ALGEBRA LINEAL - Práctica N 4 - Segundo Cuatrimestre de 2006 Determinantes

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ALGEBRA LINEAL - Práctica N 4 - Segundo Cuatrimestre de 2006 Determinantes"

Transcripción

1 ALGEBRA LINEAL - Práctica N 4 - Segundo Cuatrimestre de 2006 Determinantes Ejercicio. Calcular el determinante de las siguientes matrices: i) iv) ( ) ii) v) 4 5 ( 2 ) iii) vi) Ejercicio 2. Calcular el determinante de las matrices elementales definidas en el ejercicio 6 de la práctica 2. Ejercicio 3. i) Sea A K n n una matriz triangular superior. Probar que det(a) = n A ii. ii) Calcular el determinante de A K n n siendo a a a n a n i= Ejercicio 4. i) Si A K n n (, B ) K m m y C K n m, sea M K (n+m) (n+m) la matriz de bloques definida A C por M =. Probar que det(m) = det(a). det(b). 0 B ii) Sean r, r 2,..., r n N y para cada i, i n, sea A i K r i r i. Se considera la matriz de bloques A A A Calcular det(m). M = A n.

2 Ejercicio 5. Calcular los determinantes de las siguientes matrices: n x a a... a n a x a... a i) n ii) a a x... a a a a... x x... x x x 0... x x iii) x x... 0 x x x... x 0 Ejercicio 6. i) Calcular inductivamente el determinante de A R n n : ii) Calcular inductivamente el determinante de la matriz compañera A K n n : t a 0 t a 0 t a a t a n t + a n. Ejercicio 7. Dada la matriz de Vandermonde: V (k, k 2,..., k n ) = probar que det (V (k, k 2,..., k n )) = i<j n k k k n k 2 k kn k n k2 n kn n (k j k i ). Sugerencia: Sin perder generalidad se supone que k i k j si i j. Si se considera el determinante de V (k, k 2,..., k n, X) como polinomio en X probar que k,..., k n son sus raíces y factorizarlo. 2,

3 Observación: Si α 0, α,..., α n K son escalares distintos, V (α 0, α,..., α n ) resulta inversible. Sea (V (α 0, α,..., α n )) t K (n+) (n+) y sean β 0, β,..., β n K. Entonces el sistema A.x = (β 0, β,..., β n ) tiene solución única (x 0, x,..., x n ) K n+ y P = n x i.x i es el polinomio interpolador de Lagrange tal que P (α i ) = β i (0 i n) i=0 Ejercicio 8. Calcular los siguientes determinantes: + a + b + c + d i) + a 2 + b 2 + c 2 + d 2 + a 3 + b 3 + c 3 + d 3 + a 4 + b 4 + c 4 + d 4 ii) a 2 b 2 c 2 d 2 a 3 b 3 c 3 d 3 a 4 b 4 c 4 d 4 Ejercicio 9. Sea (a ij ) R 3 3 tal que A. 2 = 2. Si det(a) = 3, calcular el 7 determinante de la matriz a 2 a 22 a a + 2a 3 a 2 + 2a 23 a 3 + 2a 33 Ejercicio 0. Dadas las matrices A, B R 2 2 ( ) 3 2 y B = ( ) 2, 3 probar que no existe ninguna matriz C GL(2, R) tal que A.C = C.B. Y si no se pide que C sea inversible? 0 2 Ejercicio. Sea A R 3 3 la matriz 0 2 y sea B R 3 3, B = (b ij ), una matriz tal que det(a + B) = det(a B). Probar que B es inversible si y sólo si b b 2. Ejercicio 2. i) Sea A R 4 4 la matriz a b c d b a d c c d a b. d c b a Probar que el sistema A.x = 0 tiene solución única si y sólo si a, b, c y d no son todos iguales a cero. ii) Analizar la validez de la afirmación anterior si A C

4 Ejercicio 3. Sea A K n n y sea r K. Probar que existe x K n, x 0, tal que A.x = r.x si y sólo si det(a r.i n ) = 0. Ejercicio 4. Sean α,..., α n R, todos distintos y no nulos. Probar que las funciones e αx,..., e αnx son linealmente independientes sobre R. Deducir que R R no tiene dimensión finita. Sugerencia: Derivar n veces la función n c i e αix. i= Ejercicio 5. matrices: i) ( ) Calcular el determinante, la adjunta y la inversa de cada una de las siguientes ii) iii) cos θ 0 sen θ iv) 0 0 sen θ 0 cos θ Ejercicio 6. Sea A una matriz inversible. Calcular det(adj A). Qué pasa si A no es inversible? Ejercicio 7. i) Resolver los siguientes sistemas lineales sobre Q empleando la regla de Cramer: a) { 3.x x 2 = 3 x + 7.x 2 = 4 b) { 3.x 2.x 2 + x 3 = 0 x + x x 3 = 2.x + x x 3 = 2 x + x 2 + x 3 + x 4 = 0 x c) + 2.x 2 4.x 3 + x 4 = x x 2 x 3 x 4 = 4 5.x + x 2 3.x x 4 = 0 ii) Resolver el siguiente sistema lineal sobre Z 7 empleando la regla de Cramer: 3x + y + 2z = x + z = 6 2x + 2y + z = 3 Ejercicio 8. Sea A Z n n tal que det(a) = ó det(a) =. Probar que para todo b = (b,..., b n ) Z n, existe un único x = (x,..., x n ) Z n tal que A.x = b. a b c Ejercicio 9. Sea A R 3 3 la matriz d e f. Se sabe que g h i b c a 2 c a b det 2 e f = 0, det d 4 f = 0, y det d e 2 = 0. 5 h i g 0 i g h 5 Calcular det A. 4

5 Ejercicio 20. Sea A K m n. i) Probar que son equivalentes: a) rg(a) s b) A admite una submatriz de s s con determinante no nulo. ii) Deducir que rg(a) = máx{s N 0 / A admite una submatriz de s s con determinante no nulo}. Ejercicio 2. i) Sea A K 3 3 no inversible tal que A.A 33 A 3.A 3 0. Calcular la dimensión de S = {x K 3 / A.x = 0}. ii) Sea A K n n no inversible tal que adj(a) 0. Calcular rg(a) y rg(adj(a)). Ejercicio 22. i) Calcular el área del paralelogramo generado por los vectores (2, ) y ( 4, 5). ii) Mismo problema para (3, 4) y ( 2, 3). iii) Calcular el área de un paralelogramo tal que 3 de sus vértices están dados por los puntos (, ), (2, ) y (4, 6). iv) Calcular el volumen del paralelepípedo generado por (,, 3), (, 2, ) y (, 4, ). v) Mismo problema para ( 2, 2, ), (0,, 0) y ( 4, 3, 2). Ejercicio 23. i) Sea (a ij ) K 6 6. Con qué signos aparecen los siguientes productos en det(a)? a) a 23.a 3.a 42.a 56.a 4.a 65 b) a 32.a 43.a 4.a 5.a 66.a 25 ii) Sea (a ij ) K 5 5. Elegir todos los posibles valores de j y de k tales que el producto a j.a 32.a 4k.a 25.a 53 aparezca en det(a) con signo + iii) Sea (a ij ) K 4 4. Escribir todos los términos de det(a) que tengan al factor a 23 y signo + iv) Sin calcular el determinante, calcular los coeficientes de X 4 y de X 3 en 2.X X 2 det X 3 2 X. X 5

6 v) Sin calcular el determinante, calcular el coeficiente de a 6 y el de b 6 en b a a b a det a b a b. a b a b a (*) Ejercicio 24. Sean A, B, C, D K n n. Sea M K 2n 2n la matriz de bloques ( ) A B M =. C D Probar que si A GL(n, K), det(m) = det(a.d A.C.A.B). Si además A.C = C.A entonces det(m) = det(a.d C.B). 6

Determinantes. Capítulo Definición y ejemplos básicos Funciones multilineales alternadas

Determinantes. Capítulo Definición y ejemplos básicos Funciones multilineales alternadas Capítulo 5 Determinantes Los determinantes aparecieron originalmente al tratar de resolver sistemas de ecuaciones lineales A continuación vamos a dar una definición precisa de determinante y a relacionarlo,

Más detalles

TERCER EXAMEN PARCIAL ALGEBRA LINEAL I 23 DE MAYO DE 2014 (CON SOLUCIONES)

TERCER EXAMEN PARCIAL ALGEBRA LINEAL I 23 DE MAYO DE 2014 (CON SOLUCIONES) TERCER EXAMEN PARCIAL ALGEBRA LINEAL I 23 DE MAYO DE 2014 (CON SOLUCIONES) Instrucciones: Resolver los 5 problemas justificando todas sus afirmaciones y presentando todos sus cálculos. 1. Sea F un campo.

Más detalles

ALGEBRA LINEAL - Práctica N 2 - Segundo cuatrimestre de 2017 Matrices y coordenadas

ALGEBRA LINEAL - Práctica N 2 - Segundo cuatrimestre de 2017 Matrices y coordenadas Departamento de Matemática - Facultad de Ciencias Exactas y Naturales - UBA 1 ALGEBRA LINEAL - Práctica N 2 - Segundo cuatrimestre de 2017 Matrices y coordenadas Ejercicio 1 Sean m n y r N i) Probar que

Más detalles

Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Departamento de Matemática Segundo Cuatrimestre de 2002 ÁLGEBRA LINEAL

Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Departamento de Matemática Segundo Cuatrimestre de 2002 ÁLGEBRA LINEAL Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Departamento de Matemática Segundo Cuatrimestre de 2002 ÁLGEBRA LINEAL Práctica N 2: Matrices Ejercicio 1 Probar que los siguientes

Más detalles

Práctica 6: Autovalores y autovectores - Diagonalización

Práctica 6: Autovalores y autovectores - Diagonalización ALGEBRA LINEAL Primer Cuatrimestre 2010 Práctica 6: Autovalores y autovectores - Diagonalización 1. Calcular el polinomio característico, los autovalores y los autovectores de la matriz A en cada uno de

Más detalles

Práctica 1: Sistemas de Ecuaciones Lineales - Matrices

Práctica 1: Sistemas de Ecuaciones Lineales - Matrices ALGEBRA LINEAL Primer Cuatrimestre 2017 Práctica 1: Sistemas de Ecuaciones Lineales - Matrices En todas las prácticas, K es un cuerpo; en general K = Q (los números racionales, R (los números reales o

Más detalles

Ejercicios de Álgebra Lineal Parcial 1

Ejercicios de Álgebra Lineal Parcial 1 Ejercicios de Álgebra Lineal Parcial 1 1. Ejercicios de respuesta corta ( ) 3 1 a) Si A = encuentre la entrada c 6 2 12 de la matriz A 2 { x 3y = 1 b) Si para k R el sistema tiene solución única, verique

Más detalles

MATRICES,DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES

MATRICES,DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES Departamento de Matemática Aplicada II EEI ÁLGEBRA Y ESTADÍSTICA Boletín n o 1 (2010-2011 MATRICES,DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES 1 Sean A, B, C, D y E matrices de tamaño 4 5, 4 5, 5 2,

Más detalles

ÁLGEBRA LINEAL I Práctica 3

ÁLGEBRA LINEAL I Práctica 3 ÁLGEBRA LINEAL I Práctica 3 Matrices y determinantes (Curso 2017 2018) 1. En el conjunto de las matrices n n de elementos reales, demostrar que el producto de matrices triangulares inferiores es otra matriz

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES 2 Determinantes ACTIVIDADES INICIALES I. Enumera las inversiones que aparecen en las siguientes permutaciones y calcula su paridad, comparándolas con la permutación principal 1234. a) 1342 b) 3412 c) 4321

Más detalles

Matemática 2. Transformaciones lineales y Determinantes

Matemática 2. Transformaciones lineales y Determinantes Matemática 2 Primer Cuatrimestre de 2014 Práctica 4 Transformaciones lineales y Determinantes Transformaciones lineales Ejercicio 1 Mostrar que las siguientes funciones son transformaciones lineales (i

Más detalles

Algebra Lineal. 4. Resolver las ecuaciones matriciales en el cuerpo R: 5. En cada uno de los siguientes casos, hallar una matriz A R 3 3 que verique:

Algebra Lineal. 4. Resolver las ecuaciones matriciales en el cuerpo R: 5. En cada uno de los siguientes casos, hallar una matriz A R 3 3 que verique: er Cuatrimestre 2006 Algebra Lineal PRACTICA 2 MATRICES Encuentre un contraejemplo para cada uno de las siguiente armaciones relativas al producto de matrices: i A BA ii AB 2 = A 2 B 2 iii A 0 A = 0 ó

Más detalles

ÁLGEBRA LINEAL I Práctica 3

ÁLGEBRA LINEAL I Práctica 3 ÁLGEBRA LINEAL I Práctica 3 Matrices y determinantes (Curso 2015 2016) 1. En el conjunto de las matrices n n de elementos reales, demostrar que el producto de matrices triangulares inferiores es otra matriz

Más detalles

ALGEBRA y ALGEBRA LINEAL

ALGEBRA y ALGEBRA LINEAL 520142 ALGEBRA y ALGEBRA LINEAL Primer Semestre, Universidad de Concepción CAPITULO 7. MATRICES DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Matriz Sean

Más detalles

Matrices 3. Matrices. Verónica Briceño V. agosto 2012

Matrices 3. Matrices. Verónica Briceño V. agosto 2012 3 agosto 2012 En esta Presentación... En esta Presentación veremos: Matriz Inversa En esta Presentación... En esta Presentación veremos: Matriz Inversa Determinante En esta Presentación... En esta Presentación

Más detalles

ALGEBRA LINEAL - Práctica N 2 - Segundo Cuatrimestre de 2016

ALGEBRA LINEAL - Práctica N 2 - Segundo Cuatrimestre de 2016 Departamento de Matemática - Facultad de Ciencias Exactas y Naturales - UBA 1 ALGEBRA LINEAL - Práctica N 2 - Segundo Cuatrimestre de 2016 Espacios Vectoriales 1. Sea V un espacio vectorial sobre K k K

Más detalles

Determinantes. Problemas teóricos. i=1. 2. De la fórmula general (1) deduzca la fórmula para el determinante de orden 3.

Determinantes. Problemas teóricos. i=1. 2. De la fórmula general (1) deduzca la fórmula para el determinante de orden 3. Determinantes Problemas teóricos Adradezco por varios problemas e ideas a los profesores de la ESFM Myriam Rosalía Maldonado Ramírez y Eliseo Sarmiento Rosales y al estudiante de servicio social Sadi Manuel

Más detalles

Es decir, det A = producto de diagonal principal producto de diagonal secundaria. Determinante de una matriz cuadrada de orden 3

Es decir, det A = producto de diagonal principal producto de diagonal secundaria. Determinante de una matriz cuadrada de orden 3 1.- DETERMINANTE DE UNA MATRIZ CUADRADA Determinante de una matriz cuadrada de orden 1 Dada una matriz cuadrada de orden 1, A = (a), se define det A = det (a) = a Determinante de una matriz cuadrada de

Más detalles

DIAGONALIZACIÓN DE MATRICES CUADRADAS

DIAGONALIZACIÓN DE MATRICES CUADRADAS DIAGONALIZACIÓN DE MATRICES CUADRADAS.- Considerar los vectores u = (, -, ) y v = (, -, ) de : a) Escribir, si es posible, los vectores (, 7, -4) y (, -5, 4) como combinación lineal de u y v. b) Para qué

Más detalles

DETERMINANTES a a Det a a a a. El determinante de una matriz de tamaño 2x2 es

DETERMINANTES a a Det a a a a. El determinante de una matriz de tamaño 2x2 es DETERMINANTES Definición: El determinante es una función con dominio en el conjunto de las matrices y con recorrido en el conjunto de los reales. Por ser una función, el determinante de una matriz es único.

Más detalles

ÁLGEBRA LINEAL I Práctica 3

ÁLGEBRA LINEAL I Práctica 3 ÁLGEBRA LINEAL I Práctica 3 Matrices y determinantes (Curso 2013 2014) 1. En el conjunto de las matrices n n de elementos reales, demostrar que el producto de matrices triangulares inferiores es otra matriz

Más detalles

Matemáticas II. Prácticas: Matrices y Determinantes ; C = 1 3 5

Matemáticas II. Prácticas: Matrices y Determinantes ; C = 1 3 5 Matemáticas II Prácticas: Matrices y Determinantes. Sean las matrices cuadradas siguientes: 4 5 6 B = 9 8 7 6 5 4 C = 5 7 9 0 7 8 9 Se pide calcular: a A B + C. b A AB + AC. c A B AB + ACB.. Sean las matrices:

Más detalles

ÁLGEBRA LINEAL I Práctica 3

ÁLGEBRA LINEAL I Práctica 3 ÁLGEBRA LINEAL I Práctica 3 Matrices y determinantes (Curso 2011 2012) 1. En el conjunto de las matrices n n de elementos reales, demostrar que el producto de matrices triangulares inferiores es otra matriz

Más detalles

Algebra Lineal. 1er. cuatrimestre 2006 PRACTICA 3. I) Ejercicio olvidado Práctica 2. Sea A = i) Comprobar que det(a) =

Algebra Lineal. 1er. cuatrimestre 2006 PRACTICA 3. I) Ejercicio olvidado Práctica 2. Sea A = i) Comprobar que det(a) = 1er. cuatrimestre 2006 Algebra Lineal PRACTICA 3. I) Ejercicio olvidado Práctica 2. Sea A = 1 2 3 4 10 13 14 15 12 9 14 15 12 13 8 15 i) Comprobar que det(a) = 10648. ii) Hallar los cuerpos Z p tales que

Más detalles

CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 MATRICES

CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 MATRICES CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 Unidades: - Matrices (Bloque Álgebra) - Determinantes (Bloque Álgebra) - Sistemas de ecuaciones lineales (Bloque Álgebra) - Vectores (Bloque

Más detalles

Guía de Matrices 2i, para i = j

Guía de Matrices 2i, para i = j Wilson Herrera Guía de Matrices { i, para i = j. Escribir la matriz [a ij ] x si a ij = j, para i j. 0, para i < j. Escribir la matriz [a ij ] x si a ij =, para i = j, para i > j.. Escribir la matriz [i

Más detalles

Guía. Álgebra III. Examen parcial I. Determinantes. Formas cuadráticas.

Guía. Álgebra III. Examen parcial I. Determinantes. Formas cuadráticas. Guía. Álgebra III. Examen parcial I. Determinantes. Formas cuadráticas. Teoremas con demostraciones que se pueden incluir en el examen: 1. Teorema del determinante de la matriz transpuesta. 2. Propiedad

Más detalles

3. Determinantes. Propiedades. Depto. de Álgebra, curso

3. Determinantes. Propiedades. Depto. de Álgebra, curso Depto de Álgebra curso 06-07 3 Determinantes Propiedades Ejercicio 3 Use la definición para calcular el valor del determinante de cada una de las siguientes matrices: 3 0 0 α A = 5 4 0 A = 6 A 3 = 0 β

Más detalles

Tema 5: Determinantes.

Tema 5: Determinantes. Tema 5: Determinantes. 1. El grupo simétrico. Definición. Una permutación del conjunto {1,..., n} es una aplicación biyectiva de {1,..., n} en si mismo. Se define el conjunto Σ n = {f : {1,..., n} {1,...,

Más detalles

TEMA 7. Matrices y determinantes.

TEMA 7. Matrices y determinantes. TEMA 7 Matrices y determinantes. 1. Matrices. Generalidades Definición 1 Sea E un conjunto cualquiera, m, n IN. Definimos matriz de orden m n sobre E a una expresión de la forma: a 11 a 12... a 1n a 21

Más detalles

Matrices. Operaciones con matrices.

Matrices. Operaciones con matrices. Matrices. Operaciones con matrices. Ejercicio. Dadas las matrices ( ) ( ) 4 A = B = ( ) C = D = 4 5 ( ) 4 E = F = seleccione las que se pueden sumar y súmelas. Ejercicio. Dadas las matrices ( ) ( ) A =

Más detalles

Matrices, determinantes y sistemas de ecuaciones lineales

Matrices, determinantes y sistemas de ecuaciones lineales Matrices, determinantes y sistemas de ecuaciones lineales David Ariza-Ruiz 10 de octubre de 2012 1 Matrices Una matriz es una tabla numérica rectangular de m filas y n columnas dispuesta de la siguiente

Más detalles

ALGEBRA III Práctica 1

ALGEBRA III Práctica 1 1 er cuatrimestre 2002 ALGEBRA III Práctica 1 Nota: En esta práctica anillo significa anillo conmutativo con 1 0. 1. Sea A un anillo. Probar que: (i) A tiene ideales maximales y todo ideal propio I está

Más detalles

Clase de Álgebra Lineal

Clase de Álgebra Lineal Clase de Álgebra Lineal M.Sc. Carlos Mario De Oro Facultad de Ciencias Básicas Departamento de matemáticas 04.2017 Page 1 Espacios vectoriales Definicion. Espacio Vectorial (E.V.) Un V espacio vectorial

Más detalles

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 Matrices y determinantes (Curso 202 203) 6 Sea X una matriz cuadrada de tamaño n n y elementos reales Sea k un número par Probar que si X k = Id, entonces

Más detalles

Determinantes Introducción a los determinantes. Recordemos la definición del determinante de una matriz A de 2 2 ( fórmula.

Determinantes Introducción a los determinantes. Recordemos la definición del determinante de una matriz A de 2 2 ( fórmula. Capítulo 5 Determinantes 5.1. Introducción a los determinantes Recordemos la definición del determinante de una matriz A de 2 2 ( fórmula 2.4 ) [ ] a b det = ad bc c d La proposición 2.16 implica que el

Más detalles

ALGEBRA III Práctica 1

ALGEBRA III Práctica 1 1 er cuatrimestre 2001 ALGEBRA III Práctica 1 Nota: En esta práctica anillo significa anillo conmutativo con 1 0. 1. Sea A un anillo. Probar que: (i) A tiene ideales maximales y todo ideal propio I está

Más detalles

1. Lección 3: Matrices y Determinantes

1. Lección 3: Matrices y Determinantes Apuntes: Matemáticas Empresariales II 1. Lección 3: Matrices y Determinantes Se define matriz de orden n m a todo conjunto de n m elementos de un cuerpo K, dispuestos en n filas y m columnas: A n m = (

Más detalles

Matrices y Sistemas Lineales

Matrices y Sistemas Lineales Matrices y Sistemas Lineales Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza Matrices sobre IR ó C. Definición Dado un conjunto K (IR ó C) y dos conjuntos finitos de índices I = {,, m} J

Más detalles

Matrices: repaso. Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas. Una matriz A M m n es de la forma A =

Matrices: repaso. Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas. Una matriz A M m n es de la forma A = Matrices: repaso Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas Una matriz A M m n es de la forma a 11 a 1n A = a m1 a mn Denotaremos A ij = a ij el coeficiente

Más detalles

ALGEBRA LINEAL - Práctica N 8 - Segundo cuatrimestre de 2017 Espacios vectoriales con producto interno

ALGEBRA LINEAL - Práctica N 8 - Segundo cuatrimestre de 2017 Espacios vectoriales con producto interno Departamento de Matemática - Facultad de Ciencias Exactas y Naturales - UBA ALGEBRA LINEAL - Práctica N 8 - Segundo cuatrimestre de 07 Espacios vectoriales con producto interno En esta práctica, todos

Más detalles

Conjuntos y matrices. Sistemas de ecuaciones lineales

Conjuntos y matrices. Sistemas de ecuaciones lineales 1 Conjuntos y matrices Sistemas de ecuaciones lineales 11 Matrices Nuestro objetivo consiste en estudiar sistemas de ecuaciones del tipo: a 11 x 1 ++ a 1m x m = b 1 a n1 x 1 ++ a nm x m = b n Una solución

Más detalles

3. Determinantes. Propiedades. Depto. de Álgebra, curso

3. Determinantes. Propiedades. Depto. de Álgebra, curso Depto de Álgebra curso 2018-2019 3 Determinantes Propiedades Ejercicio 31 Use la definición para calcular el valor del determinante de cada una de las siguientes matrices: 3 2 1 2 1 1 0 0 α A 1 = 5 4 0

Más detalles

Álgebra y Álgebra II - Primer Cuatrimestre 2018 Práctico 4 - Espacios Vectoriales

Álgebra y Álgebra II - Primer Cuatrimestre 2018 Práctico 4 - Espacios Vectoriales Álgebra y Álgebra II - Primer Cuatrimestre 2018 Práctico 4 - Espacios Vectoriales (1) Decidir si los siguientes conjuntos son R-espacios vectoriales con las operaciones abajo denidas. (a) R n con v w =

Más detalles

Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes.

Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes. Una forma fácil de recordar esta suma (regla de Sarrus): Ejemplos: Tarea: realizar al menos tres ejercicios de cálculo de determinantes de matrices de 2x2 y otros tres de 3x3. PARA DETERMINANTES DE MATRICES

Más detalles

Determinantes. Definiciones básicas sobre determinantes. José de Jesús Angel Angel.

Determinantes. Definiciones básicas sobre determinantes.  José de Jesús Angel Angel. Determinantes Definiciones básicas sobre determinantes wwwmathcommx José de Jesús Angel Angel jjaa@mathcommx MathCon c 2007-2008 Contenido 1 Determinantes 2 11 Propiedades de determinantes 4 2 Inversa

Más detalles

Álgebra II (61.08, 81.02) Primer cuatrimestre 2018 Práctica 1. Espacios vectoriales

Álgebra II (61.08, 81.02) Primer cuatrimestre 2018 Práctica 1. Espacios vectoriales Álgebra II (61.08, 81.02) Primer cuatrimestre 2018 Práctica 1. Espacios vectoriales 1. (a) Compruebe que el conjunto de matrices de orden p q a coeficientes reales R p q es un espacio vectorial real con

Más detalles

Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales

Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales (1) Sea n N. Mostrar que el conjunto de polinomios sobre R de grado menor que n es un subespacio vectorial de R[x]. Este

Más detalles

MATRICES. 1.- Calcular: g) 0 a b a 0 c b c 0. x x x. x + a b c a x + b c a b x + c. a b b b a b b b a

MATRICES. 1.- Calcular: g) 0 a b a 0 c b c 0. x x x. x + a b c a x + b c a b x + c. a b b b a b b b a MATRICES 1.- Calcular: a) 3 2 5 2 1 4 3 1 6 b) 2 1 3 4 2 5 6 0 2 c) 3 1 5 0 5 4 6 3 1 3 2 1 6 7 5 4 d) 7 6 8 5 6 7 10 6 7 8 8 9 8 7 9 6 e) 1 3 2 1 3 5 3 2 3 6 2 2 6 4 5 3 f) 1 1 1 1 1 1 1 g) 1 1 1 1 1

Más detalles

Tema 4: Determinantes

Tema 4: Determinantes Tema 4: Determinantes Curso 2016/2017 Ruzica Jevtic Universidad San Pablo CEU Madrid Índice de contenidos Introducción Propiedades de los determinantes Regla de Cramer Inversión de matrices Áreas y volúmenes

Más detalles

3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE

3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE 3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE ECUACIONES LINEALES Y MATRICES COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2011-2012 3.1.1. Resolución de sistemas de ecuaciones lineales. Método

Más detalles

3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE

3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE 3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE ECUACIONES LINEALES Y MATRICES COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS // Curso 2017-18 3.1.1. Resolución de sistemas de ecuaciones lineales. Método

Más detalles

Matemáticas Nivel Medio Matemáticas Ap.CC.SS.II

Matemáticas Nivel Medio Matemáticas Ap.CC.SS.II Matemáticas Nivel Medio Matemáticas Ap.CC.SS.II Martes, 7 de abril de 08 hora y 5 minutos. NOMBRE Y APELLIDOS CALIFICACIÓN. Se considera el sistema lineal de ecuaciones, dependiente del parámetro real

Más detalles

Matrices y determinantes

Matrices y determinantes Matrices y determinantes 1 Ejemplo Cuál es el tamaño de las siguientes matrices? Cuál es el elemento a 21, b 23, c 42? 2 Tipos de matrices Matriz renglón o vector renglón Matriz columna o vector columna

Más detalles

DETERMINANTES. Resuelve los siguientes sistemas y calcula el determinante de cada matriz de coeficientes: 2x + 3y = x + 6y = 16.

DETERMINANTES. Resuelve los siguientes sistemas y calcula el determinante de cada matriz de coeficientes: 2x + 3y = x + 6y = 16. DETERMINANTES REFLEXIONA Y RESUELVE Determinantes de orden 2 Resuelve los siguientes sistemas y calcula el determinante de cada matriz de coeficientes: 2x + y = 29 5x y = 8 a b x y = 5 10x + 6y = 16 4x

Más detalles

ALGEBRA y ALGEBRA II SEGUNDO CUATRIMESTRE 2011 PRÁCTICO 3

ALGEBRA y ALGEBRA II SEGUNDO CUATRIMESTRE 2011 PRÁCTICO 3 ALGEBRA y ALGEBRA II SEGUNDO CUATRIMESTRE 2011 PRÁCTICO 3 Ejercicio 1. Sea V un espacio vectorial. Probar que: (a) Si a es un escalar y v es un vector tales que a.v = 0, entonces a = 0 ó v = 0. (b) Para

Más detalles

Propiedades de los Determinantes

Propiedades de los Determinantes Propiedades de los Determinantes Departamento de Matemáticas, CCIR/ITESM 26 de mayo de 2010 Índice 19.1. Propiedades............................................... 1 19.2. La adjunta de una matriz cuadrada..................................

Más detalles

Matrices y Determinantes

Matrices y Determinantes Capítulo 1 Matrices y Determinantes 11 Matrices Generalidades Definición 11 Sea E un conjunto cualquiera, m, n N Definimos matriz de orden m n sobre E a una expresión de la forma: a 11 a 12 a 1n a 21 a

Más detalles

2.10 Ejercicios propuestos

2.10 Ejercicios propuestos Ejercicios propuestos 99 1 0 0 0 x 1 0 1 0 0 x 2 0 0 1 0 x 3 x 2 0 0 0 1 x 4 + x 1 +4x 2 + x 3 x 2 0 0 0 1 x 5 x 2 1 0 0 0 x 1 0 1 0 0 x 2 0 0 1 0 x 3 x 2 0 0 0 1 x 4 + x 1 +4x 2 + x 3 x 2 0 0 0 0 x 5

Más detalles

Matemáticas Empresariales II

Matemáticas Empresariales II Matemáticas Empresariales II Lección 3 Manuel León Navarro Colegio Universitario Cardenal Cisneros M. León Matemáticas Empresariales II 1 / 40 Concepto de Matriz Se define matriz de orden n m a todo conjunto

Más detalles

Chapter 1. Matrices. 1.1 Introducción y definiciones

Chapter 1. Matrices. 1.1 Introducción y definiciones Chapter 1 Matrices 1.1 Introducción y definiciones Los conceptos de las matrices y determinantes se remonta al siglo segundo BC, incluso antes. Pero no es hasta el siglo XVII cuando las ideas reaparecen

Más detalles

Determinantes. Concepto de determinante A cada matriz cuadrada A se le asigna un número denominado determinante de A, denotado por A o por det (A).

Determinantes. Concepto de determinante A cada matriz cuadrada A se le asigna un número denominado determinante de A, denotado por A o por det (A). Determinantes Concepto de determinante A cada matriz cuadrada A se le asigna un número denominado determinante de A, denotado por A o por det (A). A = Determinante de orden uno a 11 = a 11 5 = 5 Determinante

Más detalles

APÉNDICE A. Algebra matricial

APÉNDICE A. Algebra matricial APÉNDICE A Algebra matricial El estudio de la econometría requiere cierta familiaridad con el álgebra matricial. La teoría de matrices simplifica la descripción, desarrollo y aplicación de los métodos

Más detalles

Álgebra lineal - Matriz inversa. Determinante. Farith J. Briceño N.

Álgebra lineal - Matriz inversa. Determinante. Farith J. Briceño N. Álgera lineal - Matriz inversa. Determinante. Farith J. Briceño N. Ojetivos a curir Matriz Inversa. Determinante. Calculo de determinantes. Propiedades de los determinantes. Adjunta de una matriz. Calculo

Más detalles

TRANSFORMACIONES LINEALES 1. TRANSFORMACIONES NÚCLEO E IMAGEN

TRANSFORMACIONES LINEALES 1. TRANSFORMACIONES NÚCLEO E IMAGEN RANSFORMACIONES LINEALES 1 RANSFORMACIONES NÚCLEO E IMAGEN DEFINICION : Sean V W espacios vectoriales Una transformación lineal de V en W es una función que asigna a cada vector v V un único vector v W

Más detalles

Determinantes. σ(1)... σ(n) l i nl 1 +1 if s = n l

Determinantes. σ(1)... σ(n) l i nl 1 +1 if s = n l CAPíTULO 5 Determinantes 1 El grupo simétrico Sea n N Denotemos por Σ n el conjunto: Σ n = {f : {1,,n} {1,,n} f es aplicación biyectiva} Si f,g Σ n, la aplicación compuesta g f también es un elemento de

Más detalles

Tema 1: Matrices. Sistemas de ecuaciones. Determinantes

Tema 1: Matrices. Sistemas de ecuaciones. Determinantes Tema 1: Matrices. Sistemas de ecuaciones. Determinantes José M. Salazar Octubre de 2016 Tema 1: Matrices. Sistemas de ecuaciones. Determinantes Lección 1. Matrices. Sistemas de ecuaciones. Determinantes

Más detalles

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 Matrices y determinantes (Curso 010 011). Sea A una matriz diagonal n n y supongamos que todos los elementos de su diagonal son distintos entre sí. Demostrar

Más detalles

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices 1.1. Conceptos básicos y ejemplos Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. NOTA:

Más detalles

N o de examen: ESCRIBIR LAS RESPUESTAS AQUÍ Este examen consta de diez preguntas tipo verdadero/falso y diez ejercicios

N o de examen: ESCRIBIR LAS RESPUESTAS AQUÍ Este examen consta de diez preguntas tipo verdadero/falso y diez ejercicios N o de examen: NOMBRE: C.I.: Examen de Geometría y Álgebra Lineal 1 22 de julio de 2014 Instituto de Matemática y Estadística Rafael Laguardia Facultad de Ingeniería ESCRIBIR LAS RESPUESTAS AQUÍ 1 2 3

Más detalles

Tema 3: Espacios vectoriales

Tema 3: Espacios vectoriales Tema 3: Espacios vectoriales K denotará un cuerpo. Definición. Se dice que un conjunto no vacio V es un espacio vectorial sobre K o que es un K-espacio vectorial si: 1. En V está definida una operación

Más detalles

Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5

Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5 DETERMINANTES Determinantes Concepto de determinante A cada matriz cuadrada A se le asigna un escalar particular denominado determinante de A, denotado por A o por det (A). A = Determinante de orden uno

Más detalles

Problemas de Álgebra Ingeniería Técnica en Informática de Sistemas. Curso 2009/10

Problemas de Álgebra Ingeniería Técnica en Informática de Sistemas. Curso 2009/10 Problemas de Álgebra Ingeniería Técnica en Informática de Sistemas Curso 2009/10 Hoja 1 Preliminares 1 Resuelve los siguientes sistemas de ecuaciones de números complejos: { z 1 + iz 2 = 1 i 3z 1 + (1

Más detalles

Matrices, Determinantes y Sistemas Lineales.

Matrices, Determinantes y Sistemas Lineales. 12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión

Más detalles

Capítulo 2. Determinantes Introducción. Definiciones

Capítulo 2. Determinantes Introducción. Definiciones Capítulo 2 Determinantes 2.1. Introducción. Definiciones Si nos centramos en la resolución de un sistema A x = b con A una matriz n n, podemos calcular A 1 y la resolución es inmendiata. El problema es

Más detalles

Material para el examen final

Material para el examen final Algebra Lineal 2, FAMAT-UG, ene-jun, 2004 Material para el examen final 31 de mayo, 2004 Definiciones: Hay que saber las definiciones precisas de todos los siguientes términos, y conocer ejemplos concretos

Más detalles

Cap ıtulo 1 VECTORES 1

Cap ıtulo 1 VECTORES 1 Capítulo 1 VECTORES 1 Matemáticas II 2 1.1. VECTORES EN R 3 Se define R 3 = R R R = {(a, b, c)/a, b, c R}, es decir es el conjunto de todas las ternas de números reales que se puedan formar. 1.1.1. OPERACIONES

Más detalles

PROBLEMAS DE ÁLGEBRA LINEAL INGENIERÍA DE TELECOMUNICACIONES - E.T.S.I.T. CURSO 2005/06

PROBLEMAS DE ÁLGEBRA LINEAL INGENIERÍA DE TELECOMUNICACIONES - E.T.S.I.T. CURSO 2005/06 PROBLEMAS DE ÁLGEBRA LINEAL INGENIERÍA DE TELECOMUNICACIONES - E.T.S.I.T. CURSO 200/06 1. Utilizar el método de eliminación de Gauss para resolver el sistema de ecuaciones lineales siguiente: 2 x 1 2 x

Más detalles

a n1 a n2 a nn x n a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x j x i = s ij x i x j + s ji x j x i 2 x i x j + a ij + a ji

a n1 a n2 a nn x n a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x j x i = s ij x i x j + s ji x j x i 2 x i x j + a ij + a ji 16 Fundamentos de Matemáticas : Álgebra Lineal Capítulo 1 Formas cuadráticas Aunque, pueda parecernos que vamos a estudiar un nuevo concepto, un caso particular de las formas cudráticas ya ha sido estudiado,

Más detalles

a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x i x j + a ij + a ji x j x i = s ij x i x j + s ji x j x i 2

a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x i x j + a ij + a ji x j x i = s ij x i x j + s ji x j x i 2 68 Matemáticas I : Álgebra Lineal Tema 7 Formas cuadráticas Aunque, pueda parecernos que vamos a estudiar un nuevo concepto, un caso particular de las formas cudráticas ya ha sido estudiado, pues el cuadrado

Más detalles

Matrices y determinantes

Matrices y determinantes Matrices y determinantes A = ( aij)=a mxn m = nº filas y n = nº columnas Orden o dimensión = mxn Matriz cuadrada m=n Matriz rectangular m n Matriz fila A 1xn Definiciones de Matrices a 11 a 12...a 1n a

Más detalles

ALGEBRA LINEAL - Práctica N 1 - Segundo cuatrimestre de 2017 Espacios Vectoriales

ALGEBRA LINEAL - Práctica N 1 - Segundo cuatrimestre de 2017 Espacios Vectoriales Departamento de Matemática - Facultad de Ciencias Exactas y Naturales - UBA 1 ALGEBRA LINEAL - Práctica N 1 - Segundo cuatrimestre de 2017 Espacios Vectoriales Ejercicio 1. Resolver los siguientes sistemas

Más detalles

MATRICES Y SISTEMAS DE ECUACIONES

MATRICES Y SISTEMAS DE ECUACIONES MATRICES Y SISTEMAS DE ECUACIONES Definición Una matriz real de orden m n es una tabla ordenada de m n números reales a 11 a 12 a 1n A = a 21 a 22 a 2n a m1 a m2 a mn en la cual las líneas horizontales

Más detalles

MATEMÁTICAS 2º BACH CIENCIAS DETERMINANTES DETERMINANTES

MATEMÁTICAS 2º BACH CIENCIAS DETERMINANTES DETERMINANTES 1. CONCEPTO, CÁLCULO DE. Definición: A cada matriz cuadrada A=(aij),de orden n, se le asigna un número real, denominado determinante de A, denotado por A o por det (A). A =det (A)= 1.-Determinante de orden

Más detalles

Ejercicios tipo test de las lecciones 1 y El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1, 2, 1) y

Ejercicios tipo test de las lecciones 1 y El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1, 2, 1) y Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS Ejercicios tipo test de las lecciones 1 y 2. 1. El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1,

Más detalles

Determinantes. Deducir la propiedad aditiva de otras propiedades

Determinantes. Deducir la propiedad aditiva de otras propiedades Determinantes problemas teóricos adicionales Los problemas auxiliares de estas tareas adicionales no son muy difíciles y corresponden al nivel obligatorio de conocimientos Los problemas principales de

Más detalles

520142: ALGEBRA y ALGEBRA LINEAL

520142: ALGEBRA y ALGEBRA LINEAL 520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición

Más detalles

Matemáticas 2.º Bachillerato. Matemáticas 2.º Bachillerato. Matemáticas 2.º Bachillerato. Ejemplo:

Matemáticas 2.º Bachillerato. Matemáticas 2.º Bachillerato. Matemáticas 2.º Bachillerato. Ejemplo: Mapa conceptual Determinante de segundo orden Dada una matriz cuadrada de segundo orden: a a 11 12 A = a a 21 22 se llama determinante de A al número real: det (A)= A = a11 a 12 = a a a a a21 a22 11 22

Más detalles

MATRICES Y SISTEMAS DE ECUACIONES

MATRICES Y SISTEMAS DE ECUACIONES MATRICES Y SISTEMAS DE ECUACIONES Definición Una matriz real de orden m n es una tabla ordenada de m n números reales a 11 a 12 a 1n a A = 21 a 22 a 2n a m1 a m2 a mn en la cual las líneas horizontales

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 1 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Algebra Lineal * Working draft: México, D.F., a 17 de noviembre de 2010.

Algebra Lineal * Working draft: México, D.F., a 17 de noviembre de 2010. Algebra Lineal * José de Jesús Ángel Ángel jjaa@mathcommx Working draft: México, DF, a 17 de noviembre de 2010 Un resumen de los principales temas tratados en un curso de Álgebra Lineal Contenido 1 Sistemas

Más detalles

Menor, cofactor y comatriz

Menor, cofactor y comatriz Menor, cofactor y comatriz Sea A una matriz cuadrada de orden n. Al quitarle la línea i y la columna j se obtiene una submatriz de orden n-1, que se denota habitualmente A i,j. Por ejemplo, con n = 4,

Más detalles

Matrices y sistemas de ecuaciones lineales. Autovalores y autovectores.

Matrices y sistemas de ecuaciones lineales. Autovalores y autovectores. Tema 5 Matrices y sistemas de ecuaciones lineales Autovalores y autovectores 5 Introducción Una matriz es una disposición ordenada de elementos de la forma: a a a m a a a m a n a n a nm Sus filas son las

Más detalles