PROBLEMAS DE OPTIMIZACIÓN (2)
|
|
|
- Marta Flores Lara
- hace 9 años
- Vistas:
Transcripción
1 PROBLEMAS DE OPTIMIZACIÓN () Sugerencia para el profesor Resolver en el pizarrón los siguientes problemas, solicitando la intervención de los alumnos en cada uno de los pasos a seguir. Ejemplo Problema de la tos Cuando alguien tose, la tráquea se contrae violentamente, lo que afecta de modo directo a la velocidad del aire expulsado a través de ella. Si la velocidad del aire durante una tosida se puede expresar v(r) k (R r) r, donde k es una constante positiva que depende de la persona, R es el radio normal de la tráquea y r el radio durante el golpe de tos, qué valor del radio r producirá la máxima velocidad del aire expulsado? Procedamos a resolverlo: v(r) k (R r) r, v(r) k (R r - r ) dv. k(r r r ) dr. k (R r r ) 0.. R r r r(r r) 0; r 0; R r 0; r R d v 4. k(r 6r) dr 5. v" R k R 6 R k(r 4R) - kr < 0, porque k y R son positivas. 6. La velocidad del aire expulsado v(r) tiene un máximo cuando r R. 4-7 Comportamiento Gráfico y Problemas de Optimización
2 Ejemplo Problema del medicamento La concentración C de un medicamento en la sangre, después de t horas de inyectado en tejido t muscular, se expresa como C( t). Para 7 + t qué valor de t la concentración C en la sangre es máxima? Resolvámoslo:. dc dt. ( 7 + t ) (7 + t ) t(t ) 8 6t ( 7 + t ) 0 ; 8+ t 9t ( 7 + t ) t ; t. 6 6t + 8 ( 7 + t ) 7. t. 8. Obtener la segunda derivada resulta un proceso largo, probemos el criterio de la primera derivada. 4. t.8 divide al eje X en dos intervalos: (,.8) y (.8, ) Pasos 5 y 6. Intervalo (,.8) (.8, ) Valor de t Valor de C (t) Signo de C (t) + -. C(t) tiene un máximo en t.8 horas h min 5 seg 4-8 Comportamiento Gráfico y Problemas de Optimización
3 venta (precio de primera) (y) + la tonelada de acero de primera.. ( 0 ) La función que necesitamos optimizar es: dv dx 0 p + p x ( 5)(0 x) (40 5x)( ) p + p p (0 ) x ( 0 x) 0 + ( ) 0 x 0 p ; ( ) 0 x Ejemplo Problema del acero Una planta productora de acero puede producir x toneladas de acero de segunda clase al día y y toneladas de acero de primera clase al día. La relación entre x y y está dada por la expresión 40 5x y. Si el precio de venta del acero de 0 x segunda es la mitad del de primera, qué cantidad de acero de segunda clase le da a esa planta la venta máxima? precio de primera (x). Sea p el precio de 40 5x V ( x) p + 0 x ( 0 x) px x x p + ; (0 x) 0; 00 0x + x 0; p x 0x ; 0 ± x ( 0) () 4()(80) 0 ± 80. x 4.47, x V (x) dx V (4.47) ( ) mínimo. d (p (-0 (0 x) - + ) p (0 (0 x) - 0 p (-)) ( ) 0 p p V (5.5) ( ) máximo x 0.9 p > 0, porque p es positivo. Por lo tanto es un p < 0, porque p es positivo. Por lo tanto es un. 4-9 Comportamiento Gráfico y Problemas de Optimización
4 La planta obtiene la máxima ganancia produciendo 5.5 toneladas de acero de segunda clase al día. Ejemplo 4 Problema de la varilla Se tiene una varilla de un metro de longitud para hacer un círculo y un cuadrado. Cómo debe cortarse la varilla para que la suma de las áreas de las figuras construidas sea máxima? Y para que sea mínima? r x π r m 4x Llamemos r al radio del círculo y x al lado del cuadrado. La suma de los perímetros: π r + 4x m..() El área del círculo será A π r El área del cuadrado será A x La función que queremos optimizar es A A círculo + A cuadrado A + π r x... () Con el propósito de que A dependa sólo de una variable, por ejemplo r, despejaremos x en () y la sustituiremos en (). De (): π r x, así que ahora 4 Procedemos a resolverlo: da. dr π π π r π π. π r r 0; r - 4. r 8 + π A π r ( r) π r + π r + 4 4π + 8π r π r - 6 π π r + 4 π r + 0; 8r + π r 0; r (8 + π) ; 4 4. d A π π + dr 6.57 > 0, constante positiva Comportamiento Gráfico y Problemas de Optimización
5 5. A(r) tiene un mínimo absoluto en r, es decir, un círculo de radio 8 + π π r r m y un cuadrado de lado x 0.4 m producen el área mínima. 8 + π 4 6. A círculo π m ; A cuadrado + π 6 π 8 + π La función A(r) es cóncava hacia arriba en todo su dominio, tiene un mínimo absoluto, sin embargo en los valores extremos permitidos para r, A(r) tiene máximos relativos, el mayor de ellos, si lo hay, será el máximo relativo de la función en ese intervalo. Cuál es el menor valor que puede tomar r? r 0 El mayor valor que puede tomar r es r π, por qué? Porque π r m De manera que 0 r π Evaluamos A(r) en cada extremo del intervalo y tomamos el mayor, si lo hay. A(0) π (0 ) + 6 ( - π(0)) m A π + 6 π π π π m 4π Para este valor del radio, el lado del cuadrado es cero. El valor máximo de A(r) sucede cuando r cortar la varilla, sólo doblarla para formar el círculo. π, por lo tanto no hay que 4-4 Comportamiento Gráfico y Problemas de Optimización
6 Esta gráfica corresponde a la función con que hemos trabajado: Ejemplo 5 Problema del costo Un economista determinó que el costo de producir x artículos diarios, para cierta empresa, es 0 x C ( x) x 00 Cuántos artículos diarios deben producirse para que el costo de producción sea mínimo? A la derivada del costo se le llama costo marginal.. C (x) - 0 x x. + 0 x 00 x 0 x x 00 x 0. ; x 000; x 000 ; x x d C 4. 0 x dx 00 x C (0) > Comportamiento Gráfico y Problemas de Optimización
7 C(x) tiene un mínimo cuando x 0. C(0) artículos. La empresa debe producir 0.5 artículos diarios para minimizar el costo de producción. Ejercicio El estudiante resolverá los siguientes problemas de optimización.. Un granjero necesita cercar una zona junto al río. Si dispone de 000 m de malla ciclónica, qué dimensiones debe darle a la zona cercada para que su área sea máxima? El lado que queda junto al río no requiere malla.. Determina el radio y la altura del cilindro de volumen máximo que puede inscribirse en una esfera de 5 cm de radio. Calcula también el volumen máximo.. Una compañía de televisión por cable sabe que obtiene una ganancia de $5 por cada cliente, si tiene 000 clientes o menos en cada sección. Si hay más de 000 clientes, la ganancia disminuye un centavo por cada cliente que pasa de 000. Cuántos clientes por sección le producen la máxima ganancia? 4-4 Comportamiento Gráfico y Problemas de Optimización
UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS GUÍA N 13 CÁLCULO I
UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS GUÍA N CÁLCULO I Profesor: Carlos Ruz Leiva MÁXIMOS Y MÍNIMOS Criterio de la segunda derivada Supongamos que
Matemática Aplicada y Estadística - Grado en Farmacia - Curso 2011/ HOJA 1 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 1
Matemática Aplicada y Estadística - Grado en Farmacia - Curso 011/01 - HOJA 1 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 1 1 Una relación lineal es una epresión de la forma f() = a + b. Si llamamos a la
SECUELA SUGERIDA PARA RESOLVER PROBLEMAS DE EXTREMOS
(Apuntes en revisión para orientar el aprendizaje) SECUELA SUGERIDA PARA RESOLVER PROBLEMAS DE EXTREMOS - Leer cuidadosamente el enunciado para comprender la problemática presentada y ver qué se pretende
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E MAYO-2001, 13 H
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0700 2-MAYO-200, H () Dada la función definida por f() = 2, determinar: Intervalos de crecimiento y de decrecimiento; máimos y mínimos locales;
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA : FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
Cálculo Diferencial Enero 2015
Laboratorio # 1 Desigualdades I.- Determinar los valores de que satisfacen simultáneamente las dos ecuaciones dadas. y y y y II. - Determina los valores de que satisfagan al menos una de las condiciones.
APLICACIONES DE DERIVADAS: ANALISIS DE FUNCIONES 1. 1º PARTE: Función creciente y decreciente, puntos críticos, extremos relativos
Cálculo 1 _Comisión 1 Año 016 APLICACIONES DE DERIVADAS: ANALISIS DE FUNCIONES 1 Una de las aplicaciones de derivadas es el estudio del comportamiento de funciones Este estudio ya se había comenzado cuando
1. Optimización sobre intervalos intervalos cerrados
Universidad Autónoma Metropolitana (Iztapalapa) Cálculo Diferencial (CA53-14o) Tarea # 4 1. Optimización sobre intervalos intervalos cerrados Para cada uno de los siguientes dos problemas, el dominio de
Sea f una función con dominio I. Entonces f tiene un valor máximo absoluto en I en el punto c si f(c) f(x) para toda X I.
Guía No 5 Calculo Diferencial Grupo: 1 Unad Facultad de Ciencias Básicas Tecnología e Ingeniería APLICACIONES DE LA DERIVADA Valores máximos y mínimos de funciones Definición de valor máximo local (relativo)
S = x y = x(500 2x) = 500x 2x 2
.7. OPTIMIZACIÓN 09.7. Optimización Problema 4 Tenemos 500 metros de alambre para vallar un campo rectangular, uno de cuyos lados da a un río. Calcular la longitud que deben tener estos lados para que
Boletín I. Cálculo diferencial de funciones de una variable
CÁLCULO Boletín I. Cálculo diferencial de funciones de una variable 1. Demuestra que la ecuación x + sin x = Ejercicios básicos 1 x + 3 tiene al menos una raíz en [0, π]. 2. Justifica la existencia de
x 3 si 10 <x 6; x si x>6;
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E000 A Primer parcial + 1 +8 1 a Trace su gráfica b Determine su dominio, rango y raíces Sean si 10 < 6; f
Aplicaciones de la derivada 7
Aplicaciones de la derivada 7 ACTIVIDADES 1. Página 160 a) La pendiente de la recta tangente es 12. b) La pendiente de la recta tangente es 3. 2. Página 160 a) La pendiente de la recta tangente es. b)
GUIA DE EJERCICIOS Y PROBLEMAS Nº3 FUNCIONES CUADRATICAS
GUIA DE EJERCICIOS Y PROBLEMAS Nº FUNCIONES CUADRATICAS 1) Dadas las siguientes funciones: - Indica las coordenadas del vértice y ecuación del eje de simetría - Calcular las raíces y la ordenada al origen
Aplicaciones de las derivadas
11 Aplicaciones de las derivadas 1. Representación de funciones polinómicas Piensa y calcula Calcula mentalmente: a) lím ( 3 3) b) lím ( 3 3) +@ a) + @ b) @ @ Aplica la teoría Representa las siguientes
1) ( ) 2 ( 1) 2) ( ) ( 2 )( ) 3) ( ) 4 4) ( ) = 8 5) ( ) = 4 6) ( ) = 4. 6 x
MATEMÁTICA II (MECÁNICA) EXAMEN II I PARTE: APLICAR EL CRITERIO DE LA PRIMERA DERIVADA A LAS SIGUIENTES FUNCIONES: Determinar: a.) Intervalos donde la función Crece b.) Intervalos donde la función Decrece.
Cálculo Diferencial y Geometría Analítica Agosto 2016
Laboratorio # 1 Línea Recta I.- Determina la ecuación de la recta que satisface las siguientes condiciones y exprésala en la forma general. Pasa por el punto (1,5) y tiene pendiente 2 Pasa por los puntos
Cálculo Diferencial y Geometría Analítica Enero 2015
Laboratorio # 1 Línea Recta I.- Determina la ecuación de la recta que satisface las siguientes condiciones y exprésala en la forma general. Pasa por el punto (1,5) y tiene pendiente 2 Pasa por los puntos
Tema: Aplicaciones de derivadas. Sean x e y las dimensiones del rectángulo. Área del rectángulo: A = x y. 36 x. Luego, el área es A(x) =
JUNIO 0 GENERAL. Halle el rectángulo de mayor área inscrito en una circunferencia de radio. Sean e y las dimensiones del rectángulo. Área del rectángulo: A y El triángulo ABC es rectángulo, sus lados miden,
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E1100
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E1100 A) Primer parcial 1) Si se lanza verticalmente un objeto hacia arriba desde el nivel del suelo, con una velocidad inicial de 0 pies/s, entonces
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E0100, TRIMESTRE 01-I, 05/04/2001
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E0100, TRIMESTRE 01-I, 0/0/001 A) Primer parcial 1) Una compañía que fabrica escritorios los vende a $00 cada uno. Si se fabrican y venden escritorios
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0900
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0900 (1) La posición vertical de una pelota está dada por h(t) = 128 + 16t 16t 2 en donde t se mide en segundos y h(t) se mide en pies. Durante
s(t) = 5t 2 +15t + 135
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E000, 1-1-000 (A) Primer parcial (1) Se lanza una pelota hacia arriba a una velocidad de 15 m/seg desde el borde de un acantilado a 15 m arriba del suelo.
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
Opción A Ejercicio 1.- [2 5 puntos] Una ventana normanda consiste en un rectángulo coronado con un semicírculo. De entre todas las ventanas normandas de perímetro 10 m, halla las dimensiones del marco
Boletín II. Cálculo diferencial de funciones de una variable
CÁLCULO Boletín II. Cálculo diferencial de funciones de una variable Ejercicios básicos 1. Sea f la función dada por 5x 2. a) Utiliza la definición de derivada para demostrar que f (x) = 10x. b) Calcula
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 017 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción
Propiedades de las funciones derivables. Representación gráfica de funciones. Determinar los puntos de inflexión. (Junio 1997)
Matemáticas II. Curso 008/009 de funciones 1 1. Determinar las asíntotas de f () =. Estudiar la concavidad y conveidad. 1 + Determinar los puntos de infleión. (Junio 1997) 1 Por un lado, lim 1 = 0 y =
Ecuaciones Cuadráticas. Cuadrado
Ecuaciones Cuadráticas Cuadrado 01 J14 Se aumenta la longitud de cada lado de un cuadrado en 12 y se obtiene otro cuadrado con un área nueve veces el área del cuadrado inicial. Cuál es el área del cuadrado
Matemáticas 2 Agosto 2015
Laboratorio # 1 Línea recta I.-Determina la ecuación de la recta que satisface las siguientes condiciones y exprésala en la forma general. Pasa por el punto (1,5) y tiene pendiente 2 Pasa por y Pendiente
Boletín II. Cálculo diferencial de funciones de una variable
CÁLCULO Boletín II. Cálculo diferencial de funciones de una variable Ejercicios básicos 1. (NUEVO) Utiliza la definición de derivada para demostrar que f () = 10 para 5 2. ( ) sin() 2. Sea arctan. Calcula
1. En una reacción química de dos reactivos moleculares, la velocidad de dicha reacción viene dada por. R(x) = k(a x)(b x)
1. En una reacción química de dos reactivos moleculares, la velocidad de dicha reacción viene dada por R() = k(a )(b ) donde a, b son las concentraciones iniciales de los reactivos, k es una constante
Cálculo Diferencial Agosto 2018
Laboratorio # 1 Desigualdades I.- Encontrar valores de que satisfacen simultáneamente las dos condiciones. 1) [2 3] 9 1 y 2 + 8 + 6 + 3 < 10 2) 3 6 > 1 2 y 2 1 6 3) 1 1 3 y + 1 > 1 4 4) 3 < < 9 y + 5 10
Interpretación de la derivada en situaciones de cambio y variación
Grado 11 Matemáticas - Unidad 3 Conoce el cambio en un instante y describe la situación Tema Interpretación de la derivada en situaciones de cambio y variación relacionados (Pre clase) Objetivos Habilidad
Razón de Cambio Promedio:
NOTA: En este PDF encontrará los siguientes temas que debe estudiar para la clase: Aplicaciones de la Derivada a Funciones Económicas, Razón de Cambio Promedio, Razón de Cambio Instantánea, Razones Relacionadas,
Un i d a d 5. d i fe r e n C i a L es d e o r d e n s U pe r i o r. Objetivos. Al inalizar la unidad, el alumno:
Un i d a d 5 má x i m o s, mínimos y d i fe r e n C i a L es d e o r d e n s U pe r i o r Objetivos Al inalizar la unidad, el alumno: Identificará los puntos críticos, máximos y mínimos absolutos y relativos
Un segundo ohmímetro mide la misma resistencia y obtiene los siguientes resultados: R B1 = ( 98 ± 7 ) Ω R B2 = ( 100 ± 7 ) Ω R B3 = ( 103 ± 7 ) Ω
Relación de problemas: MEDIDAS Y ERRORES. 1) En la medida de 1 m se ha cometido un error de 1 mm, y en 300 Km, 300 m. Qué error relativo es mayor?. ) Como medida de un radio de 7 dm hemos obtenido 70.7
t si t 2. x 2 + xy + y 3 = 1 8.
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E000 () Una pelota se deja caer desde un edificio. La posición de la pelota en cualquier instante t (medido en segundos) está dada por s(t).5
Cálculo diferencial de funciones de una variable: problemas propuestos
Cálculo diferencial de funciones de una variable: problemas propuestos BENITO J. GONZÁLEZ RODRÍGUEZ ([email protected]) DOMINGO HERNÁNDEZ ABREU ([email protected]) MATEO M. JIMÉNEZ PAIZ ([email protected]) M. ISABEL
APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente
APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente
, hallar su dominio, los puntos de corte con los ejes y la pendiente de la recta x 2-4 tangente a la gráfica de la función en x = 1.
. [04] [ET-A] El beneficio semanal (en miles de euros) que obtiene una fábrica por la producción de aceite viene dado por la función B(x) = -x +6x-8, donde x representa los hectolitros de aceite producidos
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 03 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS AÑO: 017 PERÍODO: PRIMER TÉRMINO MATERIA: Cálculo de una variable PROFESOR: EVALUACIÓN:
12. Una caja con base cuadrada y parte superior abierta debe tener un. 14. Un recipiente rectangular de almacenaje con la parte superior
328 CAPÍTULO 4 APLICACIONES DE LA DERIVACIÓN 4.7 EJERCICIOS 1. Considere el problema siguiente. Encuentre dos números cuya suma es 23 y cuyo producto es un máximo. (a) Formule una tabla de valores, como
APLICACIONES DE LA DERIVADA
APLICACIONES DE LA DERIVADA Ejercicio -Sea f: R R la función definida por f ( ) = + a + b + a) [ 5 puntos] Determina a, b R sabiendo que la gráfica de f pasa por el punto (, ) y tiene un punto de infleión
(B) Segundo parcial (1) Dibuje una gráfica de una función f que satisfaga todas las condiciones siguientes:
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E1600 (A) Primer parcial (1) Si se lanza una pelota verticalmente hacia arriba con una velocidad de 5 m/seg, entonces su altura después de t segundos
c) Demuestra que la función f(x) anterior y g(x) = 2x 1 se cortan al menos en un punto. (1 punto) 2
Junio 010 1A. a) Enuncia el teorema de Bolzano. (0,5 puntos) 1 b) Se puede aplicar dicho teorema a la función f ( x) 1 x en algún intervalo? (1 punto) c) Demuestra que la función f(x) anterior y g(x) =
Universidad Icesi Departamento de Matemáticas y Estadística
Universidad Icesi Departamento de Matemáticas y Estadística Solución del primer examen parcial del curso Cálculo de una variable Grupo: Once Período: Inicial del año 000 Prof: Rubén D. Nieto C. PUNTO 1.
Trabajo Práctico Nº 6: Aplicaciones de Derivadas
[UNRN Sede Andina Análisis Matemático I] [0] ANÁLISIS MATEMÁTICO I Año: 0 º Cuatrimestre Trabajo Práctico Nº 6: Aplicaciones de Derivadas Equipo Docente: Ma. Laura Halladjian P. Mariano Nowakoski Gabriela
MAXIMOS Y MINIMOS RELATIVOS
MAXIMOS Y MINIMOS RELATIVOS Con cierta frecuencia nos encontramos con la necesidad de buscar la mejor forma de hacer algo. En muchas ocasiones a través de los poderosos mecanismos de cálculo diferencial
Integration of Informatics and Quantitative Concepts in Biology at UPR
3 La función cuadrática Objetivos: Al finalizar el estudiante, 1. Definirá el concepto función cuadrática. 2. Dada una función cuadrática, determinará: a. El vértice. b. La concavidad. c. El eje de simetría.
Teóricas de Análisis Matemático (28) Práctica 7 Optimización
Teóricas de Análisis Matemático (8) Práctica 7 Optimización Práctica 7 Parte Optimización Problemas de optimización Ejemplo Descomponer el número 6 en dos sumandos positivos de modo que el producto de
PAIEP. Valores máximos y mínimos de una función
Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP Universidad de Santiago de Chile Valores máximos y mínimos de una función Diremos que la función f : D R R, alcanza un máximo absoluto en el punto
Alonso Fernández Galián
Alonso Fernández Galián TEMA 3: ESTUDIO Y REPRESENTACIÓN DE FUNCIONES Para representar gráficamente una función deben estudiarse los siguientes aspectos: i) Dominio. ii) Puntos de corte con los ejes de
(3) Calcule los valores de a, b que hacen de la siguiente función una función continua a si x< 1; 2x. x 2 +1 si 1 <x<2.
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E1500 (1) Si se lanza una pelota verticalmente hacia arriba con una velocidad de 5 m/seg, entonces su altura después de t segundos es: s(t) = 5t +5t (a)
EJERCICIOS PAU MATEMÁTICAS II ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com
FUNCIONES I: LÍMITES, CONTINUIDAD Y DERIVABILIDAD 1- Considere la función: 3 2 a) Determine las asíntotas, horizontales, verticales y oblicuas, que tenga la función f(x). b) Determine los intervalos de
CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0600 TRIMESTRE 00-P. 8 x 2 + y 2 + xy3 x 4 =1
CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0600 TRIMESTRE 00-P (1) Obtener la ecuación de la tangente a la curva en el punto (2, 2). x 2 + y 2 + xy3 x 4 =1 (2) Se requiere construir un
MATEMÁTICAS BÁSICAS. Universidad Nacional de Colombia Sede Bogotá. 24 de julio de Departamento de Matemáticas
MATEMÁTICAS BÁSICAS Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas 24 de julio de 2012 Parte I Ecuaciones lineales ECUACIONES Una ecuación es una igualdad entre dos expresiones
ANÁLISIS MATEMÁTICO I TEMA V : INTEGRALES Hoja 1. A) Calcular las siguientes integrales definidas aplicando la Regla de Barrow: 4x dx 3) I= π 0
ANÁLISIS MATEMÁTICO I TEMA V : INTEGRALES Hoja A) Calcular las siguientes integrales definidas aplicando la Regla de Barrow: ) I= ( + ) ) I= / 4 π 0 cos 4) I= e ( + ) 6) I= 4 0 ( y) / dy B) Hallar el valor
CALCULO 11-M. Primera Parte. Duración 1h 40m. 2y =2x = x 4 2x f 0 (x) =4x 3 2=0. x =2 1/3.
CALCULO -M Primera Parte Duración h 4m Ejercicio ( puntos) Encontrar el punto de la curva más cercano al punto P (, ). y x + El cuadrado de la distancia del punto P a un punto genérico X(x, y) de la curva
MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 15
Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia 1 / 15 Modelando con ecuaciones Guías para resolver problemas verbales 1 Identi car la(s) variable(s) 2 Transformar la parte verbal a símbolos matemáticos
CÁLCULO DIFERENCIAL E INTEGRAL I GLOBAL E1300
CÁLCULO DIFERENCIAL E INTEGRAL I GLOBAL E1300 (1) Dada la función definida por f(x) = x 1 x, Determinar: dominio, raíces y paridad; intervalos de continuidad y tipo de discontinuidades; asíntotas verticales
Aplicaciones de la derivada
Aplicaciones de la derivada. Encontrar el punto sobre la grá ca de f (x) + x donde la recta tangente tiene la pendiente máxima y el punto donde la recta tangente tiene la pendiente mínima. Solución La
x 2 a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1.
. [0] [SEP-B] Sea la función f definida por f() = e- para. - a) Estudia las asíntotas de la gráfica de f. b) Halla los etremos relativos (abscisas donde se obtienen y valores que se alcanzan) y los intervalos
PAU: Aplicaciones de la derivada MATEMÁTICAS II 1. 2cos. x 0 x 0
PAU: Aplicaciones de la derivada MATEMÁTICAS II JULIO 0 ESPECÍFICA. Calcule a para que las siguientes funciones: sen a cos f( ) g() tengan el mismo límite en el punto 0. Calculamos cada límite: sen a 0
Álgebra de Funciones
Funciones polinómicas Álgebra de Funciones Guía 5: Función cuadrática y racional. Profesores: Ximena Cánovas & César Fernández Un polinomio de grado n es una función f: R R tal que : n n1 n 1 f ( x) an
RELACIÓN EJERCICIOS ANÁLISIS SELECTIVIDAD MATEMÁTICAS II
1.- Sea f : R R la función definida como f() = e X.( ). (a) [1 punto] Calcula la asíntotas de f. (b) [1 punto] Halla los etremos relativos (abscisas donde se obtienen y valores que se alcanzan) y los intervalos
APLICACIONES DE LA DERIVADA
APLICACIONES DE LA DERIVADA Crecimiento y decrecimiento. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente en dicho punto: Una función f() es creciente en un punto
ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS
ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS Ejercicio 1 De la función se sabe que tiene un máximo en, y que su gráfica corta al eje OX en el punto de abscisa y tiene un punto de inflexión en el punto
Aplicaciones de la derivada
0.1 Problemas prácticos de máimos mínimos 1 Aplicaciones de la derivada En esta sección vamos a dedicarnos a calcular los máimos mínimos de funciones con diferentes propósitos. En muchas situaciones de
MATEMÁTICA - 6 A C y D - Prof. Sandra M. Corti
TEMA: Derivada La derivada de una función es una medida de la rapidez con la que cambia el valor de dicha función matemática, según cambie el valor de su variable independiente Sea f(x) una función continua
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL. 1. (5 puntos) Bosquejar la región en el primer cuadrante que está
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS RÚBRICA DE LA SEGUNDA EVALUACIÓN DE CÁLCULO DE UNA VARIABLE. (5 puntos) Bosquejar la región
( x) ( ) = D) k( x) ( ) = es una función: 3 x. = + + es una función: h x e + = C) ( ) g x A) B) Sesión 2
Sesión Unidad I Clasificación dibujo de gráfica de funciones. D. Clasificación de funciones. h ( ) 0.- La función es una función: Creciente Trascendente Irracional Constante Logarítmicas.- Una función
ANÁLISIS (Selectividad)
ANÁLISIS (Selectividad) 1 Sea f : R R la función definida por f() ln ( +1). (a) Determina los intervalos de crecimiento y decrecimiento y los etremos relativos de la función f (puntos donde se alcanzan
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E2200 TRIMESTRE 02-O FECHA: DICIEMBRE 18 DE 2002 HORARIO: 13:00-15:00 H
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E00 TRIMESTRE 0-O FECHA: DICIEMBRE 8 DE 00 HORARIO: :00-5:00 H (A) Primer parcial () Si se lanza una pelota hacia arriba desde la azotea de un edificio
EJERCICIOS Y PROBLEMAS RESUELTOS
Ecuaciones de Segundo Grado -- página 1 EJERCICIOS Y PROBLEMAS RESUELTOS Ejercicio 1: Indica si son ecuaciones de segundo grado las siguientes ecuaciones: a) 5 + 8 + b) + + ( )( + ) c) + 1 a) El primer
Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 14 - Todos resueltos
página 1/11 Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 14 - Todos resueltos Hoja 14. Problema 1 1. Sea la circunferencia centrada en el origen y radio 4 unidades,
S O L U C I Ó N y R Ú B R I C A
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS AÑO 08 PERÍODO PRIMER TÉRMINO MATERIA Cálculo de una variable PROFESORES EVALUACIÓN SEGUNDA
Ejercicios para el Examen departamental
Departamento de Física Y Matemáticas Ejercicios para el Examen departamental 1ª Parte M. en I.C. J. Cristóbal Cárdenas O. 15/08/2011 Ejercicios para el examen departamental de Cálculo 1 primera parte A
Cálculo Diferencial Agosto 2015
Laboratorio # 1 Desigualdades I.- Determinar los valores de que satisfacen simultáneamente las dos ecuaciones dadas. 1) 2 3 x 3 < 4 6 y x 1 > 1 3 2) 5x 4 > 1 4 y x + 1 2 1 2 3) 7x 7 1 7 y 4x + 4 > 1 4
ANALISIS MATEMATICO I (2012)
ANALISIS MATEMATICO I (0) TRABAJO PRÁCTICO Funciones cuadráticas Ejercicio. Hacer una representación gráfica aproimada de las siguientes funciones cuadráticas:. f() =. f() = + 4 3. f() = +, Ejercicio.
derivable en x = 0. b) Para los valores encontrados, calcula la ecuación de la recta tangente a la gráfica de f(x) en el punto de abscisa x = 0.
. [04] [EXT-A] a) Calcula los intervalos de concavidad y conveidad de la función f() = - +. Estudia si tiene puntos de infleión. b) En qué puntos de la gráfica de f() la recta tengente es paralela a la
2. [2014] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima.
cos() - e + a. [04] [ET-A] Sabiendo que lim 0 sen() es finito, calcula a y el valor del límte.. [04] [ET-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima..
MATEMÁTICAS 1º BAC Aplicaciones de las derivadas
. Queremos construir una caja abierta, de base cuadrada y volumen 56 litros. Halla las dimenones para que la superficie, y por tanto el coste, sea mínimo.. Entre todos los rectángulos de área 6 halla el
Unidad 15 Integrales definidas. Aplicaciones
Unidad 15 Integrales definidas. Aplicaciones 3 SOLUCIONES 1. La suma superior es: La suma inferior es:. La suma superior es: s ( P) = ( 1) 3 + (3 ) 10 = 3 + 10 = 13 La suma inferior es: s ( P) = ( 1) 1+
Interpretación de la derivada en situaciones de cambio y variación.
Grado 11 Matematicas - Unidad 3 Conoce el cambio en un instante y describe la situación Tema Interpretación de la derivada en situaciones de cambio y variación. Nombre: Curso: Muchísimos problemas, no
IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna
IES Fco Ayala de Granada Sobrantes de 011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 4 del 011 [ 5 puntos] Queremos hacer junto a la carretera un cercado rectangular
1. [2014] [EXT-A] En una localidad la concentración de polen de olivo, medida en granos de polen/m 3 de aire, se puede ajustar a la
1. [2014] [EXT-A] En una localidad la concentración de polen de olivo, medida en granos de polen/m 3 de aire, se puede ajustar a la función f(t) = t3 3-22t2 +448t-2600, siendo t el tiempo medido en semanas,
