÁTICAS TEMA 1. ÁLGEBRA Parte de las Matemáticas que se dedica en sus aspectos más elementales. A
Materia: Matemáticas Curso 2015-2016. Alumno/a Curso: 4º ESO
Materia: Matemáticas Curso 015-016 Alumno/a Curso: º ESO A continuación se describen los aprendizajes no adquiridos, así como las actividades programadas, las estrategias y los criterios de evaluación
Ecuaciones de primer y segundo grado
Ecuaciones de primer y segundo grado Fco. Jesús González Rivera En esta unidad el objetivo final es la resolución de problemas mediante ecuaciones de primer y segundo grado. Para ello, es necesario que
REESCRIBIR ECUACIONES CON MÚLTIPLES VARIABLES Ejemplo 2. Ejemplo 4
REESCRIBIR ECUACIONES CON MÚLTIPLES VARIABLES 6.1.1 Para reescribir una ecuación con más de una variable debes usar el mismo proceso que para resolver una ecuación de una variable. El resultado final suele
Ejercicios de ecuaciones, sistemas, inecuaciones.
Matemáticas 1º Bach CCSS. Ejercicios Tema 2. Ecuaciones, sistemas. Pág 1/11 Ejercicios de ecuaciones, sistemas, inecuaciones. 1. x 4 10x 2 + 9 = 0 2. 3. x 4 61x 2 + 900 = 0 4. x 4 25x 2 + 144 = 0 6. 7.
FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.
FICHAS REPASO º ESO OPERACIONES CON NÚMEROS ENTEROS El valor absoluto de un número entero es el número natural que resulta al prescindir del signo. Por ejemplo, el valor absoluto de es y el valor absoluto
Trabajo de Matemáticas AMPLIACIÓN 3º ESO
Trabajo de Matemáticas AMPLIACIÓN º ESO ACTIVIDADES DE AMPLIACIÓN TEMA : NÚMEROS FRACCIONARIOS O RACIONALES Problema nº Un grifo tarda en llenar un depósito horas y otro tarda en llenar el mismo depósito
En primer lugar voy a trasladar el enunciado a lenguaje matemático. Me fijo en lo que me preguntan: a una variable la llamo x y a otra y.
PROGRAMACIÓN LINEAL EJERCICIO TIPO Una confitería se elaboran tartas de nata y de manzana. Cada tarta de nata requiere medio kilo de azúcar y 8 huevos; y una de manzana, 1 kg de azúcar y 6 huevos. En la
Matemáticas 1º de ESO. Capítulo 12: Álgebra. Revisores: Pedro Luis Suberviola y Sergio Hernández
99 Matemáticas 1º de ESO. Capítulo 12: Álgebra CAPÍTULO 12: Álgebra. Matemáticas 1º de ESO 1.1. Letras y números A nuestro alrededor nos encontramos con multitud de símbolos cuyo significado conocemos,
I.E.S. CUADERNO Nº 5 NOMBRE: FECHA: / / Inecuaciones. Resolver inecuaciones de primer y segundo grado con una incógnita.
Inecuaciones Contenidos 1. Inecuaciones de primer grado con una incógnita Definiciones Inecuaciones equivalentes Resolución Sistemas de inecuaciones 2. Inecuaciones de segundo grado con una incógnita Resolución
5 Sistemas de ecuaciones
Sistemas de ecuaciones INTRODUCCIÓN La resolución de problemas es uno de los fundamentos de las Matemáticas. A la hora de resolver muchos problemas reales se hace patente la necesidad de los sistemas de
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las
Guía Nº 1(B) ALGEBRA
Liceo Industrial Benjamín Dávila Larraín Unidad Técnica Pedagógica Guía Nº (B) ALGEBRA I. Identificación Docente Verónica Moya R. Claudia Paez Subsector/Módulo Matemática Email docente Aprendizaje Esperado
Materia: Matemática de Séptimo Tema: Las Fracciones y los Decimales
Materia: Matemática de Séptimo Tema: Las Fracciones y los Decimales Alguna vez has completado una encuesta? Después del sexto grado, los estudiantes recibieron una encuesta acerca de lo que pensaban sobre
Ejercicios resueltos: expresiones trigonométricas
Ejercicios resueltos: expresiones trigonométricas 1) Si sen α = 0,6 y 90º < α < 180º, halla el resto de las razones trigonométricas. 2) Demuestra que, en un triángulo rectángulo, al suma de la tangente
MATEMÁTICAS UNIDAD 4 GRADO 6º. Números naturales
1 Franklin Eduardo Pérez Quintero MATEMÁTICAS UNIDAD 4 GRADO 6º Números naturales 1 2 Franklin Eduardo Pérez Quintero LOGRO: Estudiar, analizar y profundizar las operaciones y propiedades de los números
Nombre y apellidos Nº EXAMEN TEMA 3. ECUACIONES, INECUACIONES Y SISTEMAS 4º E.S.O.
1.- Resuelve las siguientes ecuaciones (1p): a) 2x 2 50 = 0 b) 7x 2 + 5x = 0 2.- Resuelve la siguiente ecuación bicuadrada (1p): x 4 10x 2 + 9 = 0 3.- Resuelve el sistema de ecuaciones por cualquiera de
Sistemas de ecuaciones lineales
Ecuación lineal con n incógnitas Sistemas de ecuaciones lineales Es cualquier expresión del tipo: a 1 x 1 + a 2 x 2 + a 3 x 3 +... + a n x n = b, donde a i, b. Los valores a i se denominan coeficientes,
