Cinemática de las ondas electromagnéticas

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Cinemática de las ondas electromagnéticas"

Transcripción

1 Cinemática de las ondas electromagnéticas Ondas planas, etc Felipe Valencia Hernandez Departamento de física, Universidad Nacional de Colombia Octubre 2014 F. Valencia 1/30 1 / 30

2 Definición de los campos(otra vez) Cualquier partícula cargada que se mueve en el espacio siente una fuerza electromagnética dada por la ley de Lorentz: F = q E + q v B E es el campo eléctrico y B es el campo magnético. q E q E B q v x B v F = q E + q v x B F. Valencia 2/30 2 / 30

3 Leyes de Maxwell Gauss: E = ρ ɛ o Ausencia de monopolos magnéticos: Ley de Ampere-Maxwell: B = 0 B = µ o J + µo ɛ o E t Ley de Faraday: E = B t F. Valencia 3/30 3 / 30

4 Ecuación de ondas en el vacío En el vacio, ρ y J son nulos y tenemos: E = 0 B = 0 E = B t B = µ o ɛ o E t Tomando cualquiera de las ecuaciones para los rotacionales, aplicando nuevamente el rotacional y usando que ( F ) = 2 F + ( F ), obtenemos las ecuaciones de onda: 2 B = µo ɛ o 2 B t 2 2 E = µo ɛ o 2 E t 2 F. Valencia 4/30 4 / 30

5 Ecuación de onda en el vacío Las ecuaciones anteriores tienen caracter vectorial, es decir, cada componente obedece una ecuación análoga. Vamos a escribirlas todas una sola vez para que no se nos olvide: 2 B x x B x y B x z 2 = µ oɛ o 2 B x t 2 2 B y x 2 2 B z x 2 2 E x x 2 2 E y x 2 2 E z x B y y B z y E x y E y y E z y B y z B z z E x z E y z E z z 2 = µ oɛ o 2 B y t 2 = µoɛo 2 B z t 2 = µ oɛ o 2 E x t 2 = µoɛo 2 E y t 2 = µoɛo 2 E z t 2 F. Valencia 5/30 5 / 30

6 Ecuación de ondas en el vacío... Para no tener que escribir tanto, escribiremos, cuando haga falta, simplemente 2 Ψ = 1 c 2 2 Ψ t 2 donde Ψ es cualquiera de las componentes de los campos. Ojo: aunque cada componente tiene una ecuación separada de las demás, las distintas componentes deben estar relacionadas por las condiciones dadas en las ecuaciones de Maxwell. B = E = 0 B = 1 c 2 E t E = B t F. Valencia 6/30 6 / 30

7 Ondas viajeras Para la ecuación unidimensional 2 y(x, t) x 2 = 1 2 y(x, t) v 2 t 2 las soluciones se podían escribir como superposiciones de ondas viajeras: y(x, t) = y 1 (x + vt) + y 2 (x vt) Esto también es cierto para la ecuación en tres dimensiones. Uno estaría tentado a escribir una onda viajera en dirección arbitraria como: Ψ( r, t) = Ψ( r ct) Esta forma, sin embargo, no resulta adecuada, por qué? F. Valencia 7/30 7 / 30

8 Ondas viajeras... Ok: nuestra demostración de que las ondas viajeras son soluciones de la ecuación en 3D se basa en el uso de un único argumento escalar (no vectorial) u = n r ct que podamos factorizar en todas las derivadas que aparecen. Las soluciones del tipo: Ψ( r, t) = Ψ(ˆn r ct) = Ψ(ˆn ( r ct)) si tienen la forma adecuada, y representan ondas que viajan en la dirección ˆn.Simplemente recuerde que el producto ˆn r es la componente del vector r en la dirección ˆn.Así que en el caso unidimensional de hecho ya teníamos: Ψ(x, t) = Ψ(x ± vt) = Ψ(ˆx r ± vt) F. Valencia 8/30 8 / 30

9 Ondas viajeras... Las leyes de Maxwell implican, como vimos la clase anterior, que para cualquier onda viajera los campos eléctrico y magnético deben ser perpendiculares a la dirección de propagación, así que las ondas electromagnéticas son ondas transversales y, además, si: E = E( n r ct) B = 1 c n E Los campos son, entonces, perpendiculares entre sí. F. Valencia 9/30 9 / 30

10 Ondas esféricas Podemos mostrar que la ecuación también admite soluciones que sólo dependen de la distancia al origen de coordenadas, de la forma: Ψ( r, t) = 1 r F (r ct) + 1 G(r + ct) r En efecto, en coordenadas esféricas, y para una función que no depende de las coordenadas angulares, tenemos 2 = 1 r f(r) (r2 r r ) 2 ( 1 r F (r ct)) = 1 2 F (u) r u 2 (con u = r ct, como siempre) y 2 t 2 (1 c2 2 F (u) F (u)) = r r u 2 Problemita: comprobar en el cuaderno cómo se propagan estas ondas? pulso tren cómo deben ser las direcciones de B y E? F. Valencia 10/30 10 / 30

11 Ondas monocromáticas Ahora, busquemos los modos normales, es decir soluciones en que los campos varíen de forma armónica y en fase: Ψ( r, t) = F ( r)e iωt hemos usado la forma exponencial compleja sólo para simplificar el álgebra, pero recuerde que los campos físicos son números reales, así que debemos sumar siempre los complejos conjugados. En la ecuación de onda, tenemos entonces: 2 F ( r)e iωt = 1 c 2 2 t 2 F ( r)e iωt = ω2 c 2 F ( r)e iωt 2 F ( r) = ω2 c 2 F ( r) F. Valencia 11/30 11 / 30

12 Modos normales La forma de los modos normales dependerá, como en todos nuestros casos anteriores, de las condiciones de frontera. Se trata de resolver la ecuación diferencial parcial F ( r) + F ( r) + F ( r) = ω2 x2 y2 z2 c 2 F ( r) con ciertas condiciones de frontera.el método estandar es hacer una separación de las variables, es decir, asumir que: y se tendría: F ( r) = X(x)Y (y)z(z) X (x)y (y)z(z)+x(x)y (y)z(z)+x(x)y (y)z (z) = ω2 X(x)Y (y)z(z) c2 F. Valencia 12/30 12 / 30

13 Modos normales Como la función no es nula por suposicion, podemos dividir por F y nos queda: X (x) X(x) + Y (y) Y (y) + Z (z) Z(z) = ω2 c 2 pero cada parte del lado izquierdo depende de una variable distinta, así que debemos tener: X (x) X(x) = c x Y (y) Y (y) = c y Z (z) Z(z) = c z con c x + c y + c z = ω2 c 2 F. Valencia 13/30 13 / 30

14 Ondas en una caja Por ejemplo, si tuvieramos una caja cúbica metálica ideal, de lado L, los campos en el exterior se anulan y las condiciones de frontera serían que los campos se hagan cero en las paredes.en ese caso los modos normales tendrían la forma: con F lmn ( r) = sin( lπx L ) sin(mπy L ) sin(nπz L ) ω 2 c 2 = (lπ L )2 + ( mπ L )2 + ( nπ L )2 Por favor compruebe en su cuaderno que esas soluciones son correctas. Estas serían ondas estacionarias, como en el caso de la cuerda con extremos fijos, modos F. Valencia 14/30 14 / 30

15 Ondas planas monocromáticas Ok, no nos interesa resolver otros problemas con condiciones de frontera por ahora!pensemos, en cambio, en cómo debe verse una onda en el espacio libre que es al mismo tiempo una onda viajera en dirección ˆn y monocromática: Ψ( r, t) = Ψ(ˆn r ct) = F ( r)e iωt Ojo: la condición de onda viajera nos dice que en la dependencia de la función con r y t, el primero sólo puede aparecer en la forma de r n = ˆn r, y que r n y t deben aparecer juntos como argumentos de una misma función. F. Valencia 15/30 15 / 30

16 Ondas planas monocromáticas... Entonces, para que los dos argumentos tengan la misma forma, debemos tener: es decir: F ( r) = e iω c ˆn r F ( r)e iωt = e iω c ˆn r e iωt = e i ω c (ˆn r ct) Ψ( r, t) = e i ω c (ˆn r ct) = e i( ω c ˆn r ωt) = e i( k r ωt) donde hemos definido el vector de onda k como un vector en la dirección de propagación y con magnitud k = ω c k = ω c ˆn Preguntica Qué relación tiene este vector de onda con el número de onda que habíamos definido para las ondas en 1d? ondaplana F. Valencia 16/30 16 / 30

17 Ondas planas monocromáticas... Por supuesto, este tipo de onda corresponde a las ondas armónicas que habíamos ya introducido en el caso unidimensional,y que describimos con funciones del estilo y(x, t) = sin(kx ωt), y y(x, t) = cos(kx ωt), con k = ω/v.llamamos fase de la onda al argumento las funciones armónicas que aparecen, es decir a: k r ωt es claro que para este tipo de ondas, cuando tomamos un tiempo fijo t, todos los puntos que tienen el mismo producto k r = cte, tienen la misma fase. Cuales son los puntos en el espacio que cumplen la ecuación k r = cte? F. Valencia 17/30 17 / 30

18 Ondas planas monocromáticas... k k r = cte r Por eso estas ondas se llaman planas F. Valencia 18/30 18 / 30

19 Ondas planas... Recordemos que las ondas planas son un tipo particular de ondas viajeras, que se mueven en la dirección del vector de onda k, entonces, para satisfacer las ecuaciones de Maxwell se necesita también que: E k y B = 1 c ˆk E = 1 ck k E = k ω E Problemita: verifique que las ondas estacionarias que escribimos para la caja metálica se pueden escribir como superposición de ondas planas que viajan en direcciones opuestas. Sugerencia: simplemente recuerde lo que hicimos para las ondas unidimensionales. F. Valencia 19/30 19 / 30

20 Ondas esféricas monocromáticas Y si hacemos lo mismo con las ondas esféricas? Ψ( r, t) = 1 r F (r ct) = 1 r G(r)e iωt usando la misma táctica, tendríamos simplemente: G(r) = e i ω c r Ψ( r, t) = 1 r ei(kr ωt) Nuevamente llamaríamos fase al argumento de las funciones armónicas, que sería kr ωt Cuáles son los puntos en el espacio que tienen la misma fase en un tiempo fijo? F. Valencia 20/30 20 / 30

21 Frentes de onda Para las ondas monocromáticas, llamamos frentes de onda a las superficies formadas por puntos de fase constante. Por supuesto, para las ondas planas estos frentes son planos perpendiculares a la propagación, y para las ondas esféricas serán esferas concéntricas. Si en un tiempo t o consideramos un frente de onda con una fase φ o k r ωto = φ o dónde estará ese frente en un tiempo posterior t? Necesitamos encontrar los puntos que cumplen: k r ωt o ω t = φ o = k r ωt o F. Valencia 21/30 21 / 30

22 Velocidad de fase Tenemos entonces: k ( r r) = ω t Pero, la distancia entre los dos planos paralelos es, justamente: d = ˆk ( r r) = 1 k k ( r r) la velocidad con la que se desplazan los frentes de onda es: v ph = d t = ω k Para la propagación en el vacío, esta velocidad de fase es siempre igual a c, pero en un medio material la velocidad puede ser distinta para cada frecuencia. F. Valencia 22/30 22 / 30

23 Longitud de onda Entonces, la fase de una onda monocromática es el argumento de las funciones armónicas que aparecen en la función que la describe.la forma de los frentes de onda (superficies de fase constante) le da el nombre al tipo de onda (plana, esférica, etc). Para una onda plana la fase esta dada por la frecuencia y el vector de onda: Ψ = A sin( k r ωt + φ) ω k = c Fijando el tiempo, la dependencia con la coordenada espacial r n = ˆk r es armónica y tiene una periodicidad: λ = 2Π k = 2Πc ω = ct donde T = 2Π/ω es el período en el tiempo. Esta cantidad se llama longitud de onda y para la onda plana es también igual a la distancia que recorre un frente de onda en un período temporal. F. Valencia 23/30 23 / 30

24 Superposición de ondas planas Tal como en el caso unidimensional, cualquier onda debe poder escribirse como una superposición de ondas viajeras monocromáticas (ondas planas): E( r, t) = k E k e i( k r ωt) donde, para satisfacer las ecuaciones de Maxwell, E k k y B = k B k e i( k r ωt) con B k = k ω E k F. Valencia 24/30 24 / 30

25 Superposiciones de ondas planas... Las únicas diferencias importantes entre este caso y nuestra discusión para ondas en una dimensión, son: Que las componentes de los campos deben estar relacionadas entre sí por las ecuaciones de Maxwell. Que las superposiciones pueden incluir ondas que viajan en diferentes direcciones en el espacio. F. Valencia 25/30 25 / 30

26 Interferencia Tal como en el caso unidimensional, la superposición de ondas da origen a fenómenos de interferencia. Consideremos el caso en que superponemos dos ondas que se propagan en la misma dirección, con la misma frecuencia, pero con una diferencia de fase (proveniente, por ejemplo de una diferencia de caminos recorridos). Para concretar un poco, consideremos una configuración similar a la del experimento de Michelson y Morley: Espejo L1 Espejo semi transparente Fuente L2 Espejo Detector F. Valencia 26/30 26 / 30

27 Interferencia... Los haces de luz viajan por caminos diferentes, y luego se superponen y se detectan. La diferencia entre las distancias recorridas en este esquema sencillo es simplemente: l = 2 (L 1 L 2 ) Que, suponiendo ondas planas, debe corresponder a una diferencia de fases: ɛ = k( l) = 2Π l λ Las componentes de los campos resultantes que se miden en el detector, serán entonces, de la forma Ψ = A(sin( k r ωt) + sin( k r ωt + ɛ)) F. Valencia 27/30 27 / 30

28 Interferencia... Pero ya mostramos (hace varias semanas) que: y(x, t) = A(sin(k n x ω n t)+sin(k n x ω n t+ɛ)) = 2A cos( ɛ 2 ) sin(k nx ω n t+ ɛ 2 ) Pregunta: cómo será la onda resultante en nuestro ejemplo en función de la relación entre la diferencia de caminos y la longitud de onda? Haga un diagrama en su cuaderno F. Valencia 28/30 28 / 30

29 Interferencia, dos rendijas Problema para resolver/consultar en casa: consideremos dos rendijas por las que pasa luz, que podemos considerar como fuentes puntuales de ondas esféricas. Cómo son las intensidades de los campos medidas en una pantalla muy lejos de las fuentes? s D>>s cubeta F. Valencia 29/30 29 / 30

30 Final, final, final Es todo por hoy, gracias por su atención. F. Valencia 30/30 30 / 30

ONDAS MECANICAS. Docente Turno 14: Lic. Alicia Corsini

ONDAS MECANICAS. Docente Turno 14: Lic. Alicia Corsini ONDAS MECANICAS Docente Turno 4: MOVIMIENTO ONDULATORIO: CONSTRUCCION DEL MODELO: MATERIA DEFORMABLE O ELASTICA POR DONDE SE PROPAGAN LAS ONDAS MECANICAS Las ondas de agua las ondas sonoras son ejemplos

Más detalles

APENDICE C Ondas Planas. La propagación de una onda escalar esta descrita por la siguiente ecuación diferencial parcial: u 2 2 u

APENDICE C Ondas Planas. La propagación de una onda escalar esta descrita por la siguiente ecuación diferencial parcial: u 2 2 u APENDICE C Ondas Planas La Ecuación de Onda Una onda pude ser conceptualizada como una perturbación de un medio continuo. La onda se propaga con una forma definida y de este modo es portadora de información

Más detalles

Bárbara Cánovas Conesa. Concepto de Onda

Bárbara Cánovas Conesa. Concepto de Onda Bárbara Cánovas Conesa 637 720 113 www.clasesalacarta.com 1 Movimientos Armónicos. El Oscilador Armónico Concepto de Onda Una onda es una forma de transmisión de la energía. Es la propagación de una perturbación

Más detalles

Si una onda senoidal se propaga por una cuerda, si tomamos una foto de la cuerda en un instante, la onda tendrá la forma

Si una onda senoidal se propaga por una cuerda, si tomamos una foto de la cuerda en un instante, la onda tendrá la forma Onda periódica Si una onda senoidal se propaga por una cuerda, si tomamos una foto de la cuerda en un instante, la onda tendrá la forma longitud de onda si miramos el movimiento del medio en algún punto

Más detalles

ELECTRODINÁMICA CLÁSICA FIM 8650 (4)

ELECTRODINÁMICA CLÁSICA FIM 8650 (4) ELECTRODINÁMICA CLÁSICA FIM 8650 (4) Ricardo Ramírez Facultad de Física, Pontificia Universidad Católica, Chile 2do. Semestre 2014 Las cuatro ecuaciones de Maxwell en el vacío son: D = ρ H = J + D B =

Más detalles

En el caso de ondas electromagnéticas (luz) el campo eléctrico E y el campo magnético B varían de forma oscilatoria con el tiempo y la distancia:

En el caso de ondas electromagnéticas (luz) el campo eléctrico E y el campo magnético B varían de forma oscilatoria con el tiempo y la distancia: y : posición vertical www.clasesalacarta.com 1 Concepto de Onda ema 8.- Movimiento Ondulatorio. Ondas Mecánicas Onda es una forma de transmisión de la energía. Es la propagación de una perturbación en

Más detalles

Física II clase 5 (25/03) Definición

Física II clase 5 (25/03) Definición Física II clase 5 (25/03) Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carrera: Ingeniería Civil Informática Física II MAC I-2011 1 Definición Una onda

Más detalles

ONDAS. Los fenómenos ondulatorios aparecen en todas las ramas de la Física.

ONDAS. Los fenómenos ondulatorios aparecen en todas las ramas de la Física. ONDAS Los fenómenos ondulatorios aparecen en todas las ramas de la Física. El movimiento ondulatorio se origina cuando una perturbación se propaga en el espacio. No hay transporte de materia pero si de

Más detalles

TEORIA ELECTROMAGNETICA CLASE 10 SOLUCIONES DE LA ECUACION DE ONDA

TEORIA ELECTROMAGNETICA CLASE 10 SOLUCIONES DE LA ECUACION DE ONDA TEORIA ELECTROMAGNETICA CLASE 10 SOLUCIONES DE LA ECUACION DE ONDA Onda Electromagnética ESTA FORMADA POR UN PAR DE CAMPOS (UNO ELECTRICO Y OTRO MAGNETICO) QUE VARIAN CON LA POSICION Y EL TIEMPO ESA ONDA

Más detalles

Polarización de la luz

Polarización de la luz Polarización de la luz Descripción matemática y métodos experimentales Felipe Valencia Hernandez fvalenciah@unal.edu.co Departamento de física, Universidad Nacional de Colombia http://sites.google.com/a/unal.edu.co/curso1000020

Más detalles

1 Movimiento Ondulatorio

1 Movimiento Ondulatorio 1 Movimiento Ondulatorio Cuando se arroja una piedra al agua se produce una onda. En ella las partes del medio se desplazan sólo distancias cortas. Sin embargo a través de ellas la onda puede transportar

Más detalles

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna Física III (sección 1) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil Civil, Ingeniería

Más detalles

Ecuaciones de Maxwell y Ondas Electromagnéticas

Ecuaciones de Maxwell y Ondas Electromagnéticas Capítulo 7: Ecuaciones de Maxwell y Ondas Electromagnéticas Hasta ahora: Ley de Gauss Ley de Faraday-Henry Ley de Gauss para el magnetismo Ley de Ampere Veremos que la Ley de Ampere presenta problemas

Más detalles

Representación Compleja de una Onda. Onda plana.

Representación Compleja de una Onda. Onda plana. Representación Compleja de una Onda. Onda plana. Onda : Perturbación en un medio que se propaga de un lugar a otro, transportando energía y cantidad de movimiento pero no transporta materia. Ondas mecánicas

Más detalles

1 Interferencia. y(x, t) = A s e n(k x ωt)+asen(k x ωt + φ) Usando: )s e n(a. se tiene: y(x, t) = 2Acos( φ 2 )s e n(k x ωt + φ 2 )

1 Interferencia. y(x, t) = A s e n(k x ωt)+asen(k x ωt + φ) Usando: )s e n(a. se tiene: y(x, t) = 2Acos( φ 2 )s e n(k x ωt + φ 2 ) 1 Interferencia Como adelantamos al discutir la diferencia entre partí culas y ondas, el principio de superposición da a lugar al fenómeno de interferencia. Sean dos ondas idénticas que difieren en la

Más detalles

Universidad Rey Juan Carlos. Prueba de acceso para mayores de 25 años. Física obligatoria. Año 2010. Opción A. Ejercicio 1. a) Defina el vector velocidad y el vector aceleración de un movimiento y escribe

Más detalles

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas.

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. 1.- Determine la velocidad con que se propagación de una onda a través de una cuerda sometida ala tensión F, como muestra la figura. Para ello considere

Más detalles

1 Movimiento Ondulatorio

1 Movimiento Ondulatorio Movimiento Ondulatorio 1 1 Movimiento Ondulatorio Cuando se arroja una piedra al agua se produce una onda. En ella las partes del medio se desplazan sólo distancias cortas. Sin embargo a través de ellas

Más detalles

Ingeniería Electrónica ELECTROMAGNETISMO Cátedra Ramos-Lavia Versión

Ingeniería Electrónica ELECTROMAGNETISMO Cátedra Ramos-Lavia Versión Versión 2013 1 TRABAJO PRÁCTICO N 0: Modelo Electromagnético 0.1 - Cuáles son las cuatro unidades SI fundamentales del electromagnetismo? 0.2 - Cuáles son las cuatro unidades de campo fundamentales del

Más detalles

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO 1. Una onda transversal se propaga en una cuerda según la ecuación (unidades en el S.I.) Calcular la velocidad de propagación de la onda y el estado de vibración

Más detalles

electromagnética. tica. Ondas electromagnéticas ticas Física Avanzada Universidad de Vigo. Departamento de Física Aplicada

electromagnética. tica. Ondas electromagnéticas ticas Física Avanzada Universidad de Vigo. Departamento de Física Aplicada 2. Leyes básicas b de la teoría electromagnética. tica. Ondas electromagnéticas ticas 1 2. Leyes básicas de la teoría electromagnética. Ondas electromagnéticas. 2 Las ecuaciones de Maxwell en el espacio

Más detalles

Interferencia y Difracción

Interferencia y Difracción Interferencia y Difracción Difracción de Franhofer en rendijas y redes Felipe Valencia Hernandez fvalenciah@unal.edu.co Departamento de física, Universidad Nacional de Colombia http://sites.google.com/a/unal.edu.co/curso1000020

Más detalles

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna Física III (sección 1) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil Civil, Ingeniería

Más detalles

Unidad 13: Ondas armónicas

Unidad 13: Ondas armónicas Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 13: Ondas armónicas Universidad Politécnica de Madrid 22 de marzo de 2010 2 13.1. Planificación

Más detalles

(x Vt) ξ 1. = f 1. ξ 2. = f 2. (x Vt)+ f 2 que puede comprobarse que satisface la ecuación diferencial de ondas d 2 ξ dt 2. + ξ 2.

(x Vt) ξ 1. = f 1. ξ 2. = f 2. (x Vt)+ f 2 que puede comprobarse que satisface la ecuación diferencial de ondas d 2 ξ dt 2. + ξ 2. 1 3.5-1 Principio de superposición de ondas Cuando en un medio material no dispersivo se propagan diferentes ondas originadas por focos emisores distintos, sus efectos se superponen y la elongación de

Más detalles

Leyes básicas de la teoría electromagética

Leyes básicas de la teoría electromagética Divergencia = xî + y ĵ + z k Rotacional î ĵ k = x y z F x F y F z Leyes básicas de la teoría electromagética Ley de inducción de Faraday C d l =- d S Ley de Gauss d S = 1 ɛ V ρdv Ley de Gauss magnética

Más detalles

PROBLEMAS. Una onda transversal se propaga por una cuerda según la ecuación:

PROBLEMAS. Una onda transversal se propaga por una cuerda según la ecuación: PROBLEMAS Ejercicio 1 Una onda armónica que viaje en el sentido positivo del eje OX tiene una amplitud de 8,0 cm, una longitud de onda de 20 cm y una frecuencia de 8,0 Hz. El desplazamiento transversal

Más detalles

Guía n 9: Materiales Magnéticos Ecuaciones de Maxwell Ondas Electromagnéticas

Guía n 9: Materiales Magnéticos Ecuaciones de Maxwell Ondas Electromagnéticas Guía n 9: Materiales Magnéticos Ecuaciones de Maxwell Ondas Electromagnéticas Problema 1 Dos imanes permanentes iguales A y B, cuyo momento magnético es P m están situados como indica la figura. La distancia

Más detalles

Movimiento ondulatorio

Movimiento ondulatorio Una onda consiste en el movimiento de la propagación de una perturbación sin que exista transporte neto de materia. En una onda se propaga energía pero no materia. Pero aunque no sea materia sí puede interaccionar

Más detalles

ONDAS Y PERTURBACIONES

ONDAS Y PERTURBACIONES ONDAS Y PERTURBACIONES Fenómenos ondulatorios Perturbaciones en el agua (olas) Cuerda oscilante Sonido Radio Calor (IR) Luz / UV Radiación EM / X / Gamma Fenómenos ondulatorios Todos ellos realizan transporte

Más detalles

Fundamentos de Oscilaciones, ondas y óptica

Fundamentos de Oscilaciones, ondas y óptica Fundamentos de Oscilaciones, ondas y óptica Ondas en una cuerda Felipe Valencia Hernandez fvalenciah@unal.edu.co Departamento de física, Universidad Nacional de Colombia http://sites.google.com/a/unal.edu.co/curso1000020

Más detalles

ALGUNAS PROPIEDADES DE LAS ONDAS.

ALGUNAS PROPIEDADES DE LAS ONDAS. ALGUNAS PROPIEDADES DE LAS ONDAS. Principio de Huygens. El método de Huygens permite obtener el frente de onda que se produce en un instante a partir del frente de onda que se ha producido en un instante

Más detalles

TAREA 1. Primero, obtendremos la ecuación de onda para el campo eléctrico. Para ello, utilizamos las ecuaciones de Maxwell. La ecuación de onda es

TAREA 1. Primero, obtendremos la ecuación de onda para el campo eléctrico. Para ello, utilizamos las ecuaciones de Maxwell. La ecuación de onda es TAREA 1 1. Muestre que, considerando la solución a la correspondiente ecuación de onda, la superposición de campos eléctricos implica la presencia de un patrón de difracción. Primero, obtendremos la ecuación

Más detalles

Movimiento ondulatorio

Movimiento ondulatorio Movimiento ondulatorio 1. Introducción Se llama onda a la propagación de energía sin transporte neto de la materia. En cualquier caso se cumple que: - Una perturbación inicial se propaga sin transporte

Más detalles

Ondas. Prof. Jesús Hernández Trujillo Facultad de Química, UNAM. Ondas/J. Hdez. T p. 1

Ondas. Prof. Jesús Hernández Trujillo Facultad de Química, UNAM. Ondas/J. Hdez. T p. 1 Ondas Prof. Jesús Hernández Trujillo Facultad de Química, UNAM Ondas/J. Hdez. T p. 1 Introducción Definición: Una onda es una perturbación que se propaga en el tiempo y el espacio Ejemplos: Ondas en una

Más detalles

Ondas Electromagnéticas

Ondas Electromagnéticas Física IV Ondas Electromagnéticas http://mjfisica.net Versión 8.2015 Contenido Concepto de onda Elementos de una onda Ecuaciones de Maxwell Ondas electromagnéticas Ecuación de ondas electromagnéticas senoidales

Más detalles

Física General IV: Óptica

Física General IV: Óptica Facultad de Matemática, Astronomía y Física Universidad Nacional de Córdoba Física General IV: Óptica Práctico de Laboratorio N 1: Ondas en una Cuerda Elástica 1 Objetivo: Estudiar el movimiento oscilatorio

Más detalles

Capítulo 7: Ecuaciones de Maxwell y Ondas Electromagnéticas

Capítulo 7: Ecuaciones de Maxwell y Ondas Electromagnéticas Capítulo 7: Ecuaciones de Maxwell y Ondas Electromagnéticas Hasta ahora: Ley de Gauss Ley de Faraday-Henry Ley de Gauss para el magnetismo Ley de Ampere Veremos que la Ley de Ampere presenta problemas

Más detalles

FÍSICA - 2º BACHILLERATO MOVIMIENTO ONDULATORIO RESUMEN CARACTERÍSTICAS GENERALES DE LAS ONDAS

FÍSICA - 2º BACHILLERATO MOVIMIENTO ONDULATORIO RESUMEN CARACTERÍSTICAS GENERALES DE LAS ONDAS Física º Bachillerato Movimiento Ondulatorio - FÍSICA - º BACHILLERATO MOVIMIENTO ONDULATORIO RESUMEN CARACTERÍSTICAS GENERALES DE LAS ONDAS. Una onda es una perturbación que se propaga de un punto a otro

Más detalles

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA)

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA) PROBLEMAS DE ONDAS. Función de onda, energía. Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons (BY-SA) Problema 1 Escribir la función de una onda armónica que avanza hacia x negativas,

Más detalles

Necesitan un medio elástico (sólido, líquido o gaseoso) para propagarse.

Necesitan un medio elástico (sólido, líquido o gaseoso) para propagarse. ONDAS Una onda es una perturbación que se propaga desde el punto en que se produjo, a través del espacio transportando energía y no materia. El medio perturbado puede ser de naturaleza diversa como aire,

Más detalles

Teoría electromagnética: fotones y luz. Leyes bá sicas de la Teoría Electromagnética.

Teoría electromagnética: fotones y luz. Leyes bá sicas de la Teoría Electromagnética. Teoría electromagnética: fotones y luz. Leyes bá sicas de la Teoría Electromagnética. Teoría electromagnética. El electromagnetismo es una teoría de campos que estudia y unifica los fenómenos eléctricos

Más detalles

Ondas en una dimensión. Velocidad de fase, fase, amplitud y frecuencia de onda armónica. Definición Una onda es una perturbación que se propaga desde el punto en que se produjo hacia el medio que rodea

Más detalles

Lecture 31. Transmisión de energía en ondas. Interferencia, Principio de Superposición, reflexión y refracción de ondas.

Lecture 31. Transmisión de energía en ondas. Interferencia, Principio de Superposición, reflexión y refracción de ondas. Lecture 31. Transmisión de energía en ondas. Interferencia, Principio de Superposición, reflexión y refracción de ondas. Por: Profr. José A. Hernández Cuando dos o mas ondas se combinan en un punto determinado,

Más detalles

1.2. ONDAS. Lo anterior implica que no todas las fluctuaciones de presión producen una sensación audible en el oído humano.

1.2. ONDAS. Lo anterior implica que no todas las fluctuaciones de presión producen una sensación audible en el oído humano. .2. ONDAS. El sonido puede ser definido como cualquier variación de presión en el aire, agua o algún otro medio que el oído humano puede detectar. Lo anterior implica que no todas las fluctuaciones de

Más detalles

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna Física III (sección 3) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid M. Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil, Ingeniería

Más detalles

OSCILADOR ARMONICO: partícula con M.A.S. ECUACION DEL M.A.S: x = A sen (ω t+ φ 0 )

OSCILADOR ARMONICO: partícula con M.A.S. ECUACION DEL M.A.S: x = A sen (ω t+ φ 0 ) ONDAS. M.A.S: Tipo de movimiento oscilatorio que tienen los cuerpos que se mueven por acción de una fuerza restauradora: F=-k x OSCILADOR ARMONICO: partícula con M.A.S ECUACION DEL M.A.S: x = A sen (ω

Más detalles

Física A.B.A.U. ONDAS 1 ONDAS

Física A.B.A.U. ONDAS 1 ONDAS Física A.B.A.U. ONDAS 1 ONDAS PROBLEMAS 1. La ecuación de una onda transversal que se propaga en una cuerda es y(x, t) = 10 sen π(x 0,2 t), donde las longitudes se expresan en metros y el tiempo en segundos.

Más detalles

F2Bach 1. Introducción. Noción de onda. Tipos de ondas 2. Magnitudes características de una onda 3. E cuac ó ió d n e l as on as arm

F2Bach 1. Introducción. Noción de onda. Tipos de ondas 2. Magnitudes características de una onda 3. E cuac ó ió d n e l as on as arm F Bach Movimiento ondulatorio 1. Introducción. Noción de onda. Tipos de ondas. Magnitudes características de una onda 3. Ecuación de las ondas armónicas unidimensionales i 4. Propiedad importante de la

Más detalles

Unidad 8. J.M.L.C. - Chena - IES Aguilar y Cano. Vibraciones y ondas. Movimiento ondulatorio.

Unidad 8. J.M.L.C. - Chena - IES Aguilar y Cano. Vibraciones y ondas. Movimiento ondulatorio. Unidad 8 Vibraciones y ondas chenalc@gmail.com Una onda consiste en el movimiento de la propagación de una perturbación sin que exista transporte neto de materia. En una onda se propaga energía pero no

Más detalles

La cuerda vibrante. inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical

La cuerda vibrante. inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical la cuerda es extensible La cuerda vibrante inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical y(x, t) la posición depende

Más detalles

Reflexión y refracción

Reflexión y refracción Reflexión y refracción Superficies reflectoras y refractoras Felipe Valencia Hernandez fvalenciah@unal.edu.co Departamento de física, Universidad Nacional de Colombia http://sites.google.com/a/unal.edu.co/curso1000020

Más detalles

TEORIA ELECTROMAGNETICA FIZ 0321 (6)

TEORIA ELECTROMAGNETICA FIZ 0321 (6) TEORIA ELECTROMAGNETICA FIZ 0321 (6) Ricardo Ramírez Facultad de Física, Pontificia Universidad Católica, Chile 2do. Semestre 2006 Fuerza entre cargas en movimiento Fuerza entre cargas q 1 y q 2 que se

Más detalles

Soluciones de la ecuación de onda ( ) ( ) ( ) ONDAS PLANAS. Ecuación de onda en coordenadas cartesianas. Separación de variables.

Soluciones de la ecuación de onda ( ) ( ) ( ) ONDAS PLANAS. Ecuación de onda en coordenadas cartesianas. Separación de variables. ONDAS PLANAS Soluciones de la ecuación de onda cuación de onda en coordenadas cartesianas Ω+ Ω Ω Ω Ω + + + Ω Separación de variables Ω X Y Z d X dy dz + + + X d Y d Z d X d Y d d X dy Z d dz + + cuaciones

Más detalles

Fundamentos de Oscilaciones, ondas y óptica

Fundamentos de Oscilaciones, ondas y óptica Fundamentos de Oscilaciones, ondas y óptica Reflexión, transmisión, efecto Doppler Felipe Valencia Hernandez fvalenciah@unal.edu.co Departamento de física, Universidad Nacional de Colombia http://sites.google.com/a/unal.edu.co/curso1000020

Más detalles

3) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro.

3) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro. Movimiento ondulatorio Cuestiones 1) a) Explique la periodicidad espacial y temporal de las ondas y su interdependencia. b) Una onda de amplitud A, frecuencia f, y longitud de onda, se propaga por una

Más detalles

Análisis II - Análisis matemático II - Matemática 3 2do. cuatrimestre de 2013

Análisis II - Análisis matemático II - Matemática 3 2do. cuatrimestre de 2013 Análisis II - Análisis matemático II - Matemática 3 do. cuatrimestre de 3 Práctica 4 - Teoremas de Stokes y de Gauss. Campos conservativos. Aplicaciones.. Verificar el teorema de Stokes para el hemisferio

Más detalles

Movimiento ondulatorio

Movimiento ondulatorio Cuestiones Movimiento ondulatorio 1. a) Explique la periodicidad espacial y temporal de las ondas y su interdependencia. b) Una onda de amplitud A, frecuencia f, y longitud de onda, λ, se propaga por una

Más detalles

Física III clase 4 (22/03/2010) Velocidad de grupo y dispersión

Física III clase 4 (22/03/2010) Velocidad de grupo y dispersión Física III clase 4 (22/03/2010) Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil Civil, Ingeniería Civil Mecánica, Ingeniería Civil

Más detalles

Capítulo 2: Formulación matemática del problema

Capítulo 2: Formulación matemática del problema Capítulo : Formulación matemática del problema. Introducción El análisis del comportamiento en régimen permanente o transitorio de una red de puesta a tierra se fundamenta en la teoría electromagnética

Más detalles

Ecuaciones de Maxwell

Ecuaciones de Maxwell Capítulo 14 Ecuaciones de Maxwell 14.1. Corriente de Desplazamiento Habíamos visto anteriormente que si un conductor con corriente posee cierta simetría favorable, el campo magnético se podía obtener fácilmente

Más detalles

Pseudo-resumen de Electromagnetismo

Pseudo-resumen de Electromagnetismo Pseudo-resumen de Electromagnetismo Álvaro Bustos Gajardo Versión 0.6β, al 27 de Octubre de 2011 1. Cargas. Ley de Coulomb 1.1. Carga eléctrica La carga eléctrica es una propiedad cuantitativa de la materia,

Más detalles

FÍSICA II TEMA 2. ONDAS CURSO 2013/14

FÍSICA II TEMA 2. ONDAS CURSO 2013/14 1 FÍSICA II TEMA 2. ONDAS CURSO 2013/14 T2. Ondas 2 ÍNDICE» 2.1. Ondas unidimensionales» 2.2. Ondas tridimensionales» 2.3. Ecuación de ondas» 2.4. Ondas planas y esféricas» 2.5. Ondas armónicas. Frentes

Más detalles

En qué consiste el principio de superposición para ondas? Cómo depende la amplitud de la onda resultante de la interferencia de dos ondas?

En qué consiste el principio de superposición para ondas? Cómo depende la amplitud de la onda resultante de la interferencia de dos ondas? En qué consiste el principio de superposición para ondas? Cómo depende la amplitud de la onda resultante de la interferencia de dos ondas? Cómo se puede controlar la interferencia de dos ondas experimentalmente?

Más detalles

Lección 7. Ecuaciones de Maxwell. Ondas electromagnéticas.

Lección 7. Ecuaciones de Maxwell. Ondas electromagnéticas. Lección 7. Ecuaciones de Maxwell. Ondas electromagnéticas. 201. Escribir las ecuaciones de Maxwell válidas en medios materiales. Definir los diferentes términos y su significado físico. Deducir las condiciones

Más detalles

EJERCICIOS DE FÍSICA III. MSc. José Fernando Pinto Parra

EJERCICIOS DE FÍSICA III. MSc. José Fernando Pinto Parra Profesor: José Fernando Pinto Parra Ejercicios de Movimiento Armónico Simple y Ondas: 1. Calcula la amplitud, el periodo de oscilación y la fase de una partícula con movimiento armónico simple, si su ecuación

Más detalles

Fundamentos Físicos II Convocatoria extraordinaria Julio 2011

Fundamentos Físicos II Convocatoria extraordinaria Julio 2011 P1.- Una antena emite ondas de radio frecuencia de 10 8 Hz con una potencia de 5W en un medio caracterizado por una constante dieléctrica 5 y permeabilidad magnética µ o. Puede suponerse que está transmitiendo

Más detalles

UNIDAD 1 REPASO SOBRE ONDAS ELECTROMAGNETICAS

UNIDAD 1 REPASO SOBRE ONDAS ELECTROMAGNETICAS UNIDAD 1 REPASO 01: DE OSCILACIONES Y ONDAS REPASO SOBRE ONDAS ELECTROMAGNETICAS Una vibración u oscilación es un vaivén en el tiempo. Un vaivén tanto en el espacio como en el tiempo es una onda. Una onda

Más detalles

Primer examen parcial del curso Física III, M

Primer examen parcial del curso Física III, M Primer examen parcial del curso Física III, 106020M Prof. Beatriz Londoño 15 de Octubre de 2013 Tenga en cuenta: Escriba en todas las hojas adicionales su nombre El uso de celulares y tabletas no está

Más detalles

Los potenciales electromagnéticos. Tema 8 Electromagnetismo

Los potenciales electromagnéticos. Tema 8 Electromagnetismo Los potenciales electromagnéticos Tema 8 Electromagnetismo Los potenciales electromagnéticos Los potenciales electromagnéticos. Transformaciones de contraste. Ecuación de ondas para los potenciales. Soluciones

Más detalles

FÍSICA - 2º BACHILLERATO MOVIMIENTO ONDULATORIO - HOJA 1

FÍSICA - 2º BACHILLERATO MOVIMIENTO ONDULATORIO - HOJA 1 FÍSICA - 2º BACHILLERATO MOVIMIENTO ONDULATORIO - HOJA 1 1. Una onda transversal se propaga por una cuerda según la ecuación: y( x, = 0,4 cos(100t 0,5x) en unidades SI. Calcula: a) la longitud de onda

Más detalles

(97-R) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro.

(97-R) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro. Movimiento ondulatorio Cuestiones (96-E) a) Explique la periodicidad espacial y temporal de las ondas y su interdependencia. b) Una onda de amplitud A, frecuencia f, y longitud de onda λ, se propaga por

Más detalles

Apuntes de Física II TERMODINÁMICA

Apuntes de Física II TERMODINÁMICA Apuntes de Física II TERMODINÁMICA Dr. Ezequiel del Río Departamento de Física Aplicada E.T.S. de Ingeniería Aeronáutica y del espacio Universidad Politécnica de Madrid 14 de febrero de 2017 ÍNDICE GENERAL

Más detalles

En qué consiste el principio de superposición para ondas? Cómo depende la amplitud de la onda resultante de la interferencia de dos ondas?

En qué consiste el principio de superposición para ondas? Cómo depende la amplitud de la onda resultante de la interferencia de dos ondas? En qué consiste el principio de superposición para ondas? Cómo depende la amplitud de la onda resultante de la interferencia de dos ondas? Cómo se puede controlar la interferencia de dos ondas experimentalmente?

Más detalles

MÉTODOS Y CRITERIOS DE EVALUACIÓN

MÉTODOS Y CRITERIOS DE EVALUACIÓN FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA I.T. INFORMÁTICA (ESPECIALIDAD: SISTEMAS) MÉTODOS Y CRITERIOS DE EVALUACIÓN Esta asignatura consta de dos partes teóricas y una parte práctica, tal y como se recoge

Más detalles

EJERCICIOS DE SELECTIVIDAD ONDAS

EJERCICIOS DE SELECTIVIDAD ONDAS EJERCICIOS DE SELECTIVIDAD ONDAS 1. La ecuación de una onda armónica que se propaga por una cuerda es: y (x, t) = 0,08 cos (16 t - 10 x) (S.I.) a) Determine el sentido de propagación de la onda, su amplitud,

Más detalles

01/07/2009. Ecuaciones dinámicas del motor. Fig. 1 circuito equivalente del motor de CD con excitación independiente.

01/07/2009. Ecuaciones dinámicas del motor. Fig. 1 circuito equivalente del motor de CD con excitación independiente. Control de Máquinas Eléctricas Primavera 2009 1. Análisis vectorial de sistema trifásicos 1. Campo magnético 2. Devanado trifásico 3. Vector espacial de un sistema de corrientes 4. Representación gráfica

Más detalles

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. Análisis II Análisis matemático II Matemática 3. er. cuatrimestre de 8 Práctica 4 - Teoremas de Stokes y de Gauss. Campos conservativos. Aplicaciones. Ejercicio. Verificar el teorema de Stokes para el

Más detalles

Física II clase 8 (06/04) Principio de Superposición

Física II clase 8 (06/04) Principio de Superposición Física II clase 8 (06/04) Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carrera: Ingeniería Civil Informática Física II MAC I-2011 1 Principio de Superposición

Más detalles

Ecuaciones de Maxwell y ondas electromagnéticas. Ondas Electromagnéticas

Ecuaciones de Maxwell y ondas electromagnéticas. Ondas Electromagnéticas Ecuaciones de Maxwell y ondas electromagnéticas Ondas Electromagnéticas Electricidad, Magnetismo y luz Una primera consecuencia fundamental de la corriente de desplazamiento es que los campos eléctricos

Más detalles

BACHILLERATO FÍSICA 6. MOVIMIENTO ONDULATORIO. Dpto. de Física y Química. R. Artacho

BACHILLERATO FÍSICA 6. MOVIMIENTO ONDULATORIO. Dpto. de Física y Química. R. Artacho BACHILLERATO FÍSICA 6. MOVIMIENTO ONDULATORIO R. Artacho Dpto. de Física y Química 6. MOVIMIENTOS ONDULATORIO Índice CONTENIDOS 1. Concepto de onda 2. Propagación de ondas mecánicas 3. Ondas armónicas

Más detalles

Física II- Curso de Verano. Clase 6

Física II- Curso de Verano. Clase 6 Física II- Curso de Verano Clase 6 Interferencia Interferencia es un fenómeno característico del movimiento ondulatorio agua luz electrones De qué depende este patrón observado? Depende de la longitud

Más detalles

Física 2º Bach. Ondas 10/12/04

Física 2º Bach. Ondas 10/12/04 Física º Bach. Ondas 10/1/04 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: [6 PTOS.] 1. Una partícula de 600 g oscila con M.A.S. Se toma como origen de tiempos el instante en que pasa por el origen

Más detalles

Física II Ecuaciones de Maxwell. Ingeniería Electrónica Departamento de Ciencias Aplicadas y Tecnología Universidad Nacional de Moreno

Física II Ecuaciones de Maxwell. Ingeniería Electrónica Departamento de Ciencias Aplicadas y Tecnología Universidad Nacional de Moreno Departamento de Ciencias Aplicadas y Tecnología 30 de noviembre de 2015 Índice 1. Repaso de las ecuaciones 1 1.1. ey de Gauss para el campo electrostático....................... 1 1.2. ey de Gauss para

Más detalles

2. Movimiento ondulatorio (I)

2. Movimiento ondulatorio (I) 2. Movimiento ondulatorio (I) Onda Pulso Tren de ondas Según la energía que propagan Tipos de onda Número de dimensiones en que se propagan: unidimensionales, bidimensionales y tridimensionales Relación

Más detalles

Lección 3. El campo de las corrientes estacionarias. El campo magnetostático.

Lección 3. El campo de las corrientes estacionarias. El campo magnetostático. Lección 3. El campo de las corrientes estacionarias. El campo magnetostático. 81. Un campo vectorial está definido por B = B 0 u x (r < a) B r = A cos ϕ ; B r 2 ϕ = C sin ϕ (r > a) r 2 donde r y ϕ son

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO MOVIMIENTO ONDULATORIO 2001 1.- Un objeto de 0,2 kg, unido al extremo de un resorte, efectúa oscilaciones armónicas de 0,1 π s de período y su energía cinética máxima es de 0,5 J. a) Escriba la ecuación

Más detalles

(97-R) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro?

(97-R) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro? Movimiento ondulatorio Cuestiones (96-E) a) Explique la periodicidad espacial y temporal de las ondas y su interdependencia. b) Una onda de amplitud A, frecuencia f, y longitud de onda λ, se propaga por

Más detalles

F2 Bach. Movimiento ondulatorio

F2 Bach. Movimiento ondulatorio 1. Introducción. Noción de onda. Tipos de ondas 2. Magnitudes características de una onda 3. Ecuación de las ondas armónicas unidimensionales 4. Propiedad importante de la ecuación de ondas armónica 5.

Más detalles

ONDAS. José Luis Rodríguez Blanco

ONDAS. José Luis Rodríguez Blanco ONDAS José Luis Rodríguez Blanco MOVIMIENTO ONDULATORIO Propagación de una perturbación con transferencia de energía y momento lineal, pero sin transporte de materia Los puntos alcanzados por la perturbación

Más detalles

Ondas. Fisica II para Ing. en Prevención de Riesgos Sem. I 2011 JMTB

Ondas. Fisica II para Ing. en Prevención de Riesgos Sem. I 2011 JMTB Unidad II - Ondas Te has preguntado cómo escuchamos? Cómo llega la señal de televisión o de radio a nuestra casa? Cómo es posible que nos comuniquemos por celular? Cómo las ballenas se comunican entre

Más detalles

Operadores diferenciales

Operadores diferenciales Apéndice A Operadores diferenciales A.1. Los conceptos de gradiente, divergencia y rotor Sobre el concepto de gradiente. Si f r) es una función escalar, entonces su gradiente, en coordenadas cartesianas

Más detalles

Laboratorio de Física, CC Físicas, UCM Curso 2013/ ONDAS ESTACIONARIA. CUERDA VIBRANTE

Laboratorio de Física, CC Físicas, UCM Curso 2013/ ONDAS ESTACIONARIA. CUERDA VIBRANTE Laboratorio de ísica CC ísicas UCM Curso 0/0-6- ONDAS ESTACIONARIA. CUERDA VIBRANTE UNDAMENTO TEÓRICO Ondas Estacionarias: Cuerda ibrante Considérese una cuerda de longitud L que está sujeta por un extremo

Más detalles

1. Una onda sonora armónica tiene una frecuencia de 1 Hz y una amplitud de 100

1. Una onda sonora armónica tiene una frecuencia de 1 Hz y una amplitud de 100 ONDAS 1. Una onda sonora armónica tiene una frecuencia de 1 Hz y una amplitud de 100 Å. a) Calcular la longitud de onda; b) Escribir la ecuación de onda correspondiente. (1 Å = 10-10 m; v sonido = 340

Más detalles

MOVIMIENTO ONDULATORIO.

MOVIMIENTO ONDULATORIO. Síntesis Física º Bach. Ondas. O - MOVIMIENTO ONDULTORIO. Ondas. Una onda es una perturbación que se propaga entre dos puntos sin transporte de materia, pero sí de energía y momento. Supongamos que dicha

Más detalles

Inducción, cuasi-estacionario y leyes de conservación.

Inducción, cuasi-estacionario y leyes de conservación. Física Teórica 1 Guia 4 - Inducción y teoremas de conservación 1 cuat. 2014 Inducción, cuasi-estacionario y leyes de conservación. Aproximación cuasi-estacionaria. 1. Se tiene una espira circular de radio

Más detalles

Propagación de ondas en medios continuos

Propagación de ondas en medios continuos Física 2 (Físicos) Propagación de ondas en medios continuos c DF, FCEyN, UBA 1. Verifique si las siguientes expresiones matemáticas cumplen la ecuación de las ondas unidimensional. Grafique las funciones

Más detalles

Elongación. La distancia a la que está un punto de la cuerda de su posición de reposo.

Elongación. La distancia a la que está un punto de la cuerda de su posición de reposo. 1. CONSIDERACIONES GENERALES La mayor parte de información del mundo que nos rodea la percibimos a través de los sentidos de la vista y del oído. Ambos son estimulados por medio de ondas de diferentes

Más detalles