DISTRIBUCIONES CONTINUAS INFERENCIA ESTADISTICA LIC. MIGUEL CANO.
|
|
- Emilio Iglesias Pereyra
- hace 4 años
- Vistas:
Transcripción
1 DISTRIBUCIONES CONTINUAS INFERENCIA ESTADISTICA LIC. MIGUEL CANO.
2 En esta sección se estudian las distribuciones más importantes de las variables aleatorias continuas unidimensionales. Algunas distribuciones continuas notables son: Distribución uniforme. Distribución exponencial. Distribución normal, esta última es la que más se aplica, por eso sólo citaremos brevemente a la distribución uniforme y a la exponencial.
3 Distribución uniforme Una variable aleatoria continua X posee una distribución uniforme en el intervalo [a, b], si su función de probabilidad es la siguiente:
4 FUNCION DISTRIBUCION
5 VAOR ESPERADO Y VARIANZA La media o valor esperado es dado por: La varianza es dado por:
6 Distribución exponencial La distribución exponencial describe procesos en los que nos interesa saber el tiempo hasta que ocurre determinado evento, sabiendo que, el tiempo que pue-da ocurrir desde cualquier instante dado t hasta que ello ocurra en un instante cualquiera ti, no depende del tiempo transcurrido anteriormente en el que no ha pasado nada.
7 FUNCION DE DENSIDAD Y DISTRIBUCION Su función de densidad es:
8 Graficas de la función probabilidad y la distribución Función densidad Función de distribución
9 Valor esperado y varianza El valor esperado y la varianza de una variable aleatoria X con distribución exponencial son:
10 Ejemplo: El tiempo de vida de una bacteria (en horas) sigue una distribución exponencial con media de 16 horas. a. Cuál es la probabilidad de que dicha bacteria tenga un tiempo de vida menor de 20 horas? b. Si la bacteria vive más de 5 horas, cuál es la probabilidad de que viva hasta 25 horas?
11 DISTRIBUCION NORMAL La distribución normal es, sin duda, la distribución de probabilidad más importante del cálculo de probabilidades y de la Estadística. Fue reconocida por primera vez por el francés Abraham de Moivre ( ). Posteriormente, Carl Friedrich Gauss ( ) elaboró desarrollos más profundos y formuló la ecuación de la curva; de ahí que también se la conozca, más comúnmente, como la Campana de Gauss.
12 Función de probabilidad Se ha encontrado experimentalmente que la función de distribución normal describe satisfactoriamente aquellos sistemas en los que las mediciones en estudio vienen afectadas por un número grande de errores que actúan todos independientemente.
13 Gráfica de la función de probabilidad de la Distribución Normal
14 Características función de probabilidad de la Distribución Normal a. Forma acampanada. b. Asintótica respecto al eje X. c. Es unimodal ya que solo tiene un valor máximo en el que coincide la media, mediana y la moda. d. El punto central en la distribución es la media e indica la posición de la campana (parámetro de centralización); mientras que las distancias de la media se expresan en función de la desviación estándar ya que es el parámetro de dispersión.
15 Características función de probabilidad de la Distribución Normal e. El área bajo la curva representa la probabilidad de que ocurra una observación dentro de los límites del área. f. El área total bajo la curva se considera igual a la unidad. g. Este valor indica la proporción de la población que se encuentra en determinados intervalos centrados en la media.
16 Observación Estos dos parámetros μx y σ 2 coinciden además con la media (esperanza) y la varianza respectivamente, es decir: E(X) = μx y V(X) = σ 2 La forma de la función de densidad es la llamada campana de Gauss.
17 Observación Si una variable aleatoria X tiene una distribución normal y queremos calcular la probabilidad de que X caiga entre dos valores a y b entonces, se debe hallar el área debajo de la curva entre a y b; es decir, se debe integrar de la siguiente manera:
18 Distribución normal estándar Sea X una variable aleatoria continua que se distribuye normalmente X ~ N(μx; σ 2 ), esta variable se puede transformar en otra variable normal con media 0 y varianza 1, la cual se le conoce como Distribución Normal Estándar y se representa por Z. La estandarización de cualquier normal es de la siguiente manera:
19 Característica de la Distribución normal estándar El valor esperado o media es 0 y la varianza 1, es decir: E(Z) = 0 V(Z) = 1 Esta distribución es simétrica respecto a su media La gráfica es asintótica respecto al eje de abscisas
20 Usando la Distribución Normal Ejemplo: Si X ~ N(15;4). Calcular A) P(X 16) B) P(X > 14,5)
21 Solucion: A) p(x 16) = p F(0,5) = 0,69146 x u x σx B) p(x > 14,5) = p x u x > 14,5 15 σx 2 P(Z < 0,25) = F(0,25) = 0,59871 = P(Z 0,5) = =P(Z > 0,25) =
22 UTILIZANDO TABLAS ESTADISTICAS
23 Ejercicio En el laboratorio de química, se realizó estudios acerca de la duración de unas laminillas de acero sumergidas en el agua. Los resultados mostraron que la duración de dichos productos están distribuidos normalmente con una duración media de 491 horas y una desviación estándar en la duración de dichas laminillas, de 5 horas. Calcular la probabilidad de que las laminillas tengan una duración comprendida entre 480 y 500 horas.
24 Aproximación de la binomial a la normal Una variable aleatoria discreta con distribución binomial se puede aproximar mediante una distribución normal si n es suficientemente grande y p no está ni muy próximo a 0 ni a 1. Como el valor esperado y la varianza de X son respectivamente np y npq, la aproximación consiste en decir que:
25 Aproximación de la binomial a la normal Cuando ocurren las condiciones anteriores, la gráfica de la distribución Binomial, es muy parecida a la distribución Normal, por lo que es adecuado calcular probabilidades con la Normal en lugar de la Binomial y de una forma más rápida.
26
27 Ejercicio Si 35% de los productos manufacturados en cierta línea de producción son defectuosos, cuál es la probabilidad de que entre los siguientes 1000 productos manufacturados en esa línea a. Menos de 354 productos sean defectuosos? b.entre 342 y 364 productos sean defectuosos?
28 Distribuciones relacionadas con la normal, distribuciones para muestras pequeñas La teoría de la distribución normal se desarrolla a partir de tamaños de muestra suficientemente grandes, generalmente mayores a 30 observaciones y no aplicable a muestras pequeñas.
29 En el laboratorio no podemos permitirnos la libertad de realizar un gran número de observaciones y, por ello, las pruebas de hipótesis estadísticas basadas en la distribución normal llevarían al químico a falsas conclusiones. El hecho fue reconocido por W. S. Gosset, un químico irlandés que en 1908 publicó, bajo el pseudónimo de Student, un trabajo titulado El error probable de una medida. En parte por consideraciones teóricas y en parte por el uso de muestras aleatorias, obtuvo la distribución teórica del promedio de tamaños de muestra pequeñas (n< 30), ajustada a una distribución normal.
30 Distribución X 2 (Chi-cuadrado) Tiene un sólo parámetro denominado grados de libertad. La función de densidad es asimétrica positiva. Sólo tienen densidad los valores positivos. La función de densidad se hace más simétrica incluso casi gaussiana cuando aumenta el número de grados de libertad. Normalmente consideraremos anómalos aquellos valores de la variable de la cola de la derecha.
Algunas distribuciones teóricas continuas
Algunas distribuciones teóricas continuas Dr. Pastore, Juan Ignacio Profesor Adjunto. Algunas Distribuciones Estadísticas Teóricas Distribución Continuas: a) Distribución Uniforme b) Distribución de Exponencial
Carrera: Ingeniería Zootecnista E S T A D I S T I C A
Carrera: Ingeniería Zootecnista E S T A D I S T I C A DISTRIBUCIONES DE PROBABILIDAD Una función de probabilidad es aquella que surge al asignar probabilidades a cada uno de los valores de una variable
Distribuciones Continuas
Capítulo 5 Distribuciones Continuas Las distribuciones continuas mas comunes son: 1. Distribución Uniforme 2. Distribución Normal 3. Distribución Eponencial 4. Distribución Gamma 5. Distribución Beta 6.
Introducción al Diseño de Experimentos.
Introducción al Diseño de Experimentos www.academia.utp.ac.pa/humberto-alvarez Introducción Una población o universo es una colección o totalidad de posibles individuos, especímenes, objetos o medidas
Técnicas Cuantitativas para el Management y los Negocios I
Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:
JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas
JUEGO DE BASKETBALL Repaso de Distribuciones de Probabilidad Discretas y Continuas PREGUNTA #1 Qué es una variable aleatoria uniforme discreta? Cómo es su distribución? Qué es una variable aleatoria uniforme
INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)
TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de
ESTADISTICA GENERAL. PRINCIPALES DISTRIBUCIONES CONTINUAS Profesor: Celso Celso Gonzales
ESTADISTICA GENERAL PRINCIPALES DISTRIBUCIONES CONTINUAS Profesor: Celso Celso Gonzales OBJETIVOS Describir las características de las distribuciones de probabilidad : Normal, Ji-cuadrado, t de student
Distribución de probabilidad
Los experimentos aleatorios originan resultados y los resultados nos permiten tomar decisiones Por ejemplo, en un partido de fútbol si se lanza una moneda y sale cara parte la visita, de lo contrario parte
Variables aleatorias continuas
Variables aleatorias continuas VARIABLE ALEATORIA UNIFORME Definición Se dice que una variable X tiene una distribución uniforme en el intervalo [a;b] si la fdp de X es: 1 si a x b f(x)= b-a 0 en otro
6.3. Distribuciones continuas
144 Bioestadística: Métodos y Aplicaciones Solución: Si consideramos la v.a. X que contabiliza el número de personas que padecen la enfermedad, es claro que sigue un modelo binomial, pero que puede ser
PROBABILIDAD E INFERENCIA ESTADÍSTICA TEMA 3: DISTRUBUCIONES DE PROBABILIDAD CONTINUA
UNIDAD 1 PROBABILIDAD E INFERENCIA ESTADÍSTICA TEMA 3: DISTRUBUCIONES DE PROBABILIDAD CONTINUA Variables aleatorias continuas = función de densidad de probabilidad 1 Variables aleatorias continuas = función
La Distribución Normal. La Distribución Normal. Características de la distribución de probabilidad normal
La Distribución Normal La Distribución Normal Características de la distribución de probabilidad normal La familia de la distribución de probabilidad normal La distribución normal estándar Áreas bajo la
Tema 4: Variables aleatorias. Tema 4: Variables Aleatorias. Tema 4: Variables aleatorias. Objetivos del tema:
Tema 4: Variables aleatorias Tema 4: Variables Aleatorias Distribución de Bernouilli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno
Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides
Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda
Cuando la distribución viene dada por una tabla: 2. DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA.
1. DISTRIBUCIONES ESTADÍSTICAS. El siguiente grafico corresponde a una distribución de frecuencias de variable cuantitativa y discreta pues solo puede tomar valores aislados (0, 1, 2, 3, 10). Se trata
CAPÍTULO 5 DISTRIBUCIONES TEÓRICAS
CAPÍTULO 5 DISTRIBUCIONES TEÓRICAS Hugo Grisales Romero Profesor titular CONCEPTOS BÁSICOS Experimento: Variable aleatoria: Clasificación: Proceso por medio del cual una medición se obtiene. Aquella que
DISTRIBUCIÓN NORMAL. Modelo matemático: f ( x ) = σ 2 π
DISTRIBUCIÓN NORMAL. Es la más importante de las distribuciones teóricas, es también conocida con los nombres de curva normal y curva de Gauss. De Moivre publico en 1773 su trabajo sobre la curva normal
Algunas Distribuciones Estadísticas Teóricas. c) Relación entre la Distribuciones de Poisson y Exponencial.
Algunas Distribuciones Estadísticas Teóricas Distribución Continuas: a) Distribución Uniforme b) Distribución de Exponencial c) Relación entre la Distribuciones de Poisson y Exponencial. d) Distribución
Estadística Clase 2. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri
Estadística 010 Clase Maestría en Finanzas Universidad del CEMA Profesor: Alberto Landro Asistente: Julián R. Siri Clase 1. La distribución de Bernoulli. La distribución binomial 3. La distribución de
Estadística Clase 2. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri
Estadística 011 Clase Maestría en Finanzas Universidad del CEMA Profesor: Alberto Landro Asistente: Julián R. Siri Clase 1. La distribución de Bernoulli. La distribución binomial 3. La distribución de
UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 4
UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 4 DOCENTE: Ing. Patricio Puchaicela ALUMNA: Andrea C. Puchaicela G. CURSO: 4to. Ciclo de Electrónica y Telecomunicaciones AÑO
Tema 4: Probabilidad y Teoría de Muestras
Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009
Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:
Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz
LECTURA 03: DISTRIBUCIÓN T STUDENT Y DISTRIBUCIÓN CHICUADRADO TEMA 6: DISTRIBUCION T STUDENT. MANEJO DE TABLAS ESTADISTICAS.
LECTURA 3: DISTRIBUCIÓN T STUDENT Y DISTRIBUCIÓN CHICUADRADO TEMA 6: DISTRIBUCION T STUDENT MANEJO DE TABLAS ESTADISTICAS 1 INTRODUCCION Se dice que una variable aleatoria T tiene una distribución t de
Percentiles. El percentil p de una variable aleatoria X es número más pequeño, que denominaremos x u que cumple:
Percentiles 130 El percentil p de una variable aleatoria X es número más pequeño, que denominaremos x u que cumple: el percentil es, por tanto, el valor de la variable aleatoria para el cual la función
Representación gráfica de esta función de densidad
Distribución normal La distribución continua de probabilidad más importante en todo el campo de la estadística es la distribución normal. Se ha usado en una gran variedad de aplicaciones prácticas en las
Distribuciones de probabilidad II
II Facultad de Estudios Superiores Acatlán Licenciatura en Economía 20 de abril 2017 José A. Huitrón Mendoza Distribuciones de probabilidad de Poisson Enmarca el estudio de una variable aleatoria discreta
Universidad Técnica de Babahoyo DISTRIBUCIONES DE PROBABILIDAD
Universidad Técnica de Babahoyo DISTRIBUCIONES DE PROBABILIDAD Ateneo Ruperto P. Bonet Chaple UTB-Julio 2016 Variable aleatoria El resultado de un experimento aleatorio puede ser descrito en ocasiones
Distribuciones de probabilidad Discretas
Distribuciones de probabilidad Discretas Distribución Uniforme Discreta Definición Una variable aleatoria X, tiene una distribución uniforme discreta, si cada uno de los valores x 1, x 2,.. x n, tiene
MATEMÁTICAS II PROBABILIDAD DISTRIBUCIÓN BINOMIAL DISTRIBUCIÓN NORMAL
MATEMÁTICAS II PROBABILIDAD DISTRIBUCIÓN BINOMIAL DISTRIBUCIÓN NORMAL 1) PROBABILIDAD Experimentos aleatorios. Concepto de espacio muestral y de suceso elemental. Operaciones con sucesos. Leyes de De Morgan.
Biometría. Distribuciones de probabilidad para variables aleatorias continuas
Biometría Distribuciones de probabilidad para variables aleatorias continuas Variables aleatorias continuas Interesa estudiar la temperatura ambiente a las 12 hs en abril en la ciudad de Buenos Aires.
TEMA 6. Distribuciones
TEMA 6. Distribuciones Alicia Nieto Reyes BIOESTADÍSTICA Alicia Nieto Reyes (BIOESTADÍSTICA) TEMA 6. Distribuciones 1 / 16 Probabilidad= Distribución= Distribución de Probabilidad Cuando queremos conocer
Distribución Gaussiana o normal
FLUCTUACIONES ESTADÍSTICAS Los postulados fundamentales de la teoría estadística de errores establecen que, dado un conjunto de medidas, todas efectuadas en idénticas condiciones, suficientemente grande
Capítulo. Distribución de probabilidad normal. Pearson Prentice Hall. All rights reserved
Capítulo 37 Distribución de probabilidad normal 2010 Pearson Prentice Hall. All rights 2010 reserved Pearson Prentice Hall. All rights reserved La distribución de probabilidad uniforme Hasta ahora hemos
Tema 6. Variables aleatorias continuas
Tema 6. Variables aleatorias continuas Resumen del tema 6.1. Definición de variable aleatoria continua Identificación de una variable aleatoria continua X: es preciso conocer su función de densidad, f(x),
Tema 5: Modelos probabilísticos
Tema 5: Modelos probabilísticos 1. Variables aleatorias: a) Concepto. b) Variables discretas y continuas. c) Función de probabilidad (densidad) y función de distribución. d) Media y varianza de una variable
1. La Distribución Normal
1. La Distribución Normal Los espacios muestrales continuos y las variables aleatorias continuas se presentan siempre que se manejan cantidades que se miden en una escala continua; por ejemplo, cuando
INGENIERO EN COMPUTACIÓN DISTRIBUCIONES DE PROBABILIDAD CONTINUA ELABORÓ: M. EN C. LUIS ENRIQUE KU MOO FECHA: AGOSTO DE 2017
UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO CENTRO UNIVERSITARIO UAEM ZUMPANGO INGENIERO EN COMPUTACIÓN DISTRIBUCIONES DE PROBABILIDAD CONTINUA ELABORÓ: M. EN C. LUIS ENRIQUE KU MOO FECHA: AGOSTO DE 2017
Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev
PROBABILIDAD Y ESTADÍSTICA Sesión MODELOS ANALÍTICOS DE FENÓMENOS ALEATORIOS CONTINUOS. Definición de variable aleatoria continua. Función de densidad y acumulatíva. Valor esperado, varianza y desviación
VARIABLES ALEATORIAS CONTINUAS 1º Bto. CC.SS.
VARIABLE ALEATORIA CONTINUA VARIABLES ALEATORIAS CONTINUAS º Bto. CC.SS. Una variable aleatoria es continua si puede tomar, al menos teóricamente, todos los valores comprendidos en un cierto intervalo
Variable Aleatoria Continua. Principales Distribuciones
Variable Aleatoria Continua. Definición de v. a. continua Función de Densidad Función de Distribución Características de las v.a. continuas continuas Ejercicios Definición de v. a. continua Las variables
Análisis de Datos y Métodos Cuantitativos para la Toma de Decisiones 7ma versión MGM
Universidad Católica del Norte Escuela de Negocios Mineros Magíster en Gestión Minera Análisis de Datos y Métodos Cuantitativos para la Toma de Decisiones 7ma versión MGM Antofagasta, Junio de 2014 Freddy
T. 2 Modelos teóricos de distribución de probabilidad
T. 2 Modelos teóricos de distribución de probabilidad 1. La distribución binomial 2. La distribución o curva normal El conocimiento acumulado en Psicología ha permitido evidenciar como algunas variables
Modelos de distribuciones discretas y continuas
Tema 6 Modelos de distribuciones discretas y continuas 6.1. Modelos de distribuciones discretas 6.1.1. Distribución uniforme sobre n puntos Definición 6.1.2 Se dice que una v.a. X sigue una distribución
Prof. Eliana Guzmán U. Semestre A-2015
Unidad III. Variables aleatorias Prof. Eliana Guzmán U. Semestre A-2015 Variable Aleatoria Concepto: es una función que asigna un número real, a cada elemento del espacio muestral. Solo los experimentos
8 Resolución de algunos ejemplos y ejercicios del tema 8.
INTRODUCCIÓN A LA ESTADÍSTICA. GRUPO 71 LADE. 29 8 Resolución de algunos ejemplos y ejercicios del tema 8. 8.1 Ejemplos. Ejemplo 49 Supongamos que el tiempo que tarda en dar respuesta a un enfermo el personal
RESUMEN CONTENIDOS TERCERA EVALUACIÓN PROBABILIDAD DISTRIBUCIÓN BINOMIAL DISTRIBUCIÓN NORMAL
RESUMEN CONTENIDOS TERCERA EVALUACIÓN PROBABILIDAD DISTRIBUCIÓN BINOMIAL DISTRIBUCIÓN NORMAL 1) PROBABILIDAD Experimentos aleatorios. Concepto de espacio muestral y de suceso elemental. Operaciones con
UNIDAD 4: DISTRIBUCIÓN DE PROBABILIDAD
UNIDAD 4: DISTRIBUCIÓN DE PROBABILIDAD La Distribución de Probabilidad (DP) es la relación que se da entre los diferentes eventos de un espacio muestral y sus respectivas probabilidades de ocurrencia.
Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico
Formulario. Estadística Administrativa Módulo 1. Introducción al análisis estadístico Histogramas El número de intervalos de clase, k, se elige de tal forma que el valor 2 k sea menor (pero el valor más
ESTADÍSTICA I. A continuación se presentan los Modelos Probabilísticos Continuos más importantes.
1 ESTADÍSTICA I Capítulo 6: MODELOS PROBABILÍSTICOS CONTINUOS. Contenido: Distribución Uniforme Continua. Distribución Triangular. Distribución Normal. Distribuciones Gamma, Exponencial, Erlang y Chi Cuadrado.
Part VI. Distribuciones notables. Estadística I. Mario Francisco. Principales distribuciones unidimensionales. discretas. Principales distribuciones
Part VI notables El proceso de Bernoulli En cada observación se clasifica el elemento de la población en una de las dos posibles categorías, correspondientes a la ocurrencia o no de un suceso. Llamaremos
LECTURA 03: DISTRIBUCIÓN T STUDENT Y DISTRIBUCIÓN CHICUADRADO TEMA 6: DISTRIBUCION T STUDENT. MANEJO DE TABLAS ESTADISTICAS.
LECTURA 3: DISTRIBUCIÓN T STUDENT Y DISTRIBUCIÓN CHICUADRADO TEMA 6: DISTRIBUCION T STUDENT MANEJO DE TABLAS ESTADISTICAS 1 INTRODUCCION Se dice que una variable aleatoria T tiene una distribución t de
10/04/2015. Ángel Serrano Sánchez de León
0/04/05 Ángel Serrano Sánchez de León 0/04/05 Índice Distribuciones discretas de probabilidad Discreta uniforme Binomial De Poisson Distribuciones continuas de probabilidad Continua uniforme Normal o gaussiana
TH. DE CHEBYSHEV DISTRIB. NORMAL.
f ( x) 1 2 2 ( x) e 2 2 TH. DE CHEBYSHEV DISTRIB. NORMAL El Desvío Estándar y el Teorema de Chebyshev Es conocida en el área de la probabilidad y estadística, la desigualdad de Chebyshev, matemático Ruso
I TRODUCCIÓ AL A ÁLISIS DE DATOS TEMA 7: Distribuciones continuas de probabilidad
I TRODUCCIÓ AL A ÁLISIS DE DATOS TEMA 7: Distribuciones continuas de probabilidad 1.- Una variable aleatoria que sigue una distribución normal: A) tiene de media cero y una desviación típica de uno. B)
Variables continuas: la distribución normal
M. Wiper Estadística 1 / 23 Variables continuas: la distribución normal Michael Wiper Departamento de Estadística Universidad Carlos III de Madrid M. Wiper Estadística 2 / 23 Objetivo Intropducir la distribución
5. DISTRIBUCIOES COTIUAS DE PROBABILIDAD
Distribución normal 5. DISTRIBUCIOES COTIUAS DE PROBABILIDAD La distribución continua de probabilidad más importante en todo el campo de la estadística es la distribución normal. Su grafica, que se denomina
Tema 5 Modelos de distribuciones de Probabilidad
Tema 5 Modelos de distribuciones de Probabilidad Variable aleatoria unidimensional Dado un espacio de Probabilidad (E, F, P), una variable aleatoria es una aplicación del espacio muestral E al conjunto
Fundamentos de la investigación en psicología
Fundamentos de la investigación en psicología TEMA 10 1º curso Grado Psicología Curso académico 2017-18 TEMA 10. MODELOS DE DISTRIBUCIÓN DE PROBABILIDAD: VARIABLES CONTINUAS 1. El modelo normal 2. Ejercicios
Estadísticas y distribuciones de muestreo
Estadísticas y distribuciones de muestreo D I A N A D E L P I L A R C O B O S D E L A N G E L 7/11/011 Estadísticas Una estadística es cualquier función de las observaciones en una muestra aleatoria que
LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL.
LECTURA 1: LA DISTRIBUCIÓN NORMAL GENERAL LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I) TEMA 1: LA DISTRIBUCION NORMAL GENERAL PROPIEDADES 1 INTRODUCCION La distribución de probabilidad continua más importante
Especialización en Métodos Estadísticos (EME) CURSO PROPEDÉUTICO ESTADÍSTICA BÁSICA
Especialización en Métodos Estadísticos (EME) CURSO PROPEDÉUTICO ESTADÍSTICA BÁSICA Enrique Rosales Ronzón, Patricia Díaz Gaspar, mayo 2015 Estadística??? Ciencia, Técnica, Arte Reunir, Organizar, presentar,
Esquema Matemáticas CCSS
Esquema Matemáticas CCSS 4. Inferencia Conocer el vocabulario básico de la Inferencia Estadística: población, individuos, muestra, tamaño de la población, tamaño de la muestra, muestreo aleatorio. Conocer
Ejercicio Reto. ENCUENTRO # 48 TEMA: Distribución Normal CONTENIDOS:
ENCUENTRO # 48 TEMA: Distribución Normal CONTENIDOS: 1. Distribución Normal. Elementos históricos y definición. 2. Uso de las tablas de valores Z 3. Uso de estandarización a valores Z. 4. Ejercicios propuestos
( ) DISTRIBUCIÓN UNIFORME (o rectangular) 1 b a. para x > b DISTRIBUCIÓN DE CAUCHY. x ) DISTRIBUCIÓN EXPONENCIAL. α α 2 DISTRIBUCIÓN DE LAPLACE
Estudiamos algunos ejemplos de distribuciones de variables aleatorias continuas. De ellas merecen especial mención las derivadas de la distribución normal (χ, t de Student y F de Snedecor), por su importancia
Tema 3. Tema 3 La Distribución Normal y los Puntajes Estándar. Profa. María Fátima Dos Santos
Tema 3 Tema 3 La Distribución Normal y los Puntajes Estándar Profa. María Fátima Dos Santos 1 TEMARIO Concepto de distribución. Algunas distribuciones. Distribución normal. Características Distribución
Curso de Probabilidad y Estadística
Curso de Probabilidad y Estadística Distribuciones de Probabilidad Dr. José Antonio Camarena Ibarrola camarena@umich.mx Universidad Michoacana de San Nicolás de Hidalgo Facultad de Ingeniería Eléctrica
Universidad Nacional de La Plata
Universidad Nacional de La Plata Facultad de Ciencias Agrarias y Forestales CÁLCULO ESTADÍSTICO STICO Y BIOMETRÍA CONTENIDOS UNIDAD 3: Introducción al Cálculo de Probabilidades. Experimento aleatorio.
Tema 4: Modelos probabilísticos
Tema 4: Modelos probabilísticos 1. Variables aleatorias: a) Concepto. b) Variables discretas y continuas. c) Función de probabilidad (densidad) y función de distribución. d) Media y varianza de una variable
TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18
TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18 2.1. Concepto de variable aleatoria. Tipos de variables aleatorias: discretas y continuas. 2.2. Variables aleatorias discretas. Diagrama de
( x) Distribución normal
Distribución normal por Oliverio Ramírez La distribución de probabilidad más importante es sin duda la distribución normal (o gaussiana), la cual es de tipo continuo. La distribución de probabilidad para
ETSI de Topografía, Geodesia y Cartografía
Distribuciones (discretas y continuas) EVALUACIÓN CONTINUA (Tipo I) 14-XII-11 1. Una prueba del examen de Estadística consiste en un cuestionario de 10 preguntas con tres posibles respuestas, solamente
Distribuciones de probabilidad
Distribuciones de probabilidad 1. Variable aleatoria Una variable aleatoria X es una función que asocia a cada elemento del espacio muestral E un número real: X: E Ejemplo: Consideremos el experimento
Variables Aleatorias y Principios de Simulación.
Variables Aleatorias y Principios de Simulación http://humberto-r-alvarez-a.webs.com Conceptos de probabilidad La Teoría de Probabilidad trata fenómenos que pueden ser modelados por experimentos cuyos
Tema 6: Modelos probabilísticos
Tema 6: Modelos probabilísticos 1. Variables aleatorias: a) Concepto. b) Variables discretas y continuas. c) Función de probabilidad (densidad) y función de distribución. d) Media y varianza de una variable
Definición Se dice que una variable aleatoria X es continua si su conjunto de posibles valores es todo un intervalo (finito o infinito) de números
IV. Variables Aleatorias Continuas y sus Distribuciones de Probabilidad 1 Variable Aleatoria Continua Definición Se dice que una variable aleatoria X es continua si su conjunto de posibles valores es todo
Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana.
Página 1 de 7 DISTRIBUCIÓN NORMAL o campana de Gauss-Laplace Esta distribución es frecuentemente utilizada en las aplicaciones estadísticas. Su propio nombre indica su extendida utilización, justificada
VARIABLES ALEATORIAS CONTINUAS
VARIABLES ALEATORIAS CONTINUAS El zoo binomial: las probabilidades en la distribución binomial. Tutorial 5, sección 2 X = número de éxitos al repetir n veces un experimento con probabilidaf de éxito p
viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos
Contenido Acerca de los autores.............................. Prefacio.... xvii CAPÍTULO 1 Introducción... 1 Introducción.............................................. 1 1.1 Ideas de la estadística.........................................
Variables aleatorias: El caso continuo. Random variables: The continuous case. Rincón de la Bioestadística
Variables aleatorias: El caso continuo Gabriel Cavada Ch. 1 1 División de Bioestadística, Escuela de Salud Pública, Universidad de Chile. Random variables: The continuous case E l tratamiento de una variable
C L A S E N 5 I N S E M E S T R E O T O Ñ O,
Unidad 1 a. Probabilidades y Estadística 1 C L A S E N 5 I N 3 4 0 1 S E M E S T R E O T O Ñ O, 2 0 1 2 Características de las v.a 2 Parámetros v.a. La función de densidad o la distribución de probabilidad
ESTADÍSTICA I. Unidad 4: Resumen de Contenidos Teóricos 1. Mariano Lanza DISTRIBUCIONES DE PROBABILIDAD COMÚNMENTE UTILIZADAS
ESTADÍSTICA I Unidad 4: Resumen de Contenidos Teóricos Mariano Lanza DISTRIBUCIONES DE PROBABILIDAD COMÚNMENTE UTILIZADAS. VARIABLES ALEATORIAS DISCRETAS. Distribución Binomial Definición previa: Prueba
La distribución normal
La Distribución Normal Es una distribución continua que posee, entre otras, las propiedades siguientes: Su representación gráfica tiene forma de campana ( campana de Gauss ) -6-4 -2 0 2 4 6 2 4 6 8 10
Estadística Grupo V. Tema 10: Modelos de Probabilidad
Estadística Grupo V Tema 10: Modelos de Probabilidad Algunos modelos de distribuciones de v.a. Hay variables aleatorias que aparecen con frecuencia en las Ciencias Sociales y Económicas. Experimentos dicotómicos
Esperanza Condicional
Esperanza Condicional Podemos obtener la esperanza de una distribución condicional de la misma manera que para el caso unidimensional: 129 Caso 2 v.a. discretas X e Y: Caso 2 v.a. continuas X e Y: Percentiles
D I S T R I B U C I Ó N N O R M A L
D I S T R I B U C I Ó N N O R M A L 1. V A R I A B L E A L E A T O R I A C O N T I N U A. F U N C I O N E S A S O C I A D A S Variable aleatoria continua es aquella que puede tomar valores en un conjunto
Unidad IV. Una variable aleatoria X es continua si su función de distribución es una función continua.
Unidad IV Distribuciones de Probabilidad Continuas 4.1. Definición de variable aleatoria continúa. Una variable aleatoria X es continua si su función de distribución es una función continua. En la práctica,
PROBABILIDAD Y ESTADÍSTICA. Sesión 6 (A partir de tema 5.9)
PROBABILIDAD Y ESTADÍSTICA Sesión 6 (A partir de tema 5.9) 5.9 Muestreo: 5.9.1 Introducción al muestreo 5.9.2 Tipos de muestreo 5.10 Teorema del límite central 5.11 Distribución muestral de la media 5.12
Apellido y Nombres: Fecha: Carrera: Calificación 1ª Parte: Legajo: Calificación 2ª Parte: DNI: Calificación Definitiva:
Cátedra: Probabilidad y Estadística Apellido y Nombres: Fecha: Carrera: Calificación 1ª Parte: Legajo: Calificación 2ª Parte: DNI: Calificación Definitiva: Atención! Para aprobar el examen se debe alcanzar
Bioestadística. El resultado de un experimento aleatorio puede ser descrito en ocasiones como una cantidad numérica.
Bioestadística Tema 5: Modelos probabilísticos Tema 5: Modelos probabilísticos 1 Variable aleatoria El resultado de un experimento aleatorio puede ser descrito en ocasiones como una cantidad numérica.
z es una variable estandarizada con media igual a cero y varianza igual a uno. (μ= 0, σ 2 =1)
z x z es una variable estandarizada con media igual a cero y varianza igual a uno. (μ= 0, σ =1) La distribución normal es una distribución continua, en forma de campana donde la media, la mediana y la
PPTCEG061EM33-A17V1. Distribución normal 1
PPTCEG061EM33-A17V1 Distribución normal 1 Propiedades distribución normal Distribución normal tipificada Es una distribución estadística continua cuya función de densidad es simétrica, y cuya forma se