Metáfora de las cajas algebraicas
|
|
|
- Jesús Ignacio Cuenca Cárdenas
- hace 7 años
- Vistas:
Transcripción
1 1 Guía 1 Metáfora de las cajas algebraicas Nombre Curso Capacidad Destreza Valor Actitud 1 Año Medio A B C - D Resolver Problemas Analizar Colaboración Constancia Aprendizajes Esperados Identificar patrones en multiplicaciones de expresiones algebraicas no fraccionarias. El objetivo de esta guía de trabajo es que explores conceptos de álgebra a partir de una metáfora que se relaciona con el volumen de cajas rectangulares (paralelepípedos). Esta actividad te permitirá en el futuro minimizar los errores habituales que se presentan en el trabajo algebraico. Un gasto inútil, pero curioso Supongamos que te ganas un gran premio, por ejemplo el Kino. Ante esta situación los encargados de un hogar de niños en riesgo social, apela a tu conciencia solidaria y te solicita que cooperes con una caja de dados para realizar juegos de entretención. La caja es de forma cúbica y sus aristas miden 1 metro. Por su parte los dados también son de forma cúbica y con aristas que miden 1 cm. Suponiendo que el premio que ganaste en este juego es de 400 millones de pesos, aceptarías la petición? Cuántos dados deberías comprar y cuánto dinero gastarías?
2 Calculando volúmenes de cajas cúbicas Trabajaremos con paralelepípedos rectangulares, los que llamaremos cajas rectangulares o simplemente cajas. Por ejemplo: 2 Recuerda que calcular el volumen de un cuerpo geométrico consiste en determinar el número de cubos patrón (unidad de medida) que permiten rellenar dicho cuerpo. Por ejemplo, en la actividad anterior se midió el volumen de la caja que contenía los dados, donde cada uno de ellos es la unidad de medida. Ejemplo a) Si tenemos una caja de cartón en forma de paralelepípedo rectangular (ver figura), de 5cm. de ancho, 6cm. de largo y 3 de alto, cuántos cubitos de 1cm. de arista (como los dados de la actividad anterior) se necesitan para rellenar completamente la caja? b) Completa la siguiente tabla de cálculo de volúmenes de cajas rectangulares: Caja rectangular Largo (cm) Ancho (cm) Alto (cm) Volumen (cm 3 ) A B C D E F 4 4 4
3 c) En cada caso, a partir de cubos de arista 1 cm, se formaron diversos paralelepípedos, cuál es el volumen de cada uno de ellos? 3 Volumen = Volumen = Volumen = Volumen = Volumen = Volumen =
4 4 Unas cajas muy especiales Tipos de cajas Volumen Simbología Figura Cubitos unitarios Son cubos de 1 cm de arista (1cm) (1cm) (1cm) = 1 cm 3 1 Cajas largas Se conocen dos de sus dimensiones, ancho 1cm y alto 1cm, pero se desconoce su largo, supongamos que mide x centímetros. (1cm) (1cm) (xcm) = x cm 3 x Cajas cuadradas Se conoce solo el alto, mide 1cm. El largo y el ancho miden lo mismo, pero se desconoce su valor, equivale al largo xcm de las cajas largas. (1cm) (xcm) (xcm) = x 2 cm 3 x 2 Cajas cúbicas Se desconocen sus tres dimensiones, pero se sabe que miden lo mismo y son equivalentes a las dimensiones desconocidas de los dos paralelepípedos anteriores, es decir, cada arista mide xcm. (xcm) (xcm) (xcm) = x 3 cm 3 x 3
5 5 Sintetizando lo aprendido a) En la práctica, las cajas anteriores se simbolizan de la siguiente forma: b) Las cajas cúbicas, cuadradas y largas tienen una longitud en común. c) A su vez, los cubos unitarios, las cajas cuadradas y largas tiene el mismo alto.
6 Calculando cubitos En cada caso, a partir de la información que se proporciona, calcular el número de cubitos unitarios que hay en cada caja: Caja cúbica x 3 Caja cuadrada x 2 Caja larga x
7 7 Metáfora de los polinomios Considere las cajas de la siguiente figura: La suma de los volúmenes de todas las cajas se escribe como: V(x) = 2x 3 + 3x 2 + 4x + 5 En álgebra la expresión V(x) recibe el nombre de Polinomio en la Variable x. Se lee: V de X es igual a dos equis al cubo, más tres equis al cuadrado, más cuatro equis, más cinco. Volviendo a calcular cubitos a) Dado el polinomio P(x) = x 3 + 3x 2 + 4x + 3. Si x = 4, cuántos cubitos unitarios contiene en total el polinomio P(x)? b) Considere el polinomio R(x) = 2x 3 + x 2 + 3x + 5. Si x = 3, cuántos cubitos unitarios contiene en total el polinomio R(x)? c) Complete la siguiente tabla: Polinomio Información Cantidad total de cubitos T(x) = x 3 + 2x 2 + 5x + 1 x 2 = 9 B(x) = 2x 3 + 3x + 7 x 3 = 8 M(x) = 3x 3 + 4x x = 4 D(x) = 5x 2 + 4x + 7 x = 3
8 Polinomios con coeficientes negativos Trabajaremos sobre un rectángulo que está dividido en dos partes, una positiva (izquierda) y otra negativa (derecha), tal como muestra la siguiente imagen: 8 Cómo se interpreta el polinomio F(x) = 3x 3 4x 2 2x + 5? La siguiente figura muestra como se interpreta el polinomio F(x). Ahora te toca a ti Representa los siguientes polinomios: a) E(x) = 2x 3 + 3x 2 2x + 5
9 9 b) T(x) = 4x 3 x 2 2x + 6 c) M(x) = x 3 + 5x 2 4x + 2 Calculando cubitos A continuación, investigaremos una regla que permite eliminar cubitos desde ambos lados de la plantilla. Considera el polinomio de la figura: Cuántos cubitos unitarios hay en cada lado de la plantilla? Si eliminamos la misma cantidad de cubitos desde ambos lados de la plantilla, cuántos y de qué signo quedan?
10 En cada una de las representaciones de polinomios, imagina que reducimos los cubitos que están tanto al interior de las cajas como en el exterior, qué resultado se obtiene en cada caso? a) En la caja x hay 4 cubitos (x = 4) 10 Respuesta: b) En la caja x 2 hay 25 cubitos (x 2 = 25) Respuesta: c) En la caja x 3 hay 8 cubitos (x 3 = 8) Respuesta: d) En la caja x hay 7 cubitos (x = 7) Respuesta:
Expresiones algebraicas negativas
Guía 3 Expresiones algebraicas negativas Nombre Curso Capacidad Destreza Valor Actitud Profesor Razonar matemáticamente Comparar Colaboración Constancia Fernando Pavez Peñaloza Ahora estudiaremos las expresiones
Guía 7 Aplicaciones de la multiplicación algebraica
1 Guía 7 Aplicaciones de la multiplicación algebraica Nombre Curso Capacidad Destreza Valor Actitud 1 Año Medio A B C D Resolver Problemas Analizar Colaboración Constancia Aprendizajes Esperados Identificar
Volumen. 1 Preparamos dos porciones de gelatina como los que se muestran a continuación. 1 Piensa cómo puedes comparar el volumen de ambas porciones.
5 Volumen Cómo se mide el volumen de agua en un recipiente? l Las unidades y se usan para medir el volumen. Cómo se mide el peso? Preparemos una gelatina. Volumen Preparamos dos porciones de gelatina como
Aplicando los polinomios
1 Guía 2 Aplicando los polinomios Nombre Curso Capacidad Destreza Valor Actitud 1 Año Medio A B C - D Resolver Problemas Analizar Colaboración Constancia Aprendizajes Esperados Identificar patrones en
EJERCICIOS PROPUESTOS. Escribe las expresiones algebraicas correspondientes. a) Tres números consecutivos. b) Tres números pares consecutivos.
EJERCICIOS PROPUESTOS 4.1 Relaciona cada enunciado con su expresión algebraica. Múltiplo de 3. Número par. El cuadrado de un número más 3. Un número más 5. El triple de un número más 7. 2x x 5 3x x 2 3
EJERCICIOS PROPUESTOS. Escribe las expresiones algebraicas correspondientes. a) Tres números consecutivos. b) Tres números pares consecutivos.
EJERCICIOS PROPUESTOS 4.1 Relaciona cada enunciado con su expresión algebraica. Múltiplo de 3. Número par. El cuadrado de un número más 3. Un número más 5. El triple de un número más 7. 2x x 5 3x x 2 3
CUADERNILLO DE REFUERZO DE MATEMÁTICA OCTAVO BÁSICO
Marca la alternativa correcta: CUADERNILLO DE REFUERZO DE MATEMÁTICA OCTAVO BÁSICO FECHA DE ENTREGA: Miércoles, 02 de Mayo del 2018 1. Cuál de estos números decimales corresponde a 24 milésimas? a. 2,40
Mó duló 06: Á lgebra Elemental II
INTERNADO MATEMÁTICA 016 Guía para el Estudiante Mó duló 06: Á lgebra Elemental II Objetivo: Factorizar expresiones algebraicas y generalizar la operatoria de fracciones por medio del álgebra, que le permita
SUMA DE MONOMIOS Y POLINOMIOS
SUMA DE MONOMIOS Y POLINOMIOS LA NOCIÓN CLÁSICA DEL POLINOMIO Un ejemplo sencillo : Situémonos en el conjunto R, que es del álgebra elemental, y denominemos x un número real cualquiera (lo cual, como recordamos,
Ecuaciones de primer ysegundo grado
86 _ 087-098.qxd 7//07 : Página 87 Ecuaciones de primer ysegundo grado INTRODUCCIÓN La unidad comienza diferenciando entre ecuaciones e identidades, para pasar luego a la exposición de los conceptos asociados
IDENTIFICAR UNA ECUACIÓN, SU GRADO Y SU SOLUCIÓN
OBJETIVO 1 IDENTIICAR UNA ECUACIÓN, SU GRADO Y SU SOLUCIÓN Nombre: Curso: echa: ECUACIONES Dado el polinomio P(x) = 3x + 5, ya sabemos cómo se calcula su valor numérico: x = 3 P(3) = 3? 3 + 5 = 14 x =
ECUACIONES E INECUACIONES
ECUACIONES E INECUACIONES 1.- Escribe las expresiones algebraicas que representan los siguientes enunciados: a) Número de ruedas necesarias para fabricar x coches. b) Número de céntimos para cambiar x
Guía 8 Productos notables
1 Guía 8 Productos notables Nombre Curso Capacidad Destreza Valor Actitud 1 Año Medio A B C D Resolver Problemas Analizar Colaboración Constancia Aprendizajes Esperados Identificar patrones en multiplicaciones
Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA
Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA GUÍA NÚMERO ALGEBRA y FUNCIONES EVALUACIÓN DE EXPRESIONES ALGEBRAICAS
Grado 5 RECONOCIMIENTO DE LA POTENCIACIÓN Y RADICACIÓN. INTRODUCCIÓN. Cubos y cubitos
Unidad 1 RECONOCIMIENTO DE LA POTENCIACIÓN Y RADICACIÓN. Clase: Nombre: INTRODUCCIÓN Cubos y cubitos Imagen 1. Cubos. Dos amigos están jugando con cubos, organizándolos para formar un cubo más grande como
Expresiones algebraicas
Polinomios Expresiones algebraicas Una expresión algebraica es cualquier combinación de números y letras relacionados por operaciones aritméticas: suma, resta, producto, división y potenciación. Ejemplos
PROBLEMAS ALGEBRAICOS (SISTEMAS NO LINEALES) 1.- Calcular dos números positivos sabiendo que la diferencia es 12 y la suma de sus cuadrados es 170.
Problemas algebraicos 1 PROBLEMAS ALGEBRAICOS (SISTEMAS NO LINEALES) 1.- Calcular dos números positivos sabiendo que la diferencia es 1 y la suma de sus cuadrados es 170..- Hallar dos números naturales
UNIDAD: ÁLGEBRA Y FUNCIONES ÁLGEBRA DE POLINOMIOS
C u r s o : Matemática Material N 15 UNIDAD: ÁLGEBRA Y FUNCIONES ÁLGEBRA DE POLINOMIOS GUÍA TEÓRICO PRÁCTICA Nº 1 EVALUACIÓN DE EXPRESIONES ALGEBRAICAS Evaluar una expresión algebraica consiste en sustituir
Listo para seguir? Intervención de destrezas Cómo estimar y hallar el área
10-1 Listo para seguir? Intervención de destrezas Cómo estimar y hallar el área El área de una figura es la cantidad de superficie que cubre. El área se mide en unidades cuadradas. Estimar el área de una
Área del rectángulo y del cuadrado
59 Área del rectángulo y del cuadrado El área del rectángulo es el producto de su base por su altura. El área del cuadrado es su lado elevado al cuadrado. 1. Mide con una regla y completa. Área del rectángulo:
BLOQUE II. Álgebra. 7. Polinomios 8. Ecuaciones de 1 er y 2º grado 9. Sistemas de ecuaciones lineales
BLOQUE II Álgebra 7. Polinomios 8. Ecuaciones de er y º grado 9. Sistemas de ecuaciones lineales 7 Polinomios. Lenguaje algebraico Dado el cubo de la figura siguiente, halla su área y su volumen en función
ACTIVIDADES DE RECUPERACIÓN DE PENDIENTES DE MATEMÁTICAS DE 3º DE ESO -.ÁLGEBRA.-
ACTIVIDADES DE RECUPERACIÓN DE PENDIENTES DE MATEMÁTICAS DE º DE ESO Ejercicio nº 1.- -.ÁLGEBRA.- Escribe estos enunciados como epresiones algebraicas: El doble de un número b. El doble de la suma de dos
Utilizaremos la idea de equilibrio entre los platillos de la derecha e izquierda, pero respetando algunas reglas: R E G L A S
1 Guía 5 Ecuaciones mágicas Nombre Curso Capacidad Destreza Valor Actitud 8 Año Básico A B - C Razonar matemáticamente Comparar Colaboración Constancia Ahora iniciamos el estudio de las ecuaciones, las
Dado el cubo de la figura siguiente, halla su área y su volumen en función de x. Solución: Solución: a) 5x 3, 9x 3,x 3 b) 7x 2,8x 2 c) 7x, 9x
7 Polinomios 1. Lenguaje algebraico Dado el cubo de la figura siguiente, halla su área y su volumen en función de x P I E N S A Y C A L C U L A A(x) = 6x V(x) = x 3 x x x Carné calculista 36 : 0,79 C =
Trabajo de Matemáticas AMPLIACIÓN 3º ESO
Trabajo de Matemáticas AMPLIACIÓN º ESO ACTIVIDADES DE AMPLIACIÓN TEMA : NÚMEROS FRACCIONARIOS O RACIONALES Problema nº Un grifo tarda en llenar un depósito horas y otro tarda en llenar el mismo depósito
5 4 = Potencias de uno y de cero Una potencia, de cualquier base distinta de cero, elevada a cero es igual a 1. exponente. base.
CAPÍTULO 3: POTENCIAS Y RAÍCES 1. POTENCIAS 1.1. Concepto de potencia. Base y exponente María guarda 5 collares en una bolsa, cada 5 bolsas en una caja y cada 5 cajas en un cajón. Tiene 5 cajones con collares,
Nombre: Curso: 8 Básico Fecha: 02/08/2010. I Expresa en lenguaje algebraico las siguientes proposiciones.
GUÍA 1 DE PROBLEMAS Nombre: Curso: 8 Básico Fecha: 02/08/2010 1) doble de un número 2) x disminuido en el triple de 5. 3) El doble de la suma de a y -8 4) Un número aumentado en su cuarta parte. 1) Si
6 EL LENGUAJE ALGEBRAICO. ECUACIONES
6 EL LENGUAJE ALGEBRAICO. ECUACIONES EJERCICIOS PROPUESTOS 6.1 El perímetro de un rectángulo viene dado por la epresión: y (: largo; y: ancho). Calcula el perímetro de cualquier rectángulo; el que tú elijas.
7 4 = Actividades propuestas 1. Calcula mentalmente las siguientes potencias y escribe el resultado en tu cuaderno: exponente. base.
21 21 CAPÍTULO : Potencias y raíces. Matemáticas 2º de ESO 1. POTENCIAS Ya conoces las potencias. En este aparato vamos a revisar la forma de trabajar con ellas. 1.1. Concepto de potencia. Base y exponente
ÁLGEBRA 1º E.S.O. LETRAS EN VEZ DE NÚMEROS. Representar números en clave: a = 20 b = 5 c = 1. a + a + a = 60 a + b + b = 30 a + a + b + c + c = 47
LETRAS EN VEZ DE NÚMEROS ÁLGEBRA 1º E.S.O. Representar números en clave: a 0 b 5 c 1 Epresar un número cualquiera: 6 6 + 9 a + a + a 60 a + b + b 0 a + a + b + c + c 7 5 10 10 + 1 n n n + n + LETRAS EN
Ejemplo Nº 1 Supóngase que tenemos una región de forma cuadrada, cuyas dimensiones son las siguientes: de largo y de ancho mide " x 7"
Pre evaluación: Ejemplo Nº 1 Supóngase que tenemos una región de forma cuadrada, cuyas dimensiones son las siguientes: de largo y de ancho mide " x 7" unidades. Necesitamos conocer el área del cuadrado.
Remedial Unidad N 3 Matemática Octavo Básico 2017
Remedial Unidad N 3 Matemática Octavo Básico 2017 GUÍA DE TRABAJO REMEDIAL N 1 UNIDAD N 3 Nombre Curso 8 año básico Fecha Objetivo Comprender el Teorema de Pitágoras y lo aplica en la resolución de problemas
Guía de aprendizaje. Contenido: Orientación en el Espacio y Geometría.
Guía de aprendizaje Profesor: Víctor Manuel Reyes Feest N 3 Contenido: Orientación en el Espacio y Geometría. 1. Un pasillo de 360 cm de largo por 108 cm de ancho debe ser embaldosado con baldosas cuadradas.
14 CUERPOS GEOMÉTRICOS. VOLÚMENES
EJERCICIOS PARA ENTRENARSE Poliedros 14.33 Calcula la suma de los ángulos de las caras que concurren en un vértice de los poliedros regulares. Qué observas? TETRAEDO: En un vértice concurren tres triángulos
PLANEACIÓN CUARTO BIMESTRE MATEMÀTICAS
PLANEACIÓN CUARTO BIMESTRE MATEMÀTICAS PLANEACIÓN SEMANAL ASIGNATURA: MATEMATICAS GRADO: 4 TEMA: FRACCIONES COMO PARTE DE UNA COLECCIÒN. Aprendizaje esperado: LEER, ESCRIBIR Y COMPARAR NÚMEROS NATURALES,
Guía de refuerzo Matemática. 6º Básico. II Semestre. Nombre:
ROYAL AMERICAN SCHOOL Asignatura de matemática Miss Pamela Pérez Aguayo Formando personas: Respetuosas, Responsables, Honestas y Leales. Guía de refuerzo Matemática. 6º Básico. II Semestre. Nombre: Objetivo:
Práctico 2. Polinomios. Hallar: a) El valor numérico de P(x) en x = -2 b) El valor numérico de Q(x) en x = 3 c) El valor numérico de R(x) en x = 1
EMT Práctico Polinomios 1) Dados los polinomios P x x x x 3 ( ) 3 Q( x) x 3x y R x x x ( ) 4 13 Hallar: a) El valor numérico de P(x) en x = - b) El valor numérico de Q(x) en x = 3 c) El valor numérico
Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio
Trabajo Práctico Nº APLICACIONES DE ECUACIONES DE PRIMER GRADO EVALUACIÓN DE EXPRESIONES ALGEBRAICAS Perímetros Áreas - Volúmenes 1. Si al doble de un número se le aumenta 7, resulta ser 5. Determine el
Capítulo 3: POTENCIAS Y RAÍCES. TEORÍA. Matemáticas 1º y 2º de ESO
19 1. POTENCIAS Capítulo 3: POTENCIAS Y RAÍCES.. Matemáticas 1º y 2º de ESO 1.1. Concepto de potencia. Base y exponente Ejemplo 1: María guarda 5 collares en una bolsa, cada 5 bolsas en una caja y cada
Eje temático: Álgebra y funciones Contenidos: Raíces cuadradas y cúbicas - Racionalización Ecuaciones irracionales. Nivel: 3 Medio
Eje temático: Álgebra y funciones Contenidos: Raíces cuadradas y cúbicas - Racionalización Ecuaciones irracionales. Nivel: 3 Medio Raíces 1. Raíces cuadradas y cúbicas Comencemos el estudio de las raíces
Problemas con enunciado
1 Guía 6 Problemas con enunciado Nombre Curso Capacidad Destreza Valor Actitud 8 Año Básico A B - C Razonar matemáticamente Comparar Colaboración Constancia En esta guía estudiaremos una estrategia algebraica
I.E. CENTRO FORMATIVO DE ANTIOQUIA CEFA GEOMETRÍA GRADO DÉCIMO
I.E. CENTRO FORMATIVO DE ANTIOQUIA CEFA GEOMETRÍA GRADO DÉCIMO 1. Calcula el número de baldosas cuadradas que hay en un salón rectangular de 9m de largo y 3 m de ancho. Cada baldosa mide 30 cm de lado.
EL VOLUMEN DE LOS CUERPOS GEOMÉTRICOS
EL VOLUMEN DE LOS CUERPOS GEOMÉTRICOS Los cuerpos geométricos tridimensionales ocupan siempre un espacio. La medida de ese espacio recibe el nombre de volumen. Asimismo, los cuerpos que están huecos pueden
RESOLVER ECUACIONES DE PRIMER GRADO
RESOLVER ECUACIONES DE PRIMER GRADO OBJETIVO 1 Resolver una ecuación es hallar el valor de la incógnita que cumple la ecuación. Para resolver una ecuación de primer grado, transponemos términos, lo que
EJE N 3 : ECUACION LINEAL, CUADRATICA Y SISTEMA DE ECUACIONES
TALLER DE INGRESO 018 EJE N : ECUACION LINEAL, CUADRATICA Y SISTEMA DE ECUACIONES ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA 1) Halla el valor de x a) b) c) d) e) f) g) h) i) j) k) l) m) n) ) Resolver
Cálculo de perímetros. Usted sabe que para realizar algunas actividades es necesario calcular la longitud del contorno de los objetos.
Cálculo de perímetros Lección 3 Usted sabe que para realizar algunas actividades es necesario calcular la longitud del contorno de los objetos. Por ejemplo: José desea cercar un terreno como el dela figura
TRABAJO DE MATEMÁTICAS. PENDIENTES DE 3º ESO. (2ª parte)
TRABAJO DE MATEMÁTICAS PENDIENTES DE 3º ESO. (2ª parte) 1 OPERACIONES CON POLINOMIOS 1.-) Dados los polinomios: P(x) = 3x 2 + 3x - 1, Q(x) = 3x 2 + 2x + 1 y R(x) = -x 3 + 2x 2 +1. Calcular: a) P - Q R
Geometría. 8º Básico. Clase 1 Unidad 3
Geometría 8º Básico Clase 1 Unidad 3 Lámina 1a Clase 1 Cálculo mental diario a) 12 10 : 2 = b) 10 2 + 7 5 = c) 16:2 2 6 = d) 44 : 4 4:2 = e) - 15 + 3 5 = f) 1 + 6 6 = g) 15 - (2 8) = h) - 2 5-10 = i) 15
Programa Entrenamiento MT-22
Programa Entrenamiento MT- SOLUCIONARIO Guía de ejercitación avanzada SGUICEN0MT-A6V TABLA DE CORRECCIÓN Guía de ejercitación ÍTEM ALTERNATIVA HABILIDAD D E B 4 C 5 C Comprensión 6 B 7 E Comprensión 8
MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. cuadrante, un triángulo de área 16. Determinar la distancia del punto recta. 1, son también ceros de
1) La recta MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA r 1, tiene ordenada al origen 4 y forma con los ejes coordenados en el segundo P ; 5 a la cuadrante, un triángulo de área 16. Determinar la distancia
a) Cuadrado de lado 12,25 cm (Área = lado lado) b) Rectángulo de dimensiones 7,315 cm de largo y 2'7 cm de ancho (Área = largo ancho)
NUMEROS DECIMALES III 1 Calcula el cociente con 2 cifras decimales: a) 26,63 : 3,5 b) 3,201 : 0,61 2 Un kilo de pescado fresco cuesta 5,73 Euros Cuánto costará 3,25 Kg de pescado? 3 Efectúa las siguientes
Facultad de Ciencias Naturales y Museo Trabajo Práctico Nº 1
TRABAJO PRÁCTICO Nº 1 CONTENIDOS: Geometría. Progresiones aritméticas y geométricas. Coordenadas cartesianas y polares Parte I: Geometría 1) Las siguientes afirmaciones son verdaderas o falsas: a. los
Clase 16. Tema: División entre monomios. Matemáticas 8. Bimestre: II Número de clase: 16. Esta clase tiene video. Actividad 57
Matemáticas 8 Bimestre: II Número de clase: 16 Clase 16 Esta clase tiene video Tema: División entre monomios Actividad 57 Lea la información presentada. Luego, resuelva las divisiones. Para dividir monomios
UNA ECUACIÓN, SU GRADO Y SU SOLUCIÓN
86 _ 087-098.qxd 7//07 : Página 88 IDENTIICAR OBJETIVO UNA ECUACIÓN, SU GRADO Y SU SOLUCIÓN NOMBRE: CURSO: ECHA: Dado el polinomio P(x) x +, ya sabemos cómo se calcula su valor numérico: x P() + x P( )
GUIA PREPARACION PRUEBA SINTESIS
COLEGIO SANTA ELENA PROF.: XIMENA CASTRO SINTESIS - II Medio GUIA PREPARACION PRUEBA SINTESIS. Simplifica 0 5 5-5 5 5 5 5 5. El largo se un rectángulo mide + y. Si su perímetro mide 0 + 6y, cuánto mide
DPTO. MATEMÁTICAS IES Luis Bueno Crespo FECHA: / /
EXPRESIONES ALGEBRAICAS 1º. Indica las expresiones algebraicas correspondientes a los siguientes enunciados, utilizando una sola letra (x): a) El siguiente de un número, más tres unidades. b) El anterior
Guía de Estudio Matemáticas SEP En una multiplicación de signos diferentes, el resultado será: a) Negativo b) Indiferente c) Positivo d) Cero
1. En una multiplicación de signos diferentes, el resultado será: a) Negativo b) Indiferente c) Positivo d) Cero 2.- Los conjuntos A = {x N es un número impar positivo menor que 10} y B = {2, 3, 5, 6,
TRABAJO DE RECUPERACIÓN TERCER BIMESTRE
TRABAJO DE RECUPERACIÓN TERCER BIMESTRE 2015 2016 MATEMÁTICAS II PROFRA. GABRIELA VIVANCO RODRÍGUEZ NOMBRE DEL ESTUDIANTE: GRUPO: INSTRUCCIONES: Imprimir en hojas blancas tamaño carta. Resolver con lápiz.
Guía 13 B. Relacionemos unidades de área
Guía 13 B Relacionemos unidades de área Procedimiento para encontrar la equivalencia entre 1 dm 2 y cm 2 Dibuja un cuadrado de 1 dm de lado y divídelo en cuadraditos de de lado. 1 dm = 10 cm Cuántos cuadraditos
INSTITUTO POLITECNICO NACIONAL. CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLOGICOS. CUAUHTEMOC ACADEMIA DE MATEMATICAS.
INSTITUTO POLITECNICO NACIONAL. CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLOGICOS. CUAUHTEMOC ACADEMIA DE MATEMATICAS. Guía para el Examen a Titulo de Suficiencia de Algebra. I.- Efectúa las siguientes operaciones:
RX 2º SECUNDARIA 10 SUMA Y RESTA DE MONOMIOS
Las expresiones algebraicas más simples se llaman monomios. Recordemos cómo calcular los perímetros de las siguientes figuras: RX 2º SECUNDARIA 10 SUMA Y RESTA DE MONOMIOS En los polígonos regulares, es
ASIGNATURA: Matemáticas GRADO: 2. BLOQUE: II
SECRETARÍA DE EDUCACIÓN DE TAMAULIPAS SUBSECRETARÍA DE EDUCACIÓN BÁSICA DIRECCIÓN DE EDUCACIÓN SECUNDARIA ASIGNATURA: Matemáticas GRADO: 2. BLOQUE: II A partir de la fórmula para obtener el volumen del
Guía de reforzamiento Matemática Séptimo Básico 2015
Guía de reforzamiento Matemática Séptimo Básico 2015 1.- Cuál de las siguientes fracciones es equivalente a 2 / 5? a) 1 / 5 b) 4 / 8 c) 8 / 10 d) 6 / 15 2.- La fracción 1/5 corresponde al número decimal:
Cuál es el área de los siguientes rectángulos en pulgadas? 1) 8 por 6 = 4) 5 por 3 = 2) 9 por 9 = 5) 7 por 3 = 3) 2 por 8 = 6) 6 por 6 =
Nombre Fecha Área de Rectángulos Trabajo en Clase Cuál es el área de los siguientes rectángulos en pulgadas? 1) 8 por 6 = 4) 5 por 3 = 2) 9 por 9 = 5) 7 por 3 = 3) 2 por 8 = 6) 6 por 6 = 7) Sobre la grilla
CENTRO EDUCATIVO PAULO FREIRE TALLER
CENTRO EDUCATIVO PAULO FREIRE TALLER 1: Una plaza circular está limitada por una circunferencia de longitud 188,4m. Determinar el diámetro y el área de la plaza. 2: Si el área de un círculo es 144 cm 2,
Álgebra Lineal Agosto 2016
Laboratorio # 1 Vectores I.- Calcule el producto escalar de los dos vectores y el coseno del ángulo entre ellos u = i 2j + 3k; v = 3i 2j + 4k 3) u = 15i 2j + 4k; v = πi + 3j k 3) u = 2i 3j; v = 3i + 2j
Nombre del estudiante: Grupo:
Página 1 de 8 Nombre del estudiante: Grupo: I) REALIZA LAS CONVERSIONES: A) 3758 m = Km B) 85 cm 2 = Dam 2 C) 0.0007 Hm 3 = m 3 D) 79 m 3 = litros E) 8 mm = Hm F) 49506 cm 3 = litros G) 5 Km 2 = dm 2 H)
POLIEDROS. ÁREAS Y VOLÚMENES.
7. POLIEDROS. ÁREAS Y VOLÚMENES. EN ESTA UNIDAD VAS A APRENDER CUERPOS GEOMÉTRICOS POLIEDROS POLIEDROS REGULARES PRISMAS PIRÁMIDES CARACTERÍSTICAS DEFINICIÓN ELEMENTOS DEFINICIÓN ELEMENTOS - Tetaedro.
Curso: Octavo grado Eje temático: Sentido numérico y pensamiento algebraico
Curso: Octavo grado Eje temático: Sentido numérico y pensamiento algebraico Tema: 8.3.2 Resolución de problemas multiplicativos que impliquen el uso de epresiones algebraicas, a ecepción de la división
Lámina 1a. Cálculo mental diario
Lámina 1a Clase 1 Cálculo mental diario a) 12 10 : 2 = b) 10 2 + 7 5 = c) 16:2 2 6 = d) 44 : 4 4:2 = e) - 15 + 3 5 = f) 1 + 6 6 = g) 15 - (2 8) = h) - 2 5-10 = i) 15 (6 + 2) = j) ( - 41) + (- 3 ) = k)
ESCUELA SECUNDARIA TÉCNICA AGUILA CCT: 28PST0039E TAMPICO, TAMAULIPAS CICLO ESCOLAR CAMBRIDGE UNIVERSITY PRESS
VALOR: Solidaridad TEMARIO PARA EXAMEN SEMESTRAL MATEMÁTICAS TERCER GRADO A, B, C Y D Nombre del alumno: Grupo: No. De lista: Fecha: Firma del Padre o Tutor: I. Analiza cada situación y determina la respuesta
TRABAJO PRÁCTICO Nº 2
TRABAJO PRÁCTICO Nº EXPRESIONES ALGEBRAICAS. ECUACIONES. Objetivos: Identificar epresiones algebraicas de las no algebraicas. Reconocer los diferentes tipos de epresiones algebraicas. Establecer qué tipo
EJERCICIOS DE MATEMÁTICAS PENDIENTES DE 3º ESO (BLOQUE I)
-- EJERCICIOS DE MATEMÁTICAS PENDIENTES DE º ESO (BLOQUE I.- Ordena las fracciones 0 0 y.- Simplifica 000 000 0 0 8 0.- Representa gráficamente 0.- Calcula y simplifica ( ( h g f e d c b a.- Una revista
EJERCICIOS Y PROBLEMAS RESUELTOS
Ecuaciones de Segundo Grado -- página 1 EJERCICIOS Y PROBLEMAS RESUELTOS Ejercicio 1: Indica si son ecuaciones de segundo grado las siguientes ecuaciones: a) 5 + 8 + b) + + ( )( + ) c) + 1 a) El primer
open green road Guía Matemática OPERATORIA ALGEBRAICA profesor: Nicolás Melgarejo .co
Guía Matemática OPERATORIA ALGEBRAICA profesor: Nicolás Melgarejo.co . Operatoria de expresiones algebraicas En esta guía abordaremos la generalización de la operatoria aritmética a través del uso de símbolos,
DEPARTAMENTO DE MATEMATICAS
1.- Halla la suma de los ángulos interiores de los siguientes polígonos convexos. a) Cuadrilátero b) Heptágono c) Octógono 2.- Halla la medida de los ángulos interiores de: a) Un octógono regular. b) Un
5.A Cuál es el volumen de las figuras que aparecen a continuación?
MATEMÁTICAS DE COMMON CORE Lección 1 Boleto de salida 5 5 Fecha 1. Cuál es el volumen de las figuras que aparecen a continuación? 2. Haz un dibujo de una figura con un volumen de 3 unidades cúbicas en
GESTIÓN ACADÉMICA GUÍA DIDÁCTICA
PÁGINA: 1 de 10 Nombres y Apellidos del Estudiante: Docente: Área: Matemáticas Grado: OCTAVO Periodo: SEGUNDO GUIA 1 Duración: 15horas Asignatura: Matemáticas ESTÁNDAR: Construyo expresiones algebraicas
Este documento es de distribución gratuita y llega gracias a El mayor portal de recursos educativos a tu servicio!
Este documento es de distribución gratuita y llega gracias a Ciencia Matemática www.cienciamatematica.com El mayor portal de recursos educativos a tu servicio! Recuerdas qué es? Expresión algebraica Es
Facultad de Ciencias Naturales y Museo Trabajo Práctico Nº
TRABAJO PRÁCTICO Nº 1 CONTENIDOS: Geometría. Progresiones aritméticas y geométricas. Coordenadas cartesianas y polares Parte I: Geometría 1) Las siguientes afirmaciones son verdaderas o falsas: a. los
XX OLIMPIADA NACIONAL DE MATEMÁTICA TERCERA RONDA REGIONAL - 6 DE SETIEMBRE DE NIVEL 1. Nombre y Apellido:... Puntaje:...
TERCERA RONDA REGIONAL - 6 DE SETIEMBRE DE 2008 - NIVEL 1 Nombre y Apellido:................................. Puntaje:.................... Colegio:................................... Grado:...........
COLEGIO EL LIMONAR. MÁLAGA DEPARTAMENTO DE MÁTEMÁTICAS RELACIONES DE EJERCICIOS. 1º ESO
COLEGIO EL LIMONAR. MÁLAGA DEPARTAMENTO DE MÁTEMÁTICAS RELACIONES DE EJERCICIOS. º ESO RELACIÓN 5: ALGEBRA Lenguaje algebraico, monomios polinomios EXPRESIÓN ALGEBRAICA Es un conjunto de números letras
Facultad de Ciencias Naturales y Museo Trabajo Práctico Nº
CONTENIDOS: Geometría. Progresiones aritméticas y geométricas. Coordenadas cartesianas y polares Parte I: Geometría 1) Las siguientes afirmaciones son verdaderas o falsas: a. los pares de ángulos alternos
GOBIERNO DEL ESTADO DE MÉXICO
Esc. Sec. Ofic. No. 765 Vladimir Ilich Ulianov Lenin Turno Vespertino Guía para el eamen etraordinario de matemáticas tercer grado. Nombre: Fecha : Instrucciones: Realiza los ejercicios hojas blancas con
MATEMÁTICAS RESUELVE LAS SIGUIENTES OPERACIONES DE POLINOMIOS (MULTIPLICACION O DIVISION) SEGÚN SEA EL CASO.
PRIMER SEMESTRE MATEMÁTICAS RESUELVE LAS SIGUIENTES OPERACIONES DE POLINOMIOS (MULTIPLICACION O DIVISION) SEGÚN SEA EL CASO. 1. (4x 3y +2z) (5x y 3z) = 2. (3x + 2y) (3x 2y) = 3. (12x 3 y 5 + 18x 5 y 7-48
GUÍA DE TRABAJO N 3 ECUACIONES
GUÍA DE TRABAJO N ECUACIONES Durante cientos de años, uno de los tópicos mas importantes en Álgebra ha sido la resolución de ecuaciones; sobre todo por las aplicaciones que tienen en campos científicos
GUIA DE MATEMÁTICAS TERCEROS. Qué expresión algebraica representa el área del piso de la habitación?
GUIA DE MATEMÁTICAS TERCEROS PROFESOR: ALEXIS AMIR CANCHE RUIZ GRUPOS: A-B-C-D BLOQUE I TEMA: ECUACIONES INCOMPLETAS DE SEGUNDO GRADO 1 Resuelve las siguientes ecuaciones incompletas: a) -x + 13x = 0 b)
MATEMÁTICAS UNIDAD 2 GRADO 8º. Productos notables
1 Franklin Eduardo Pérez Quintero MATEMÁTICAS UNIDAD GRADO 8º Productos notables 1 Franklin Eduardo Pérez Quintero LOGRO: Reconoce como se conforman los productos notables a partir de la propiedad distributiva
Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023
Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Clase #8: jueves, 9 de junio de 2016. 8 Factorización Conceptos básicos Hasta
TEMA 9 SUPERFICIES Y VOLÚMENES
TEMA 9 NOMBRE Y APELLIDOS... FECHA... Vamos a empezar a aprender fórmulas de superficies y volúmenes de figuras geométricas sencillas. SUPERFICIES: lado CUADRADO lado x lado lado RECTÁNGULO Base x altura
