Maestría en Bioinformática Probabilidad y Estadística: Clase 8

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Maestría en Bioinformática Probabilidad y Estadística: Clase 8"

Transcripción

1 Maestría en Bioinformática Probabilidad y Estadística: Clase 8 Gustavo Guerberoff gguerber@fing.edu.uy Facultad de Ingeniería Universidad de la República Mayo de 2010

2 Contenidos 1 Reversión temporal Cadena reversa Cadenas reversibles 1 Ejemplo

3 Cadena reversa Consideremos una cadena de Markov con matriz de transición P que admite una distribución estacionaria ν tal que ν i > 0 para todo i E. Con esto construimos una matriz Q de manera que sus elementos cumplan la condición: para cada i, j E. ν i q ij = ν j p ji, Observación: La matriz Q es una matriz estocástica. En efecto, q ij 0 para todo i, j E, y además sus filas suman 1: para cada i E. q ij = ν j p ji = 1 ν j p ji = ν i = 1, ν i ν i ν i j E j E j E

4 Interpretación: Consideremos la cadena de Markov con matriz de transición P y supongamos que el estado inicial es π (0) = ν. En tal caso, sabemos que: P(X n = i) = ν i. Ahora calculemos, usando la fórmula de Bayes: P(X n = j X n+1 = i) = P(X n+1 = i X n = j)p(x n = j) P(X n+1 = i) = p jiν j ν i = q ij. De manera que Q es la matriz de transición de la cadena inicial cuando se invierte el sentido del tiempo.

5 El siguiente es un resultado que puede ser de utilidad para encontrar distribuciones estacionarias de una manera sencilla. Lema Consideremos una cadena de Markov con espacio de estados E y matriz de transición P. Demotemos µ a una medida de probabilidad sobre E y supongamos que existe una matriz estocástica Q tal que cumple: µ i q ij = µ j p ji, para cada i, j E. Entonces µ es una distribución estacionaria de P.

6 Demostración: Para cada i E sumamos sobre j a ambos lados de la igualdad: µ i q ij = µ j p ji. j E j E Usando que j E q ij = 1 queda, para cada i E: µ i = j E µ j p ji, y por lo tanto µ es una distribución estacionaria para P.

7 Cadenas reversibles Definición Decimos que una cadena de Markov con distribución inicial ν (una distribución estacionaria) es reversible si se cumple: para cada i, j E. ν i p ij = ν j p ji, En tal caso P = Q, y la cadena original y la de tiempo reverso describen el mismo proceso.

8 Las ecuaciones ν i p ij = ν j p ji se llaman ecuaciones de balance detallado (a diferencia de las ecuaciones que definen una distribución estacionaria, ν i = j E ν jp ji, que se llaman ecuaciones de balance global) y sirven como criterio para encontrar distribuciones estacionarias. Observación: Los modelos de sustitución de nucleótidos de Jukes-Cantor, Kimura, Hasegawa-Kishino-Yano son procesos reversibles (verificar como ejercicio).

9 : Ejemplo A continuación ilustraremos con un ejemplo cómo se calculan las probabilidades de absorción cuando se estudia una cadena de Markov con estados abosrbentes. La ruina del apostador: Consideremos el conjunto E = {0, 1, 2,..., G}, con G fijo, donde cada estado representa el posible capital de un apostador que juega en un casino. Supongamos que la probabilidad de ganar en una apuesta es p y que la probabilidad de perder es q = 1 p; suponemos que en cada apuesta el jugador gana ó pierde una unidad de dinero. X n registra el capital del apostador al tiempo n.

10 El proceso se define como sigue: Si en el tiempo n el capital es un número del conjunto {1, 2, 3,..., G 1}, entonces en el tiempo n + 1 el capital del apostador aumenta una unidad con probabilidad p ó disminuye una unidad con probabilidad q. El apostador deja de apostar cuando alcanza la ganancia G ó cuando su capital es 0. Estos estados pueden verse como estados absorbentes. Para cada i E denotamos: w i = probabilidad de que el jugador llegue a ganar G (antes de perder todo) si comienza con una ganancia inicial i.

11 Observemos que las cantidades w 0, w 1, w 2,..., w G satisfacen el siguiente sistema de ecuaciones lineales: w i = pw i+1 + qw i 1, para i = 1, 2,..., G 1. w 0 = 0. w G = 1. Esto define un sistema de ecuaciones de recurrencia. Hacemos aquí un paréntesis para mostrar cómo se resuelve un sistema de este tipo.

12 Ecuaciones de recurrencia Un sistema de ecuaciones de recurrencia (de orden 2) con coeficientes constantes en un sistema de ecuaciones de la forma: ax i+2 + bx i+1 + cx i = 0, donde i = 0, 1, 2,..., y a, b, c son constantes. Buscamos una solución de la forma: x i = λ i, con λ a determinar. Reemplazando en las ecuaciones de recurrencia obtenemos: aλ i+2 + bλ i+1 + cλ i = λ i (aλ 2 + bλ + c) = 0.

13 De aquí resulta la ecuación característica para el parámetro λ: aλ 2 + bλ + c = 0, cuyas soluciones son: λ 1,2 = b ± b 2 4ac. 2a Es preciso considerar dos casos, dependiendo de si las dos raíces son iguales o distintas. Caso 1: λ 1 λ 2 (esto es, b 2 4ac 0). En tal caso la solución general del sistema de ecuaciones es: x i = Aλ i 1 + Bλi 2, i = 0, 1, 2,...

14 Caso 2: λ 1 = λ 2 (esto es, b 2 4ac = 0). En tal caso la solución general del sistema de ecuaciones es: x i = Aλ i 1 + B iλi 1, i = 0, 1, 2,... En ambos casos, los valores de A y B se calculan a partir de las condiciones de contorno.

15 Ejemplo (continuación) Volvemos ahora al ejemplo de la ruina del apostador. Escribimos las ecuaciones para las probabilidades de absorción en la forma: pw i+2 w i+1 + qw i = 0, i = 0, 1, 2,... Buscando una solución de la forma w i = λ i obtenemos la ecuación característica: cuya solución es: pλ 2 λ + q = 0, λ 1,2 = 1 ± 1 4pq 2p = 1 ± p q. 2p

16 Caso 1: p q. En tal caso λ 1 = 1, λ 2 = q p, y la solución es: w i = A + B ( ) q i, i = 0, 1, 2,..., G. p De las condiciones de contorno w 0 = 0 y w G = 1 se obtiene: A = 1 1 ( ) G, B = ( ) G. 1 q p 1 q p Finalmente queda: w i = ) i ( 1 q p ( ) G, para i = 0, 1, 2,..., G 1 q p

17 Caso 2: p = q. En tal caso λ 1 = λ 2 = 1 2p = 1, y la solución es: w i = A + B i, i = 0, 1, 2,..., G. De las condiciones de contorno w 0 = 0 y w G = 1 se obtiene: Finalmente queda: A = 0, B = 1 G. w i = i, para i = 0, 1, 2,..., G G

Maestría en Bioinformática Probabilidad y Estadística: Clase 4

Maestría en Bioinformática Probabilidad y Estadística: Clase 4 Maestría en Bioinformática Probabilidad y Estadística: Clase 4 Gustavo Guerberoff gguerber@fing.edu.uy Facultad de Ingeniería Universidad de la República Abril de 2010 Contenidos 1 Procesos aleatorios

Más detalles

Maestría en Bioinformática Probabilidad y Estadística: Clase 7

Maestría en Bioinformática Probabilidad y Estadística: Clase 7 Maestría en Bioinformática Probabilidad y Estadística: Clase 7 Gustavo Guerberoff gguerber@fing.edu.uy Facultad de Ingeniería Universidad de la República Abril de 2010 Contenidos 1 Condiciones de ergodicidad

Más detalles

Maestría en Bioinformática Probabilidad y Estadística: Clase 10

Maestría en Bioinformática Probabilidad y Estadística: Clase 10 Maestría en Bioinformática Probabilidad y Estadística: Clase 10 Gustavo Guerberoff gguerber@fing.edu.uy Facultad de Ingeniería Universidad de la República Mayo de 2010 Contenidos 1 Procesos aleatorios

Más detalles

Maestría en Bioinformática Probabilidad y Estadística: Clase 13

Maestría en Bioinformática Probabilidad y Estadística: Clase 13 Maestría en Bioinformática Probabilidad y Estadística: Clase 13 Gustavo Guerberoff gguerber@fing.edu.uy Facultad de Ingeniería Universidad de la República Mayo de 2010 Contenidos 1 Hidden Markov Models

Más detalles

Definición. P(X t+s = j X s = i, X sn = i n,..., X s0 = i 0 ) = P(X t+s = j X s = i)

Definición. P(X t+s = j X s = i, X sn = i n,..., X s0 = i 0 ) = P(X t+s = j X s = i) Definición Cadenas de Markov a tiempo continuo Para extender la propiedad de Markov a tiempo continuo se requiere definir la probabilidad condicional dado que conocemos el proceso en un intervalo continuo

Más detalles

Cadenas de Markov. José Antonio Camarena Ibarrola

Cadenas de Markov. José Antonio Camarena Ibarrola Cadenas de Markov José Antonio Camarena Ibarrola Definiciones elementales El proceso discreto cadena de Markov si se cumple es denominado es la probabilidad de que en el tiempo k, el proceso esté en el

Más detalles

Cadenas de Markov. Su importancia obedece a dos razones: descritos con ellas. Cadenas de Markov

Cadenas de Markov. Su importancia obedece a dos razones: descritos con ellas. Cadenas de Markov Cadenas de Markov Hace más de un siglo se escribió el primer trabajo seminal sobre Cadenas de Markov y aún siguen siendo un instrumento tremendamente útil de modelación estocástica. Su importancia obedece

Más detalles

Procesos estocásticos Sesión 9. Cadenas de Markov a tiempo continuo

Procesos estocásticos Sesión 9. Cadenas de Markov a tiempo continuo Procesos estocásticos Sesión 9. Cadenas de Markov a tiempo continuo Enrique Miranda Universidad of Oviedo Máster Universitario en Análisis de Datos para la Inteligencia de Negocios Contenidos 1. Cadenas

Más detalles

CONTENIDOS. 1. Procesos Estocásticos y de Markov. 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD

CONTENIDOS. 1. Procesos Estocásticos y de Markov. 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD CONTENIDOS 1. Procesos Estocásticos y de Markov 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD 4. Comportamiento Estacionario de las CMTD 1. Procesos Estocásticos

Más detalles

Maestría en Bioinformática Probabilidad y Estadística: Clase 1

Maestría en Bioinformática Probabilidad y Estadística: Clase 1 Maestría en Bioinformática Probabilidad y Estadística: Clase 1 Gustavo Guerberoff gguerber@fing.edu.uy Facultad de Ingeniería Universidad de la República Abril de 2010 Contenidos 1 Introducción 2 Teoría

Más detalles

Revisión - soluciones. lunes 9 de octubre de 2017

Revisión - soluciones. lunes 9 de octubre de 2017 Introducción a los Procesos Estocásticos Curso 7 Revisión - soluciones lunes 9 de octubre de 7. Ejercicio (5 puntos) Considere una cadena de Markov homogénea {X n } n con espacio de S = {,,, } y matriz

Más detalles

Una invitación al estudio de las cadenas de Markov

Una invitación al estudio de las cadenas de Markov Una invitación al estudio de las cadenas de Markov Víctor RIVERO Centro de Investigación en Matemáticas A. C. Taller de solución de problemas de probabilidad, 21-25 de Enero de 2008. 1/ 1 Potencias de

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales CAPíTULO 6 Sistemas de ecuaciones lineales 1 Rango de una matriz a 11 a 1n Sea A = M m n (K) El rango por filas de la matriz A es la dimensión del a m1 a mn subespacio vectorial de K n generado por sus

Más detalles

a de un conjunto S de R n si

a de un conjunto S de R n si 1 235 Máximos, mínimos y puntos de ensilladura Definición.- Se dice que una función real f( x) tiene un máximo absoluto en un punto a de un conjunto S de R n si f( x) f( a) (2) para todo x S. El número

Más detalles

Cadenas de Markov. Mogens Bladt 16 de septiembre de 2017 IIMAS-UNAM

Cadenas de Markov. Mogens Bladt 16 de septiembre de 2017 IIMAS-UNAM Cadenas de Markov Mogens Bladt 16 de septiembre de 2017 IIMAS-UNAM Cadena de Markov Considere variable aleratorio X 0, X 1,... tomando valores en un conjunto finito o discreto, E. Entonces {X n } n 0 es

Más detalles

CONTENIDOS. 1. Definición de Cadena de Markov en Tiempo Continuo. 2. Comportamiento de transición. 3. Comportamiento estacionario

CONTENIDOS. 1. Definición de Cadena de Markov en Tiempo Continuo. 2. Comportamiento de transición. 3. Comportamiento estacionario CONTENIDOS 1. Definición de Cadena de Markov en Tiempo Continuo 2. Comportamiento de transición 3. Comportamiento estacionario 4. Procesos de nacimiento y muerte 1. Definición de Cadena de Markov en Tiempo

Más detalles

Maestría en Bioinformática Probabilidad y Estadística: Clase 3

Maestría en Bioinformática Probabilidad y Estadística: Clase 3 Maestría en Bioinformática Probabilidad y Estadística: Clase 3 Gustavo Guerberoff gguerber@fing.edu.uy Facultad de Ingeniería Universidad de la República Abril de 2010 Contenidos 1 Variables aleatorias

Más detalles

Práctica 1: Sistemas de Ecuaciones Lineales - Matrices

Práctica 1: Sistemas de Ecuaciones Lineales - Matrices ALGEBRA LINEAL Primer Cuatrimestre 2017 Práctica 1: Sistemas de Ecuaciones Lineales - Matrices En todas las prácticas, K es un cuerpo; en general K = Q (los números racionales, R (los números reales o

Más detalles

Matriz asociada a una transformación lineal respecto a un par de bases

Matriz asociada a una transformación lineal respecto a un par de bases Matriz asociada a una transformación lineal respecto a un par de bases Ejercicios Objetivos Comprender cómo se describe una transformación lineal (que actúa en espacios vectoriales de dimensiones finitas)

Más detalles

Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) x u + f

Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) x u + f 1 228 Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) z u = f x x u + f y y u z v = f x x v + f y y v z w = f x

Más detalles

Introducción a la Teoría de la Información

Introducción a la Teoría de la Información Introducción a la Teoría de la Información Tasa de Entropía de un Proceso Estocástico. Facultad de Ingeniería, UdelaR (Facultad de Ingeniería, UdelaR) Teoría de la Información 1 / 13 Agenda 1 Procesos

Más detalles

Ecuaciones lineales de segundo orden

Ecuaciones lineales de segundo orden Ecuaciones lineales de segundo orden Considere la ecuación lineal general de segundo orden A( xy ) + Bxy ( ) + Cxy ( ) = Fx ( ) donde las funciones coeficientes A, B, C y abierto I. F son continuas en

Más detalles

Procesos estocásticos Cadenas de Márkov

Procesos estocásticos Cadenas de Márkov Procesos estocásticos Cadenas de Márkov Curso: Investigación de Operaciones Ing. Javier Villatoro PROCESOS ESTOCASTICOS Procesos estocásticos Es un proceso o sucesión de eventos que se desarrolla en el

Más detalles

Ecuaciones Diferenciales Ordinarias

Ecuaciones Diferenciales Ordinarias Ecuaciones Diferenciales Ordinarias (Coeficientes Indeterminados y Variación de Parámetros) Julio López jclopez@dim.uchile.cl Depto Ingeniería Matemática, Universidad de Chile Otoño 2011, Resumen clases

Más detalles

FORMULARIO CADENAS DE MARKOV

FORMULARIO CADENAS DE MARKOV FORMULARIO CADENAS DE MARKOV Fuente: F. Hillier - G. Lieberman: Introducción a la investigación de operaciones. Sexta edición. Ed. Mc-Graw Hill. Proceso estocástico. Un proceso estocástico es una colección

Más detalles

11.SISTEMAS DE ECUACIONES LINEALES DEFINICIÓN DE ECUACIÓN LINEAL DEFINICIÓN DE SISTEMA LINEAL Y CONJUNTO SOLUCIÓN

11.SISTEMAS DE ECUACIONES LINEALES DEFINICIÓN DE ECUACIÓN LINEAL DEFINICIÓN DE SISTEMA LINEAL Y CONJUNTO SOLUCIÓN ÍNDICE 11SISTEMAS DE ECUACIONES LINEALES 219 111 DEFINICIÓN DE ECUACIÓN LINEAL 219 112 DEFINICIÓN DE SISTEMA LINEAL Y CONJUNTO SOLUCIÓN 220 113 EQUIVALENCIA Y COMPATIBILIDAD 220 11 REPRESENTACIÓN MATRICIAL

Más detalles

Matrices Inversas. Rango Matrices Elementales

Matrices Inversas. Rango Matrices Elementales Matrices Inversas. Rango Matrices Elementales Araceli Guzmán y Guillermo Garro Facultad de Ciencias UNAM Semestre 2018-1 doyouwantmektalwar.wordpress.com Matrices Matrices identidad La matriz identidad

Más detalles

Subspacios Vectoriales

Subspacios Vectoriales Subspacios Vectoriales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Subspacios Vectoriales 1 / 25 Objetivos Al finalizar este tema tendrás que: Saber si un subconjunto es

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES Universidad de Granada Máster de Profesorado U. D. SISTEMAS DE ECUACIONES Director del trabajo : D. Antonio López Megías SISTEMAS DE ECUACIONES Pilar FERNÁNDEZ CARDENETE Granada,

Más detalles

Correspondencia entre vectores y columnas de sus coordenadas respecto a una base fija

Correspondencia entre vectores y columnas de sus coordenadas respecto a una base fija Correspondencia entre vectores y columnas de sus coordenadas respecto a una base fija Objetivos. Mostrar que la correspondencia entre vectores y columnas de sus coordenadas (respecto a una base fija) preserva

Más detalles

Pauta Prueba Solemne 2. y(x) = C 1 x 2 2C 2 x 2. Notemos que el determinante del Wronskiano de u y v esta dado por.

Pauta Prueba Solemne 2. y(x) = C 1 x 2 2C 2 x 2. Notemos que el determinante del Wronskiano de u y v esta dado por. Pauta Prueba Solemne 1. Determine si las siguientes afirmaciones son verdaderas o falsas. Justifique su respuesta. a) (0.5pt) Suponga que las funciones u(x) = x y v(x) = x son soluciones de una ecuación

Más detalles

CONTENIDOS. 1. Procesos Estocásticos y de Markov. 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD

CONTENIDOS. 1. Procesos Estocásticos y de Markov. 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD CONTENIDOS 1. Procesos Estocásticos y de Markov 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD 4. Comportamiento Estacionario de las CMTD 1. Procesos Estocásticos

Más detalles

Cadenas de Markov Tiempo Discreto. Modelado y Análisis de Redes de Telecomunicaciones

Cadenas de Markov Tiempo Discreto. Modelado y Análisis de Redes de Telecomunicaciones Cadenas de Markov Tiempo Discreto Modelado y Análisis de Redes de Telecomunicaciones Motivación Ejemplo 1 Sea un enrutador al que arriban paquetes de otros (varios) routers Cuando más de un paquete llega

Más detalles

Tema 4: Cadenas de Markov. Ezequiel López Rubio Departamento de Lenguajes y Ciencias de la Computación Universidad de Málaga

Tema 4: Cadenas de Markov. Ezequiel López Rubio Departamento de Lenguajes y Ciencias de la Computación Universidad de Málaga Tema 4: Cadenas de Markov Ezequiel López Rubio Departamento de Lenguajes y Ciencias de la Computación Universidad de Málaga Sumario Procesos estocásticos Concepto de cadena de Markov Ecuaciones de Chapman-Kolmogorov

Más detalles

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica

Más detalles

Powered by TCPDF (

Powered by TCPDF ( Powered by TCPDF (www.tcpdf.org) Análisis Matemático II - Curso 2018 Nota sobre formas cuadráticas y aplicación al análisis de extremos de una función Breve resumen acerca de las formas cuadráticas Necesitamos

Más detalles

Modelos Estocásticos I Tercer Examen Parcial Respuestas

Modelos Estocásticos I Tercer Examen Parcial Respuestas Modelos Estocásticos I Tercer Examen Parcial Respuestas. a Cuál es la diferencia entre un estado recurrente positivo y uno recurrente nulo? Cómo se define el período de un estado? Demuestre que si el estado

Más detalles

Matemática 2 MAT022. Clase 6 (Complementos) Departamento de Matemática Universidad Técnica Federico Santa María. Determinante de una matriz

Matemática 2 MAT022. Clase 6 (Complementos) Departamento de Matemática Universidad Técnica Federico Santa María. Determinante de una matriz Matemática 2 MAT022 Clase 6 (Complementos) Departamento de Matemática Universidad Técnica Federico Santa María Tabla de Contenidos 1 Determinante de una matriz Sea A la matriz de orden 2 2 con coeficientes

Más detalles

0 a b X = b c 0. f X (A) = AX XA.

0 a b X = b c 0. f X (A) = AX XA. Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Industriales Álgebra Lineal Convocatoria de Junio 8 de Junio de 2007 (3 ptos.). Sea V = {A M 3 3 (R) / A t = A}. (a) Demostrar que toda

Más detalles

Ejercicios resueltos del capítulo 4

Ejercicios resueltos del capítulo 4 Ejercicios resueltos del capítulo 4 Ejercicios impares resueltos..a Calcular los autovalores y subespacios invariantes asociados a la matriz: A = Calculamos el polinomio característico y resolvemos: λ

Más detalles

Maestría en Estadística Algebra Lineal Práctica 1

Maestría en Estadística Algebra Lineal Práctica 1 Maestría en Estadística Algebra Lineal ráctica. Dadas A = 3 2 5 IR 3 2 y B = 2 2 3 IR 3 2, calcular a 3, a 22, 3A + 2 2B, A B, 2 (A + B). Hallar D IR 3 2 tal que 3A + 2B + D sea la matriz nula. 2. Dadas

Más detalles

UNIVERSIDAD DE MANAGUA Al más alto nivel

UNIVERSIDAD DE MANAGUA Al más alto nivel UNIVERSIDAD DE MANAGUA Al más alto nivel Investigación de Operaciones Encuentro #7 Tema: Cadenas de Markov Prof.: MSc. Julio Rito Vargas A. Grupo:CCEE y ADMVA /26 Objetivos: Aplicar la teoría fundamental

Más detalles

Algunos objetivos de la signatura 2. Sean x 1,x 2,...,x n números reales distintos y sean y 1,y 2,...,y n números reales.

Algunos objetivos de la signatura 2. Sean x 1,x 2,...,x n números reales distintos y sean y 1,y 2,...,y n números reales. Algunos objetivos de la signatura 2 Ajustes por mínimos cuadrados Sean x 1,x 2,...,x n números reales distintos y sean y 1,y 2,...,y n números reales. Algunos objetivos de la signatura 2 Ajustes por mínimos

Más detalles

Matrices, determinantes y sistemas lineales

Matrices, determinantes y sistemas lineales UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Relación de Problemas n o 5 Curso 006-007 Matrices, determinantes y sistemas lineales 8. Dadas las matrices A y B siguientes, calcule

Más detalles

Tema 3 o - Sistemas de Ecuaciones Lineales

Tema 3 o - Sistemas de Ecuaciones Lineales Tema 3 o - Sistemas de Ecuaciones Lineales Definición de Sistema y de Solución 2 Clasificación de los Sistemas atendiendo al n o de Soluciones 3 Sistemas de Cramer FÓRMULS DE CRMER 4 Teorema de Rouchée

Más detalles

Cadenas de Markov Tiempo Discreto. Modelado y Análisis de Redes de Telecomunicaciones

Cadenas de Markov Tiempo Discreto. Modelado y Análisis de Redes de Telecomunicaciones Cadenas de Markov Tiempo Discreto Modelado y Análisis de Redes de Telecomunicaciones Motivación Ejemplo 1 Sea un enrutador al que arriban paquetes de otros (varios) routers Cuando más de un paquete llega

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales 1 Definiciones Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de expresiones de la forma: a 11 x 1 + a 12 x 2 + + a 1n x n = a 21 x 1 + a 22 x 2 + +

Más detalles

(a) (0.5 puntos) Compruebe que esta ecuación tiene exactamente una solución en el intervalo

(a) (0.5 puntos) Compruebe que esta ecuación tiene exactamente una solución en el intervalo UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERÍA. INSTITUTO DE CIENCIAS BÁSICAS. Cálculo Numérico, Control 1. Semestre Otoño 007 Problema 1. Se desea encontrar una raíz de la función f(x) = cos (x) x.

Más detalles

Scientia Et Technica ISSN: Universidad Tecnológica de Pereira Colombia

Scientia Et Technica ISSN: Universidad Tecnológica de Pereira Colombia Scientia Et Technica ISSN: 0122-1701 scientia@utpeduco Colombia VALENCIA ANGULO, EDGAR ALIRIO; MESA, FERNANDO PROPIEDADES DE LA MATRIZ Pn EN UNA CADENA DE MARKOV Scientia Et Technica, vol XIV, núm 39,

Más detalles

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 3: Solución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña

Más detalles

Matrices, determinantes y sistemas lineales

Matrices, determinantes y sistemas lineales UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Relación de Problemas n o 3 Curso 005-006 Matrices, determinantes y sistemas lineales 54. Dadas las matrices A y B siguientes, calcule

Más detalles

Descomposición en forma canónica de Jordan (Segunda versión)

Descomposición en forma canónica de Jordan (Segunda versión) Descomposición en forma canónica de Jordan (Segunda versión) Francisco J. Bravo S. 1 de septiembre de 211 En esta guía se presentan los resultados necesarios para poder construir la forma de Jordan sin

Más detalles

Álgebra Lineal. Tema 7. La forma canónica de Jordan

Álgebra Lineal. Tema 7. La forma canónica de Jordan Álgebra Lineal Tema 7 La forma canónica de Jordan Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J S ALAS, A T ORRENTE Y EJS V ILLASEÑOR Índice

Más detalles

PROCESOS DE MARKOV DE TIEMPO CONTINUO

PROCESOS DE MARKOV DE TIEMPO CONTINUO CHAPTER 3 PROCESOS DE MARKOV DE TIEMPO CONTINUO 3.1 Introducción En este capítulo consideramos el análogo en tiempo continuo de las Cadenas de Markov de tiempo discreto. Como en el caso de tiempo discreto,

Más detalles

Ecuaciones, inecuaciones y sistemas

Ecuaciones, inecuaciones y sistemas Ecuaciones, inecuaciones y sistemas. Matemáticas Aplicadas a las Ciencias Sociales I 1 Ecuaciones, inecuaciones y sistemas Ecuaciones con una incógnita. Ecuación.- Una ecuación es una igualdad de expresiones

Más detalles

Extremos Locales. Un punto x 0 es un punto crítico de f si Df(x 0 ) = 0. Un punto crítico que no es un extremo local se llama punto silla.

Extremos Locales. Un punto x 0 es un punto crítico de f si Df(x 0 ) = 0. Un punto crítico que no es un extremo local se llama punto silla. Extremos Locales Entre las caracteristicas geometricas básicas de la gráficas de una función estan sus puntos extremos, en los cuales la función alcanza sus valores mayor y menor. Definicón.- Si f : u

Más detalles

GUIA DE MATEMÁTICA. ECUACIÓN DE 2 GRADO. I. ITEM DE VERDADERO Y FALSO. Indica si las siguientes proposiciones son verdaderas o falsas.

GUIA DE MATEMÁTICA. ECUACIÓN DE 2 GRADO. I. ITEM DE VERDADERO Y FALSO. Indica si las siguientes proposiciones son verdaderas o falsas. GUIA DE MATEMÁTICA. ECUACIÓN DE GRADO. Nombre: Curso: 3 medio Fecha: I. ITEM DE VERDADERO Y FALSO. Indica si las siguientes proposiciones son verdaderas o falsas.. La fórmula general de la ecuación de

Más detalles

Problemas de Álgebra 2 o de Bachillerato

Problemas de Álgebra 2 o de Bachillerato Problemas de Álgebra 2 o de Bachillerato Problema 1 Calcular los productos de matrices A A, A B, B A y B B, siempre que sea posible, donde: 2 1 3 1 2 1. A = y B = 1 0 2 1 1 1 2 2. A = 1 1 0 2 y B = 3.

Más detalles

Matrices, determinantes y sistemas lineales

Matrices, determinantes y sistemas lineales Grado en Óptica y Optometría Curso 00-0 Hoja de ejercicios n o Matrices, determinantes y sistemas lineales 0. Dadas las matrices A y B siguientes, calcule A + B, A B, AB, BA, AA, BB. 0 0 A = 3 0 0 B =

Más detalles

Cadenas de Markov Tiempo Continuo. Modelado y Análisis de Redes de Telecomunicaciones

Cadenas de Markov Tiempo Continuo. Modelado y Análisis de Redes de Telecomunicaciones Tiempo Continuo Modelado y Análisis de Redes de Telecomunicaciones 1 Agenda en tiempo continuo Ergodicidad de la cadena Ejemplo: Líneas Telefónicas página 2 CMTC Consideremos ahora los procesos de Markov

Más detalles

TALLER 1 DE ALGEBRA LINEAL Y GEOMETRÍA INGENIERÍA AMBIENTAL - UNIVERSIDAD DE CÓRDOBA FACTORIZACIÓN LU Y CADENAS DE MARKOV

TALLER 1 DE ALGEBRA LINEAL Y GEOMETRÍA INGENIERÍA AMBIENTAL - UNIVERSIDAD DE CÓRDOBA FACTORIZACIÓN LU Y CADENAS DE MARKOV TALLER 1 DE ALGEBRA LINEAL Y GEOMETRÍA INGENIERÍA AMBIENTAL - UNIVERSIDAD DE CÓRDOBA FACTORIZACIÓN LU Y CADENAS DE MARKOV DESCRIPCIÓN: En el siguiente trabajo se mostrarán algunos métodos para encontrar

Más detalles

Matemática 2 MAT022. Clase 4 (Complementos) Departamento de Matemática Universidad Técnica Federico Santa María. Sistemas de Ecuaciones. logo.

Matemática 2 MAT022. Clase 4 (Complementos) Departamento de Matemática Universidad Técnica Federico Santa María. Sistemas de Ecuaciones. logo. Matemática 2 MAT022 Clase 4 (Complementos) Departamento de Matemática Universidad Técnica Federico Santa María Tabla de Contenidos Sistemas de Ecuaciones 1 Sistemas de Ecuaciones Consideremos el sistema

Más detalles

Rudimentos 4: Progresiones Profesor Ricardo Santander

Rudimentos 4: Progresiones Profesor Ricardo Santander Rudimentos 4: Progresiones Profesor Ricardo Santander Este capitulo esta destinado a presentar contenidos y actividades que permitirán al estudiante, verificar que un conjunto de números satisface las

Más detalles

MATEMÁTICAS: EBAU 2017 MODELO CASTILLA Y LEÓN

MATEMÁTICAS: EBAU 2017 MODELO CASTILLA Y LEÓN MATEMÁTICAS: EBAU 207 MODELO CASTILLA Y LEÓN Opción A Ejercicio A x y + z = Dado el sistema de ecuaciones lineales { 3x + λy =, se pide: 4x + λz = 2 a) Discutir el sistema (existencia y número de soluciones)

Más detalles

Definición (matriz): Definición (dimensión de una matriz): Si una matriz tiene m renglones y n columnas se dice que es de dimensión m n.

Definición (matriz): Definición (dimensión de una matriz): Si una matriz tiene m renglones y n columnas se dice que es de dimensión m n. Índice general 1. Álgebra de Matrices 1 1.1. Conceptos Fundamentales............................ 1 1.1.1. Vectores y Matrices........................... 1 1.1.2. Transpuesta................................

Más detalles

1. DIAGONALIZACIÓN. FORMAS CANÓNICAS

1. DIAGONALIZACIÓN. FORMAS CANÓNICAS 1 1. DIAGONALIZACIÓN. FORMAS CANÓNICAS 1. Se considera la matriz: A = ( 2 3 4 13 con coeficientes en R. Hallar los valores propios, los vectores propios y una matriz P que permita la diagonalización de

Más detalles

Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. ) ( + ( ) ( )

Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. ) ( + ( ) ( ) MATRICES Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. Ejemplo 1. Algunos ejemplos de matrices ( + ( ) ( + ( ) El tamaño o el orden de una

Más detalles

36 } Partiendo de nuestros datos. La media es: 36, 3 36, 5 36, 4 36, 6. Partiendo del dato obtenido de la media. La varianza es: σ 2 = 35 6 = 5.

36 } Partiendo de nuestros datos. La media es: 36, 3 36, 5 36, 4 36, 6. Partiendo del dato obtenido de la media. La varianza es: σ 2 = 35 6 = 5. Tarea 7 Variables Aleatorias Discretas En los ejercicios del al 7 encontrar: a) La función de distribución variables, b) La media y varianza de la variable.. Considere el experimento de lanzar dos dados

Más detalles

Espacios vectoriales

Espacios vectoriales CAPíTULO 2 Espacios vectoriales 1. Definición de espacio vectorial Es frecuente representar ciertas magnitudes físicas (velocidad, fuerza,...) mediante segmentos orientados o vectores. Dados dos de tales

Más detalles

Primer examen parcial Geometría y Álgebra Lineal 1 2 de mayo de 2015 Respuestas y solución

Primer examen parcial Geometría y Álgebra Lineal 1 2 de mayo de 2015 Respuestas y solución Primer examen parcial Geometría y Álgebra Lineal 1 2 de mayo de 2015 Respuestas y solución Respuestas a la versión 1: (La versión 1 es aquélla cuyo primer ejercicio dice Un sistema lineal de m ecuaciones

Más detalles

Para localizar un punto o un objeto en el espacio necesitamos un sistema de referencia. R es una cuaterna { O,i, j, k}

Para localizar un punto o un objeto en el espacio necesitamos un sistema de referencia. R es una cuaterna { O,i, j, k} Geometría afín del espacio MATEMÁTICAS II 1 1 SISTEMA DE REFERENCIA. ESPACIO AFÍN Para localizar un punto o un objeto en el espacio necesitamos un sistema de referencia. Definición: Un sistema de referencia

Más detalles

Espacios vectoriales con producto interno

Espacios vectoriales con producto interno Espacios vectoriales con producto interno Mariano Suárez-Alvarez 24 de junio, 2011 1. Espacios con producto interno... 1 2. Normas y distancias... 3 3. Ortogonalidad... 5 4. Proyectores ortogonales...

Más detalles

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2016 Licencia Creative Commons 4.0 Internacional J.

Más detalles

Matrices, determinantes y sistemas lineales

Matrices, determinantes y sistemas lineales UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Relación de Problemas n o 7 Curso 008-009 Matrices, determinantes y sistemas lineales 0. Dadas las matrices A y B siguientes, calcule

Más detalles

Sistemas de ecuaciones lineales. Matrices

Sistemas de ecuaciones lineales. Matrices Dpto de MATEMÁTICA APLICADA A LOS RECURSOS NATURALES Sección departamental en la ETSI de Montes Algebra Sistemas de ecuaciones lineales Matrices Sistemas lineales Solución de un sistema lineal Sistemas

Más detalles

Llamaremos número real a cualquier fracción decimal. Las fracciones decimales periódicas se llaman números racionales, así:

Llamaremos número real a cualquier fracción decimal. Las fracciones decimales periódicas se llaman números racionales, así: Capítulo 1 Números Reales 1.1. Introducción Llamaremos número real a cualquier fracción decimal. Ejemplos:, 0;, 3333...;, 5; 0,785; 3, 14159...;,718818...; 1,414136... Las fracciones decimales periódicas

Más detalles

Semana 14 [1/19] Polinomios. 8 de junio de Polinomios

Semana 14 [1/19] Polinomios. 8 de junio de Polinomios Semana 14 [1/19] 8 de junio de 2007 División Semana 14 [2/19] Teorema de la División Al ser (K[x], +, ) un anillo, ocurre un fenómeno similar al de : Las divisiones deben considerar un posible resto. Teorema

Más detalles

Sistemas de ecuaciones

Sistemas de ecuaciones ACTIVIDADES Ecuación reordenada Incógnitas Coeficientes Término independiente Solución cualquiera x y= x, y, (, 0) x+ y+ z= 8 x, y, z,, 8 (0, 0, 8) c) 4x+ y z= 8 x, y, z 4,, 8 (,, 6) d) 4xy 4z+ t= 7 x,

Más detalles

Es decir, det A = producto de diagonal principal producto de diagonal secundaria. Determinante de una matriz cuadrada de orden 3

Es decir, det A = producto de diagonal principal producto de diagonal secundaria. Determinante de una matriz cuadrada de orden 3 1.- DETERMINANTE DE UNA MATRIZ CUADRADA Determinante de una matriz cuadrada de orden 1 Dada una matriz cuadrada de orden 1, A = (a), se define det A = det (a) = a Determinante de una matriz cuadrada de

Más detalles

Tema 5: Sistemas de ecuaciones lineales.

Tema 5: Sistemas de ecuaciones lineales. TEORÍA DE ÁLGEBRA: Tema 5 DIPLOMATURA DE ESTADÍSTICA 1 Tema 5: Sistemas de ecuaciones lineales 1 Definiciones generales Definición 11 Una ecuación lineal con n incognitas es una expresión del tipo a 1

Más detalles

I Conceptos Generales 1

I Conceptos Generales 1 Índice I Conceptos Generales 1 1. Procesos Estocásticos 3 1.1. Introducción............................ 3 1.2. Definición de proceso estocástico................ 4 1.3. Distribución de un proceso estocástico.............

Más detalles

Reemplazos Algebraicos. Gabriel Darío Uribe Guerra Universidad de Antioquia. XIII COLOQUIO REGIONAL DE MATEMÁTICAS y III SIMPOSIO DE ESTADÍSTICA.

Reemplazos Algebraicos. Gabriel Darío Uribe Guerra Universidad de Antioquia. XIII COLOQUIO REGIONAL DE MATEMÁTICAS y III SIMPOSIO DE ESTADÍSTICA. Reemplazos Algebraicos Gabriel Darío Uribe Guerra Universidad de Antioquia XIII COLOQUIO REGIONAL DE MATEMÁTICAS y III SIMPOSIO DE ESTADÍSTICA. Universidad de Nariño San Juan de Pasto Mayo 2016 1/23 Introducción

Más detalles

ÁLGEBRA Algunas soluciones a la Práctica 4

ÁLGEBRA Algunas soluciones a la Práctica 4 ÁLGEBRA Algunas soluciones a la Práctica 4 Equivalencia de matrices. Sistemas de ecuaciones Curso 28 29 2. Existen dos matrices de igual dimensión que tengan el mismo rango pero no sean ni equivalentes

Más detalles

E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 9: Sistemas de EDOs lineales

E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 9: Sistemas de EDOs lineales ETS Minas: Métodos Matemáticos Resumen y ejemplos Tema 9: Sistemas de EDOs lineales Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Noviembre

Más detalles

Práctico 2 - parte 1

Práctico 2 - parte 1 1. ([2], p.8) Práctico 2 - parte 1 Cadenas de Markov en tiempo discreto: propiedad de Markov, matriz de transición. Fecha de entrega: viernes 2 de septiembre Sea {X n } n 0 una cadena de Markov homogénea

Más detalles

Álgebra Lineal - Grado de Estadística. Examen final 26 de junio de 2013 APELLIDOS, NOMBRE:

Álgebra Lineal - Grado de Estadística. Examen final 26 de junio de 2013 APELLIDOS, NOMBRE: Álgebra Lineal - Grado de Estadística Examen final de junio de APELLIDOS, NOMBRE: DNI: Firma Primer parcial Ejercicio ( Sea A una matriz simétrica definida positiva de orden n y v R n Pruebe que la matriz

Más detalles

TEMA 3. Algebra. Teoría. Matemáticas

TEMA 3. Algebra. Teoría. Matemáticas 1 1 Las expresiones algebraicas Las expresiones algebraicas son operaciones aritméticas, de suma, resta, multiplicación y división, en las que se combinan letras y números. Para entenderlo mejor, vamos

Más detalles

Resolver ecuaciones cuadráticas. Departamento de Matemáticas Universidad de Puerto Rico - Arecibo

Resolver ecuaciones cuadráticas. Departamento de Matemáticas Universidad de Puerto Rico - Arecibo Resolver ecuaciones cuadráticas Departamento de Matemáticas Universidad de Puerto Rico - Arecibo Ecuación cuadrática en forma general Una ecuación cuadrática tiene una forma general como sigue ax + bx

Más detalles

ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS.

ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS. ALGEBRA I, ALGEBRA Y TRIGONOMETRIA 520135, 522115 Segundo Semestre CAPITULO 6: POLINOMIOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K

Más detalles

1. Matrices. Operaciones con matrices

1. Matrices. Operaciones con matrices REPASO MUY BÁSICO DE MATRICES. Matrices. Operaciones con matrices.. Introducción Las matrices aparecieron por primera vez hacia el año 850, introducidas por el inglés J. J. Sylvester. Su desarrollo se

Más detalles

Universidad Carlos III de Madrid Licenciatura en Administración de Empresas Examen de Programación Matemática 19 de Septiembre de 2007 Soluciones

Universidad Carlos III de Madrid Licenciatura en Administración de Empresas Examen de Programación Matemática 19 de Septiembre de 2007 Soluciones Universidad Carlos III de Madrid Licenciatura en Administración de Empresas Examen de Programación Matemática 9 de Septiembre de 7 Soluciones. ( puntos Tu empresa proporciona automóviles a algunos de sus

Más detalles

Ecuaciones Ecuación cuadrática Ejercicios resueltos. x 2 8x + 15 = 0. x = 8 ± 4 2

Ecuaciones Ecuación cuadrática Ejercicios resueltos. x 2 8x + 15 = 0. x = 8 ± 4 2 Ecuaciones Ecuación cuadrática Ejercicios resueltos 1. Resolver la ecuación: ( 3)( + 4) = 1( ) ( 3)( + 4) = 1( ) + 5 1 = 1 4 8 + 15 = 0 coeficientes de la ec. cuadrática: a = 1, b = 8, c = 15 Discriminante

Más detalles

Álgebra lineal. Noviembre 2018

Álgebra lineal. Noviembre 2018 Álgebra lineal. Noviembre 08 Opción A Ejercicio. (Puntuación máxima:,5 puntos) Sea el siguiente sistema de ecuaciones lineales: 4ax + 4ay + z = a ax + y az = a, se pide: 4ax + 4ay + az = 4 (,5 puntos)

Más detalles

ÁLGEBRA Ejercicios no resueltos de la Práctica 4

ÁLGEBRA Ejercicios no resueltos de la Práctica 4 ÁLGEBRA Ejercicios no resueltos de la Práctica 4 Equivalencia de matrices. Sistemas de ecuaciones (Curso 2007 2008) 3. Decidir si las matrices A y B son equivalentes por filas y/o equivalentes por columnas.

Más detalles

VECTORES : Las Cantidades Vectoriales cantidades escalares

VECTORES : Las Cantidades Vectoriales cantidades escalares VECTORES En física hay dos tipos de cantidades: Las Cantidades Vectoriales son aquellas que tiene tanto magnitud como dirección y sentido sobre la dirección), mientras que las cantidades escalares son

Más detalles

Procesos estocásticos. Primera Prueba 1

Procesos estocásticos. Primera Prueba 1 08513. Procesos estocásticos. Primera Prueba 1 Problema 1. El número de partículas en una región del espacio evoluciona de la siguiente manera: en cada unidad de tiempo, cada partícula contenida en ella

Más detalles