Aplicando los polinomios
|
|
|
- Julio Ortiz de Zárate Pérez
- hace 7 años
- Vistas:
Transcripción
1 1 Guía 2 Aplicando los polinomios Nombre Curso Capacidad Destreza Valor Actitud 1 Año Medio A B C - D Resolver Problemas Analizar Colaboración Constancia Aprendizajes Esperados Identificar patrones en multiplicaciones de expresiones algebraicas no fraccionarias. El propósito de esta guía de trabajo es estudiar algunas aplicaciones de los polinomios en varios ámbitos de la vida diaria. Epidemia de gripe En una ciudad de de habitantes se declara una epidemia de gripe y la evolución de los las personas contagiadas en función de los días viene dada por el siguiente polinomio: E(x) = x x 2 Donde x se mide en días y E(x) en miles de personas. Completar la siguiente tabla de modo de estudiar la evolución de la gripe en las dos primeras semanas: Días Desarrollo N de contagiados E(3) = = =
2 2 Días Desarrollo N de contagiados En qué día se alcanza la mayor cantidad de personas contagiadas?
3 3 La eficiencia de los trabajadores de una empresa Un estudio de eficiencia de los trabajadores de una fábrica ha determinado que el promedio de piezas producidas por un trabajador viene dado por el polinomio P(x) = x x 2, siendo x el número de horas transcurridas a partir del comienzo de la jornada, que es a las :00 AM, y P(x) el número de piezas producidas. Completar la siguiente tabla para estudiar la eficiencia de los trabajadores: Horas Desarrollo Piezas producidas A qué hora se estima que los trabajadores producen la mayor cantidad de piezas? Cuál será el número máximo de piezas producidas?
4 4 Cómo evoluciona la longitud de un feto durante el embarazo La longitud de un feto a lo largo de un embarazo viene dada por el polinomio T(x) = x2 x se mide en semanas y T(x) en centímetros. Estudie la talla del feto en las siguientes semanas de gestación: x3, donde Semanas Desarrollo Talla en cm. 10 T(10) = = = 10 1, 6 =, 3, 3 cm
5 Hora de practicar lo aprendido 1) Una emisora de radio local ha determinado, por medio de encuestas, que el número de auditores que la sintonizan entre las 7: 00 AM y 9: 00 PM, viene dado por la función A(x) = x x 2, donde x indica las horas transcurridas desde el inicio de las transmisiones y A(x) se mide en miles de auditores. a) Construir una tabla que permita estudiar el número de auditores a las siguientes horas de iniciadas las trasmisiones: 1, 2, 3, 4,, 6, 7,, 9 y 10. b) A qué hora tiene la máxima audiencia? Cuántos auditores la sintonizan en dicho momento? 2) Un estudio realizado por una empresa minera, ha determinado que la producción de metal viene dada por polinomio P(x) = x x 2, donde P(x) representa la ganancia en millones de pesos y x el número de toneladas del mineral extraído diariamente. a) Construir una tabla que permita estudiar las ganancias que produce el mineral extraído, para: 1, 2, 3, 4,, 6, 7,, 9 y 10 toneladas. b) Con cuántas toneladas se obtiene la máxima ganancia? c) A cuánto asciende la ganancia? 3) Los responsables de un zoológico estiman que para un Domingo de verano, que si las puertas se abren a las 9:00 AM, x horas después los visitantes entran a razón de P(t) = x x 2 por hora. a) Elabore una tabla que permita estudiar la cantidad de visitantes durante el día. b) A qué hora ingresa el mayor número de visitantes? c) A cuántos visitantes corresponde? 4) Si una pelota de tenis es impulsada hacia arriba con una cierta velocidad, el espacio recorrido (altura que alcanza) al cabo de x segundos, viene dado por la función S(x) = 24x 3x 2, donde S(t) representa la altura expresada en metros. a) Diseñe una tabla que permita estudiar la altura alcanzada por la pelota en función de los segundos transcurridos desde que se lanza. b) A los cuántos segundos alcanza la máxima altura? c) Qué altura máxima alcanza? ) La concentración de ozono contaminante, en microgramos por metro cúbico, en una ciudad durante los años noventa, viene dada por el polinomio C(x) = ,4x 0,6x 2, donde x corresponde a los días contados a partir del 1º de enero de a) A través de una tabla estudie la cantidad de ozono contaminante para las dos primeras semanas de Enero de b) En qué fecha hubo la mayor cantidad de ozono contaminante?
Guía 7 Aplicaciones de la multiplicación algebraica
1 Guía 7 Aplicaciones de la multiplicación algebraica Nombre Curso Capacidad Destreza Valor Actitud 1 Año Medio A B C D Resolver Problemas Analizar Colaboración Constancia Aprendizajes Esperados Identificar
Metáfora de las cajas algebraicas
1 Guía 1 Metáfora de las cajas algebraicas Nombre Curso Capacidad Destreza Valor Actitud 1 Año Medio A B C - D Resolver Problemas Analizar Colaboración Constancia Aprendizajes Esperados Identificar patrones
Algebra Sigla MAT2001
TIPO DE ACTIVIDAD: Ejercicios Título Actividad: Nombre Asignatura: Concepto de Función Algebra Sigla MAT2001 Semana Nº: 1 Actividad Nº 1 Lugar APRENDIZAJES ESPERADOS: Aprendizaje 1 Sala de clases Otro
Práctico 2. Polinomios. Hallar: a) El valor numérico de P(x) en x = -2 b) El valor numérico de Q(x) en x = 3 c) El valor numérico de R(x) en x = 1
EMT Práctico Polinomios 1) Dados los polinomios P x x x x 3 ( ) 3 Q( x) x 3x y R x x x ( ) 4 13 Hallar: a) El valor numérico de P(x) en x = - b) El valor numérico de Q(x) en x = 3 c) El valor numérico
1. [2014] [EXT-A] En una localidad la concentración de polen de olivo, medida en granos de polen/m 3 de aire, se puede ajustar a la
1. [2014] [EXT-A] En una localidad la concentración de polen de olivo, medida en granos de polen/m 3 de aire, se puede ajustar a la función f(t) = t3 3-22t2 +448t-2600, siendo t el tiempo medido en semanas,
La concentración de ozono contaminante, en microgramos por metro cúbico, en una
ANÁLISIS MATEMÁTICO. PAU CASTILLA Y LEÓN A) EJERCICIOS DE APLICACIÓN A LAS CCSS La concentración de ozono contaminante, en microgramos por metro cúbico, en una ciudad viene dada por la función C ( ) 90
x 2 Soluciones de la Ecuación de 2º Grado TIPO DE ACTIVIDAD: Ejercicios FUNCIÓN CUADRÁTICA Forma general Donde, son coeficientes reales,.
TIPO DE ACTIVIDAD: Ejercicios Título Actividad: Nombre Asignatura: Función Cuadrática Algebra Sigla MAT00 Semana Nº: 3 Actividad Nº 4 Lugar Sala de clases Otro Lugar (Donde desarrolle sus horas No Presenciales
Ecuaciones Cuadráticas. Cuadrado
Ecuaciones Cuadráticas Cuadrado 01 J14 Se aumenta la longitud de cada lado de un cuadrado en 12 y se obtiene otro cuadrado con un área nueve veces el área del cuadrado inicial. Cuál es el área del cuadrado
Guía 8 Productos notables
1 Guía 8 Productos notables Nombre Curso Capacidad Destreza Valor Actitud 1 Año Medio A B C D Resolver Problemas Analizar Colaboración Constancia Aprendizajes Esperados Identificar patrones en multiplicaciones
Ejemplo: Por ejemplo, para la función f cuya gráfica es Y
º ESO (LOMCE) MATEMÁTICAS ACADÉMICAS TEMAS 0,,.- FUNCIONES-(ª PARTE).- CONCEPTO DE FUNCIÓN. CARACTERÍSTICAS Definición de función Una función real de variable real es una forma de hacerle corresponder
GUÍA N 1 DE CÁLCULO I Funciones y sus Gráficas
GUÍA N 1 DE CÁLCULO I Funciones y sus Gráficas I Funciones En esta guía trabajaremos con funciones polinómicas tanto en su forma algebraica como gráfica. Tendrás que graficar funciones lineales y cuadráticas
NOMBRE: 1. En el plano de una cocina aparece coloreada la zona donde se colorará baldosín.
DOCENTE: DIANA LUCERO PINZÓN ORTIZ GRADO: OCTAVO GUÍA Nº: 5 ÁREA: PENSAMIENTO UNIDAD TEMÁTICA: REPASO DE POLINOMIOS FECHA: UN ESPACIO PEDAGÓGICO DE DESARROLLO DE INTELIGENCIAS NOMBRE: 1. En el plano de
INSTITUCIÓN EDUCATIVA HÉCTOR ABAD GÓMEZ ASIGNATURA/ ÁREA MATEMÁTICAS GRADO UNDÉCIMO PERÍODO TERCERO AÑO 2017 NOMBRE DEL ESTUDIANTE
Versión 01 Página 1 ASIGNATURA/ ÁREA MATEMÁTICAS GRADO UNDÉCIMO PERÍODO TERCERO AÑO 2017 NOMBRE DEL ESTUDIANTE ESTANDAR DE COMPETENCIA: Analizo las relaciones y propiedades entre las expresiones algebraicas
EXAMEN DE LA UNIDAD 1: POLINOMIOS Y FRACCIONES ALGEBRAICAS. 1. Halla el máximo común divisor y el mínimo común múltiplo de los siguientes polinomios:
COLEGIO SAN ALBERTO MAGNO º BACHILLERATO EXAMEN DE LA UNIDAD : POLINOMIOS Y FRACCIONES ALGEBRAICAS. Halla el máimo común divisor y el mínimo común múltiplo de los siguientes polinomios: 0 ) ( 8 ) ( Q P.
ACTIVIDAD DE APRENDIZAJE APRENDIZAJE(S) ESPERADO(S)
ACTIVIDAD DE APRENDIZAJE Sigla Curso MAT0 Nombre Curso Cálculo I Créditos 10 Hrs. Semestrales Totales 5 Requisitos MAT00 o MAT001 Fecha Actualización Escuela o Programa Transversal Programa de Matemática
- El coeficiente de x, la m, se llama pendiente de la recta y nos indica la inclinación de la recta.
º ESO C MATEMÁTICAS ACADÉMICAS UNIDAD.- FUNCIONES LINEALES CUADRÁTICAS..- FUNCIONES CUA GRÁFICA ES UNA RECTA Funciones lineales Son aquellas cuya fórmula es del tipo y = mx, siendo m 0. - El coeficiente
ACTIVIDAD DE APRENDIZAJE
ACTIVIDAD DE APRENDIZAJE Sigla Curso MAT330 Nombre Curso Cálculo I Créditos 10 Hrs. Semestrales Totales 5 Requisitos MAT200 o MAT2001 Fecha Actualización Escuela o Programa Transversal Programa de Matemática
OBJETIVOS CONTENIDOS PROCEDIMIENTOS
Polinomios INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de ahí la importancia de comprender el concepto de polinomio y otros asociados
Derivadas Selectividad CCSS Extremadura. MasMates.com Colecciones de ejercicios
1. [2014] [ET-A] El número de viajeros al año (en miles) de un determinado aeropuerto durante los últimos años viene dado por la función: N(t) = 0,1t 3-1,t 2 + 2,7t + 2, 1 t, donde N es el número de viajeros
Aplicaciones de las derivadas
11 Aplicaciones de las derivadas 1. Representación de funciones polinómicas Piensa y calcula Calcula mentalmente: a) lím ( 3 3) b) lím ( 3 3) +@ a) + @ b) @ @ Aplica la teoría Representa las siguientes
RELACIÓN DE PROBLEMAS DE OPTIMIZACIÓN Y APLICACIÓN DE DERIVADAS
1. Descomponer el número e en dos sumandos positivos de forma que la suma de los logaritmos neperianos de los sumandos sea máxima. Calcular dicha suma. Solución: Los sumandos han de ser e y e. La suma
EJEMPLO. La siguiente es una tabla que ilustra las tarifas de dos parques de diversiones
2 C - 9o. - 041 - FI EJEMPLO La siguiente es una tabla que ilustra las tarifas de dos parques de diversiones Nombre del parque Parque Locura Parque Impacto Valor de la entrada por persona $ 2.000 $1.400
PROBLEMAS DE OPTIMIZACIÓN (2)
PROBLEMAS DE OPTIMIZACIÓN () Sugerencia para el profesor Resolver en el pizarrón los siguientes problemas, solicitando la intervención de los alumnos en cada uno de los pasos a seguir. Ejemplo Problema
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 000 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,
MATEMÁTICAS - GRADO 11
PRUEBA DE TERCER PERÍODO DE MATEMÁTICAS - GRADO 11 1 La siguiente representación gráfica corresponde a una función, de la cual se puede AFIRMAR que Su pendiente es 3 y corresponde a una función afín creciente.
4.1. Polinomios y teoría de ecuaciones
CAPÍTULO 4 Polinomios y teoría de ecuaciones 4.1. Polinomios y teoría de ecuaciones Un polinomio real en x, o simplemente polinomio en x es una expresión algebraica de la forma a n x n + a n 1 x n 1 +
Análisis Matemático I (Lic. en Cs. Biológicas)
Análisis Matemático I (Lic. en Cs. Biológicas) Curso de Verano 011 Práctica 5: Regla de L Hospital - Estudio de funciones Ejercicio 1. Decidir si las siguientes funciones satisfacen las hipótesis del Teorema
Los siguientes ejercicios contienen los temas de : Universidad Finis Terrae
DESAFÍO 3 Los siguientes ejercicios contienen los temas de : a) Operatoria de funciones b) Función lineal c) Función Cuadrática d) Aplicaciones Todos los problemas tienen solución al final de este documento,
EJERCICIOS RECUPERACIÓN MATEMÁTICAS 2º ESO
NÚMEROS ENTEROS Ejercicio nº 1: EJERCICIOS RECUPERACIÓN MATEMÁTICAS º ESO a Calcula todos los divisores de 46. b Escribe cinco múltiplos consecutivos de 16 comprendidos entre 7 y 10. c Cuándo un número
c) Demuestra que la función f(x) anterior y g(x) = 2x 1 se cortan al menos en un punto. (1 punto) 2
Junio 010 1A. a) Enuncia el teorema de Bolzano. (0,5 puntos) 1 b) Se puede aplicar dicho teorema a la función f ( x) 1 x en algún intervalo? (1 punto) c) Demuestra que la función f(x) anterior y g(x) =
1 de 6 Crear un fichero en Excel 007 ó Excel 97/003, en el cual se dé solución a cada uno de los problemas planteados numerados IMPARES. Las características de la hoja de cálculo por problema son los siguientes:
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. Página 33 PRACTICA Para cada uno de los siguientes casos: Di si se trata de una distribución bidimensional. Indica cuáles son las dos variables que se relacionan. Indica si se trata de una relación
Ejercicios de Polinomios y Fracciones Algebráicas
Matemáticas 1º Bach CCSS. Ejercicios Tema 2. Polinomios y Fracciones Algebráicas. Pág 1/12 1. Dados los polinomios: Ejercicios de Polinomios y Fracciones Algebráicas 1. P(x) = 4x 2 1 2. Q(x) = x 3 3x 2
ESCUELAS TECNICAS ORT SEDE BELGRANO Nombre y apellido: Curso: 5GC Prof: Eric Lescano Guía 1: Operaciones con Polinomios y factorización
ESCUELAS TECNICAS ORT SEDE BELGRANO Nombre y apellido: Curso: GC Prof: Eric Lescano Guía 1: Operaciones con Polinomios y factorización Introducción: Qué son los polinomios? Son expresiones algebraicas
Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio
TRABAJO PRÁCTICO Nº 6 EXPRESIONES ALGEBRAICAS POLINOMIOS Polinomios Grado. Coeficientes. Especialización. Suma de polinomios. Producto de Polinomios. División de Polinomios. Regla Ruffini. Teorema del
MATEMÁTICAS I PLANTEL 02 CIEN METROS ELISA ACUÑA ROSSETTI GUÍA DE ESTUDIO PARA EXAMEN DE RECUPERACIÓN Y EXAMEN DE ACREDITACIÓN ESPECIAL
PLANTEL 0 CIEN METROS ELISA ACUÑA ROSSETTI GUÍA DE ESTUDIO PARA EXAMEN DE RECUPERACIÓN Y EXAMEN DE ACREDITACIÓN ESPECIAL MATEMÁTICAS I (CLAVE: 04, PLAN: 04) NOMBRE DEL ALUMNO: Apellido paterno Apellido
EJEMPLO EJERCICIOS DE NÚMEROS PARA RECUPERAR. M2. Utiliza la notación científica para representar números grandes.
EJEMPLO EJERCICIOS DE NÚMEROS PARA RECUPERAR M1. Calcula correctamente potencias de base entera y exponente natural, utilizando las propiedades de las potencias. 1º. Calcula las siguientes potencias: a)
PREGUNTAS DE SELECCIÓN MÚLTIPLE CON ÚNICA RESPUESTA (TIPO X)
PREGUNTAS DE SELECCIÓN MÚLTIPLE CON ÚNICA RESPUESTA (TIPO X) La prueba de matemáticas está conformada por preguntas planteadas a partir de diferentes situaciones. Estas preguntas constan de: - una situación,
a) El beneficio es el resultado de restar los ingresos y gastos. Esto es,
Análisis: Máimos, mínimos, optimización 1. Una multinacional ha estimado que anualmente sus ingresos en euros vienen dados por la función I( ) 8 6000, mientras que sus gastos (también en euros) pueden
Colegio Cristo Rey Matemáticas Aplicadas a las Ciencias Sociales I Temas 9 y 10. Derivadas y aplicaciones. x 3x. x x x. x 2
Colegio Cristo Re Matemáticas Aplicadas a las Ciencias Sociales I Temas 9. Derivadas aplicaciones. Halla la derivada de estas funciones: a) f ln f ' ln ln 4 b) f f ' 4 c) f f ' ln d) f log f ' 4 4 ln e)
f (x) mx n, donde m y n son
GUÍA N 2 FUNCIÓN LINEAL 2.1 Definición: Función lineal Una función se llama lineal si se escribe de la forma números reales cualquiera. f (x) mx n, donde m y n son La gráfica asociada a una función lineal
Aplicaciones de la función cuadrática. Máximo y Mínimo Algebra Sigla MAT2001
TIPO DE ACTIVIDAD: Ejercicios Título Actividad: Nombre Asignatura: Aplicaciones de la función cuadrática. Máximo y Mínimo Algebra Sigla MAT001 Semana Nº: 3-4 Actividad Nº 5 Lugar Sala de clases Otro Lugar
La producción de acero en Monterrey N.L. (México) en millones de toneladas, durante el año de 1992 a partir del mes de enero se muestra en la tabla:
El objetivo al estudiar el concepto razón de cambio, es analizar tanto cuantitativa como cualitativamente las razones de cambio instantáneo y promedio de un fenómeno, lo cual nos permite dar solución a
EJERCICIOS DE VERANO MATEMÁTICAS 3º ESO
EJERCICIOS DE VERANO MATEMÁTICAS 3º ESO Página 1 de 12 Entregar el día del examen de recuperación de matemáticas. Será condición indispensable para aprobar la asignatura. 1. Calcula: NUMEROS ENTEROS. FRACCIONES.
(Facultades de Ciencias, Ciencias Económicas, Ingeniería y Zootecnia) Coordinadora: Margarita Ospina
Universidad Nacional de Colombia -Sede Bogotá- Departamento de Matemáticas Segundo semestre de 00 - Matemáticas Básicas PRECÁLCULO- Grupos, 4, 5, 6, 7 y 9. (Facultades de Ciencias, Ciencias Económicas,
EJE N 3 : ECUACION LINEAL, CUADRATICA Y SISTEMA DE ECUACIONES
TALLER DE INGRESO 018 EJE N : ECUACION LINEAL, CUADRATICA Y SISTEMA DE ECUACIONES ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA 1) Halla el valor de x a) b) c) d) e) f) g) h) i) j) k) l) m) n) ) Resolver
Guía 11 Ecuaciones literales
1 Guía 11 Ecuaciones literales Nombre Curso Capacidad Destreza Valor Actitud 1 Año Medio A B C D Resolver Problemas Analizar Colaboración Constancia Aprendizaje Esperado Establecer estrategias para resolver
TEMA FACULTAD DE CIENCIAS FÍSICO MATEMÁTICAS Y NATURALES 1 PREGUNTAS Evaluación Diagnóstica de Matemática del 2 de Marzo de 2009
TEMA -0-009 FACULTAD DE CIENCIAS FÍSICO MATEMÁTICAS Y NATURALES PREGUNTAS Evaluación Diagnóstica de Matemática del de Marzo de 009 a ) Sean a, b 0. Si el cociente es negativo, entonces cuál de las siguientes
A) CÁLCULO DE DERIVADAS. 1. Deriva las siguientes funciones pensando antes que tipo de fórmula hay que utilizar.
C URSO: º BACHILLERATO DERIVABILIDAD. A) CÁLCULO DE DERIVADAS. 1. Deriva las siguientes funciones pensando antes que tipo de fórmula hay que utilizar. 9 7 a) f ( 4 1 b) f ( 8 4 c) 4 f ( 1 d) ( ) 7 4 f
Guía de Estudio Matemáticas SEP En una multiplicación de signos diferentes, el resultado será: a) Negativo b) Indiferente c) Positivo d) Cero
1. En una multiplicación de signos diferentes, el resultado será: a) Negativo b) Indiferente c) Positivo d) Cero 2.- Los conjuntos A = {x N es un número impar positivo menor que 10} y B = {2, 3, 5, 6,
4. Halla el menor conjunto numérico al que pertenecen los siguientes números: ,
Actividades de recuperación de la 1ª EVALUACIÓN Unidad 1: Números reales 1. Efectúa, paso a paso las siguientes operaciones combinadas: a) 1 101 9 4 b) 1 4 1 8 114 4 4 1 : : 4 7 d) 1 1 1 1 1 4. Efectúa
1 (a) Cortes con los ejes. (b) Intervalos de crecimiento y decrecimiento. (c) Máximos y mínimos, si los hay.
http://www.jezasoft.co.cc 1 de 7 TALLER 0 DE APLICACIONES DE Manizales, 05 de Septiembre de 010 1. La temperatura T, en grados centígrados, que adquiere una pieza sometida a un proceso viene dada en función
Para encontrar el valor de k sustituimos el valor de h en la función inicial.
.3.4 GRÁFICAS DE FUNCIONES CUADRÁTICAS COMPLETAS. Ejemplo 1. Construir la gráfica de la siguiente función f()= -4-5, estableciendo su dominio, rango, las coordenadas de su vértice sus raíces (método de
GRADO: TERCERO JORNADA: MAÑANA Y TARDE FECHA: DÍA MES AÑO
GUÍA DE ESTUDIO PARA LA RECUPERACIÓN ÁREA: MATEMÁTICAS LOGROS DEL GRADO: 1. Apropiación del lenguaje matemático que le permita al estudiante: relacionar, describir, reconocer, analizar y predecir. 2. Desarrollo
2. [2014] [EXT-B] El número de vehículos que ha pasado cierto día por el peaje de una autopista viene dado por la función:
1. [201] [EXT-A] La profundidad de la capa de arena en una playa se verá afectada por la construcción de un dique. En una zona de la playa, esa profundidad vendrá dada por la siguiente función: 2 + t si
GUIA DE MATEMÁTICAS TERCEROS. Qué expresión algebraica representa el área del piso de la habitación?
GUIA DE MATEMÁTICAS TERCEROS PROFESOR: ALEXIS AMIR CANCHE RUIZ GRUPOS: A-B-C-D BLOQUE I TEMA: ECUACIONES INCOMPLETAS DE SEGUNDO GRADO 1 Resuelve las siguientes ecuaciones incompletas: a) -x + 13x = 0 b)
MATEMÁTICAS. TEMA 7 Aplicaciones de la Derivada
MATEMÁTICAS TEMA 7 Aplicaciones de la Derivada ÍNDICE MATEMÁTICAS º BACHILLERATO CCSS. TEMA 7: APLICACIONES DE LA DERIVADA 1. Introducción. Máximos y mínimos. 3. Monotonía (Crecimiento y Decrecimiento).
Factoriza los siguientes números: 66, 165, 315 y 91. Halla el máximo común divisor y el mínimo común múltiplo de: 28, 40, 44 y 56.
TRABAJO DE VERANO MATEMÁTICAS EDUCACIÓN SECUNDARIA º ESO 01 Factoriza los siguientes números: 66, 165, 15 y 91. Halla el máximo común divisor y el mínimo común múltiplo de: 8, 40, 44 y 56. Resuelve y compara
CEO Juan XXIII. ACTIVIDADES MATEMÁTICAS 2º ESO 1) Halla el área de la zona de color de cada figura. 2) Halla el perímetro y el área de esta figura.
ACTIVIDADES MATEMÁTICAS 2º ESO 1) Halla el área de la zona de color de cada figura. 2) Halla el perímetro y el área de esta figura. 3) Halla el área total y el volumen de estas figuras. 4) La figura representa
Polinomios CLAVES PARA EMPEZAR VIDA COTIDIANA. a) 3x b) c) d) x 2 3. a) iii b) ii c) i. a) 7 (4 2) c) 9x (x 4) 9x 2 36x
CLAVES PARA EMPEZAR a) 3x b) c) d) x 2 3 a) iii b) ii c) i a) 7 (4 2) 28 14 42 c) 9x (x 4) 9x 2 36x b) 3 (x ) 3x 1 d) ( 2x) (3x 2 4x 7) 6x 3 8x 2 14x VIDA COTIDIANA Largo de página x Ancho de página 2x
Fracciones algebraicas
Guía Fracciones algebraicas Nombre Curso Capacidad Destreza Valor Actitud Año Medio A B C - D Resolver Problemas Analizar Responsabilidad Compromiso Aprendizaje Esperado Analizar la validez de una expresión
Ejercicios de máximos y mínimos de selectividad
1. De entre todos los triángulos rectángulos con hipotenusa 10cm., calcula as longitudes de los catetos que corresponden ó de área máxima b a c segunda A (a)= ( ) = El área A de un triángulo rectángulo
Expresiones algebraicas
Polinomios Expresiones algebraicas Una expresión algebraica es cualquier combinación de números y letras relacionados por operaciones aritméticas: suma, resta, producto, división y potenciación. Ejemplos
ECUACIONES. Resuelve, con sentido común, las siguientes ecuaciones... 3º ESO. PARA PRACTICAR : LIBRO [ PÁG. 102 / Nº 2, 3, 4 ] mn
ECUACIONES Comprender el lenguaje algebraico para resolver ecuaciones Resuelve, con sentido común, las siguientes ecuaciones... 3º ESO. PARA PRACTICAR : LIBRO [ PÁG. 102 / Nº 2, 3, 4 ] mn Estudiar en el
Tema 3: Expresiones algebraicas
.1 Polinomios Tema : Expresiones algebraicas Determina cuáles de las siguientes expresiones son polinomios. Cuando lo sean, dí cuáles son sus monomios(términos), su grado, término principal, término independiente,
GUIA N 4: FUNCIÓN CUADRATICA. Una función cuadrática es aquella cuya característica principal es que su grado es dos, es decir, es de la forma
GUIA N 4: FUNCIÓN CUADRATICA Definición: Una función cuadrática es aquella cuya característica principal es que su grado es dos, es decir, es de la forma con y números reales y Solución de una ecuación
ANÁLISIS MATEMÁTICO I TEMA V : INTEGRALES Hoja 1. A) Calcular las siguientes integrales definidas aplicando la Regla de Barrow: 4x dx 3) I= π 0
ANÁLISIS MATEMÁTICO I TEMA V : INTEGRALES Hoja A) Calcular las siguientes integrales definidas aplicando la Regla de Barrow: ) I= ( + ) ) I= / 4 π 0 cos 4) I= e ( + ) 6) I= 4 0 ( y) / dy B) Hallar el valor
FISICOQUIMICA UNQ Comisión C. Seminario 0 Conocimientos previos necesarios. Química
FISICOQUIMICA UNQ Comisión C Seminario 0 Conocimientos previos necesarios Química a. Enuncie la ley de Coulomb. b. Qué es una molécula polar? Qué características debe presentar? c. En qué tipo de propiedades
Para responder al problema planteado utilizar el programa GeoGebra siguiendo estos pasos: Abrir el programa graficador.
FUNCIÓN CUADRÁTICA Profesora: Nilda H. González Área: Matemática Tema: Variación del gráfico según su fórmula Destinatarios: 3º año, Secundaria Básica Objetivos de la actividad: Que los alumnos logren:
, hallar su dominio, los puntos de corte con los ejes y la pendiente de la recta x 2-4 tangente a la gráfica de la función en x = 1.
. [04] [ET-A] El beneficio semanal (en miles de euros) que obtiene una fábrica por la producción de aceite viene dado por la función B(x) = -x +6x-8, donde x representa los hectolitros de aceite producidos
EXAMEN DE SEPTIEMBRE DE MATEMÁTICAS II PCPI 2º MÓDULOS VOLUNTARIOS.
EXAMEN DE SEPTIEMBRE DE MATEMÁTICAS II PCPI 2º MDULOS VOLUNTARIOS. Se recomienda: a) Antes de hacer algo, lee todo el examen. b) Resuelve antes las preguntas que se te den mejor. c) Responde a cada parte
2.6 Ejercicios de repaso
1. En un lago la población de peces es P, H es un parámetro conocido como la razón de pesca, es decir la cantidad de peces que se extraen por unidad de tiempo (peces/año). La tasa de crecimiento de la
GUÍA 7: FUNCIÓN LOGARÍTMICA
GUÍA 7: FUNCIÓN LOGARÍTMICA La forma general de la función logaritmo es f(x)=log b (x) ;con b 1, donde b es un número real positivo distinto de 1 llamado base y x es un número real positivo llamado argumento
Polinomios y Fracciones algebraicas
Polinomios y Fracciones algebraicas 1. Polinomios 1.1. Expresiones algebraicas: Polinomios y elementos de un polinomio. 1.2. Valor numérico de un polinomio. 1.3. Operaciones con polinomios: suma, resta,
Construye la gráfica de las funciones propuestas a continuación, y estudia el signo de las mismas: (h)
Construye la gráfica de las funciones propuestas a continuación, y estudia el signo de las mismas: (a) y 6 ; (b) y ( )( ) + ; (c) (e) y + 6 ; + 4; (d) y ( ) 9 + 5 5; (f) 4 y y 9 ; ; (h) y ( + ) ; 4 (g)
2. [2014] [JUN] Sean x e y dos números reales tal que x+y = 10. Cuál es el máximo valor posible para el producto (x+1)(y-1)?
[04] [ET] Supongamos que queremos construir un gallinero rectangular (como el que se muestra en la figura de la derecha) apoyado sobre dos muros formando un ángulo recto de longitudes y metros, respectivamente
TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA
Ejercicios Selectividad Tema 12 Inferencia estadística. Matemáticas CCSSII 2º Bachillerato 1 TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA LAS MUESTRAS ESTADÍSTICAS EJERCICIO 1 : Septiembre 00-01.
FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Energía y trabajo
1(7) Ejercicio nº 1 Calcula la altura a la que debe encontrarse una persona de 60 kg para que su energía potencial sea la misma que la de un ratón de 100 g que se encuentra a 75 m del suelo. Ejercicio
Polinomios y fracciones algebraicas
010 El dividendo de una división de polinomios es P (x) = x 5 - x - x, el cociente es C (x) = x - y el resto es R (x) = -. Cuál es el divisor? P (x) = Q (x)? C (x) + R (x) x 5 - x - x = Q (x)? (x - ) -
Unidad 2 Polinomios PÁGINA 28 SOLUCIONES. Sacar factor común. a) b) Evaluar un polinomio en un punto.
Unidad Polinomios PÁGINA 8 SOLUCIONES Sacar factor común. a) b) 3x 6 3 ( x ) 3 5x 10x 5x 5 x( x x1) Evaluar un polinomio en un punto. Dado el polinomio P(x) = x 4 x 3 x + 1, podemos asegurar que: a) P(1)
BLOQUE II. Álgebra. 7. Polinomios 8. Ecuaciones de 1 er y 2º grado 9. Sistemas de ecuaciones lineales
BLOQUE II Álgebra 7. Polinomios 8. Ecuaciones de er y º grado 9. Sistemas de ecuaciones lineales 7 Polinomios. Lenguaje algebraico Dado el cubo de la figura siguiente, halla su área y su volumen en función
PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. / L.O.C.E.
PRUEBAS DE ACCESO A LA UNIVERSIDAD LOGSE / LOCE CURSO 3-4 CONVOCATORIA: MATERIA: Matemáticas Aplicadas a las CC SS - Cada alumno debe elegir sólo una de las pruebas (A o B) y, dentro de ella, sólo debe
Una sucesión es un conjunto de cosas (normalmente números) una detrás de otra, en un cierto orden.
Bloque4 Representa sucesiones de números enteros a partir de una regla dada y viceversa Resuelve problemas que impliquen el uso de ecuaciones de la forma: ax+ b = cx + d, donde los coeficientes son números
MATECALENDARIO 2011 SEPTIEMBRE 2. Alumno (a):
MATECALENDARIO 2011 SEPTIEMBRE 2 Alumno (a): Este Matecalendario es un apoyo para tus prácticas de la Asignatura de Matemáticas. Trata de realizarlo con la colaboración de tu maestro y compañeros. Lunes
Guía de reforzamiento Matemática Primero Medio 2015
Guía de reforzamiento Matemática Primero Medio 2015 1. Tales de Mileto, sabio de la antigua Grecia, nació en el año 620 antes de Cristo y murió cuando tenía 67 años de edad En que año murió? a) 553 antes
