16 febrer 2016 Integrals exercicis. 3 Integrals
|
|
|
- María Luz Barbero Lara
- hace 7 años
- Vistas:
Transcripción
1 I. E. S. JÚLIA MINGUELL Matemàtiques 2n BAT. 16 febrer 2016 Integrals exercicis 3 Integrals 28. Troba una funció primitiva de les següents funcions: () = 1/ () = 3 h() = 2 () = 4 () = cos () = sin () = 7 cos 7 () =3cos 3 () = cos 3 () = cos 4 () = 8 7 () = 16 () = 32 () = 2 () = () = 10 Definició (funció primitiva): Sigui la funció (). Direm «primitiva d» a qualsevol funció () tal que () =(), és a dir: () és la derivada d () () és primitiva d () Teorema: Sigui la funció (), i sigui una primitiva seva qualsevol, (). Aleshores, per a qualsevol altra primitiva Φ() de la funció (), existeix una constant R tal que: Φ() =() +. Definició (integral indefinida): Sigui la funció (), i sigui una primitiva seva qualsevol, (). Denominarem integral indefinida (o primitiva general ) de la funció al conjunt de totes les seves funcions primitives, que en virtud del teorema anterior podrà escriure s de la forma: () +, R. Indicarem el seu càlcul així:: () = () + COMENTARIS: La funció que integrem, (), rep el nom de integrand. El símbol. es coneix amb el nom de símbol integral. L expressió ens indica dues coses: on acaba l integrand, i quina és la variable respecte de la qual integrem. Rep el nom de diferencial d ics (o diferencial de ve, si, posem per cas, fos la variable). 1
2 29. Troba, i expressa adequadament, la integral indefinida de les següents funcions: 1) 2) 4) 5) + 3) 6) 7) 8) 9), 10), 11) 12), 13) 14) 15) 16) 17) 18) 19) 9 20) 22) 24) ) ) + 21) PROPIETATS de LINEALITAT de les integrals: = ( +) = + Les constants poden sortir Integral de la suma = suma de les integrals Recordatori: Algunes regles de derivació 1) = =0 8) (sin ) = cos 2) = =1 9) (cos ) = sin 3) =+ = + 10) (tg ) = = (1 +tg ) 4) = = 11) (arcsin ) = 5) = = 12) (arcos ) = 6) = = 13) (arctg ) = 7) =ln = 2
3 30. (Càlcul d àrees: exercici elemental). Considera les següents quatre funcions: () = 2 () = h() = 1 () =sin+2 a) Representa gràficament, i h a la regió [0,5]. b) Troba l àrea del recinte limitat per la gràfica d, l eix d abscisses i les rectes : = 2 i : = 5. c) Troba l àrea del recinte limitat per la gràfica de, l eix d abscisses i les rectes : = 2 i : = 5. d) Troba l àrea del recinte limitat per la gràfica d h, l eix d abscisses i les rectes : = 2 i : = 5. e) Identifica al diagrama on has fet les darreres representacions el recinte limitat per la gràfica d h, la gràfica d, l eix d abscisses i les rectes : = 2 i : = 5. Després, calcula la seva àrea. f) Representa gràficament a la regió [0,2]. Després, troba l àrea de la regió compresa entre la seva gràfica i l eix d abscisses en aquesta regió. 31. Representa gràficament les següents funcions en els intervals indicats, i calcula amb la regla de Barrow les corresponents àrees sota la corba: a) 1 b) (2 ) c) (1 ) d) (cos +sin ) Regla de Barrow (I): càlcul d àrees sota gràfiques amb funcions contínues no negatives Sigui la funció (), contínua i no negativa en l interval =[,], i sigui la funció (), primitiva d en el mateix interval. Aleshores, l àrea sota la gràfica d entre = i =, que escriurem així: (), es pot calcular fent: () = () () () NOTA: la condició de continuïtat d, així com la definició de derivada d, als extrems d, la relaxem, i hi exigirem només els corresponents límits laterals (en per la dreta i en per l esquerra). 3
4 Regla de Barrow (II): funcions no negatives i contínues excepte un salt finit Si () és no negativa en l interval = [, ], i es contínua en tot l interval excepte una discontinuïtat de salt finit al punt = (,), podem reduïr el problema del càlcul de l àrea sota la gràfica d en al càlcul en [, ] i el càlcul en [, ], doncs aquestes dues àrees sí les podrem intentar avaluar aplicant la regla de Barrow, i l àrea total en serà la suma: () = () + () () + () NOTA: Independentment del valor real d en (si hi està definida), considerarem que el seu valor és _ = lim () per a buscarne la primitiva en [, ], (), així com considerarem que hi val =lim () per a buscar-ne la primitiva en [, ], (). Integral Definida (definició operativa) Sigui la funció (), contínua en l interval = [, ]. Direm sobre a la suma de les àrees de totes les regions compreses entre la gràfica d i l eix d abscisses on sigui positiva en. Direm sota a la suma de les àrees de totes les regions compreses entre la gràfica d i l eix d abscisses on sigui negativa en. Definició: la diferència sobre sota rep el nom de integral definida amb límit inferior i límit superior de la funció, escrit així: () = sobre sota Exemple: a la il lustració, sobre = ++ sota = + NOTA: Representant la funció a un paper de densitat coneguda, retallant les regions, pesant-les i dividint la massa entre la densitat, coneixem les àrees. La definició rigorosa que Riemann donà d integral, però, no necessita d aquest procediment i es basa en un límit. 4
5 PROPIETATS de la INTEGRAL DEFINIDA Teorema de Newton-Leibnitz: Sigui la funció (), contínua en l interval =[,], i sigui la funció (), primitiva d en el mateix interval. Aleshores, la integral definida d entre els límits = i = es pot calcular amb la regla de Barrow: Integrals de funcions amb paritat definida en intervals simètrics: Si la funció () té algun tipus de simetria, es verifica que: Separació de la integral en dues etapes: Si volem integrar () en =[,] i (, ), sempre podem fer: () = () + () Ampliació de la definició (discontinuïtat de salt finit): Si la funció () que volem integrar en =[,] només presenta una discontinuïtat de salt finit al punt = (, ), definirem la seva integral definida amb una fórmula semblant a l anterior (de les dues etapes ), però integrant en el primer tram la funció (), que pren els mateixos valors que en tot excepte en, on val _ = lim (), i en el segon tram integrarem (), que pren els mateixos valors que en tot excepte en, on val =lim (). És a dir: () = () + () Ampliació de la definició (inversió de l interval d integració): Si <, definirem: Linealitat: si () és parella: () () = () () si () és senar: () = 0 () = = 2 () = () ( +) = + 5
6 31. Problemes d integral definida: e) Calcula l àrea sota la gràfica de la funció () entre =0 i =3, sent-hi < 1 () = 7 1 f) Calcula l àrea sota la gràfica d () =cos entre = i =. g) Calcula la integral definida següent, i després justifica el resultat: / () / h) Calcula l àrea del recinte tancat per () =1+, () = 2+4, l eix d abscisses i l eix d ordenades. i) Sigui la paràbola () = +4. Calcula l àrea del recinte tancat per la seva gràfica i les rectes : = +4 i : = 2. j) Una partícula es desplaça al llarg de l eix X set metres. Està sotmesa a l acció d una força F que volem estudiar, la qual actua tota l estona només en la direcció de l eix X. La component d aquesta força val, en funció de la posició i expressada en newtons (N): 5 [0, 1) m () = 5 [1, 6) m [6, 7] m Sabent que, en una dimensió com és el nostre cas, el treball que fa una força F entre dues posicions A i B es calcula així: = (), troba el treball que ha fet F al llarg del trajecte. k) Una partícula es desplaça al llarg de l eix X, sotmesa a una força paral lela a l eix, la component de la qual val: () = 150 cos, on s expressa en m i en N. Considera les posicions (en m): =0, =1, =2, =3 i =4. Calcula els treballs següents:,,,. Interpreta el resultat en termes geomètrics, sabent que en termes físics una força fa treball positiu quan va a favor del moviment, i negatiu quan va en contra. 6
7 / l) Calcula la integral definida següent: tg. m) Calcula la integral definida següent: sin( 7). / n) Calcula la integral definida següent [SELE 10]: sin. o) Sigui la funció () = 1 i la recta : =, >0. Fes un esbós del recinte limitat per les seves gràfiques i els dos eixos. Troba el valor del paràmetre, sabent que l àrea d aquest recinte és 14/3. [SELE 13] p) Sigui la funció () = 1 per a 1. Troba l equació de la recta tangent a la gràfica d en el punt d abscissa =10. Calcula l àrea del recinte limitat per la gràfica d, l eix d abscisses i la recta : = 5. [SELE 13] q) Calcula l àrea de la regió compresa entre la gràfica d () =2 i l eix d abscisses a l interval [1,3]. r) Calcula l àrea de la regió compresa entre les gràfiques d () =1+5 i () = 1 2 a l interval [0,2]. s) Siguin les funcions () = +4 i () =+3. Calcula l àrea del recinte limitat per les seves gràfiques. t) Calcula l àrea de la regió compresa entre les gràfiques d () = 3 i () = a l interval [0,3]. RESUM d algunes TÈCNIQUES de CÀLCUL d àrees amb funcions contínues: 1.- Àrea entre () i eix X, en =[,], quan no hi canvia de signe: = () 2.- Àrea entre () i eix X, en =[,], quan hi canvia de signe vegades: primer, trobem i ordenem de menor a major els corresponents punts de tall, (,,, ). Després, calculem: = ()+ () + + () 3.- Àrea entre () i () en =[,]: construïm Φ() =() (). L àrea buscada és igual a l àrea entre Φ() i eix X, que calculem amb (1) ó (2). 7
8 32. Calcula les següents integrals indefinides (1-5 de r. de la cadena, 6-10 per parts): 1) 2 2) cos sin 3) tg 4) sin cos 5) 6) cos 7) sin6 8) 9) 12 10) ln 33. Integrals per parts: 34. Integrals variades: 22.- cos 23.- sin 4 8
9 35. Integrals immediates: 9
10 36. Integrals quasiimmediates: 10
11 RESUM TÈCNIQUES BÀSIQUES de CÀLCUL de PRIMITIVES: 11
12 12
Data de lliurament: divendres 8 d abril de 2016
INS JÚLIA MINGUELL Matemàtiques 2n BAT. 18 març 2016 Dossier recuperació (2a AVAL.) DOSSIER de RECUPERACIÓ: 2a AVALUACIÓ Data de lliurament: divendres 8 d abril de 2016 Condicions: i) El no lliurament
2 desembre 2015 Límits i número exercicis. 2.1 Límits i número
I. E. S. JÚLIA MINGUELL Matemàtiques 2n BAT. 2 desembre 205 Límits i número exercicis 2. Límits i número 4. Repàs de logaritmes i exponencials: troba totes les solucions de cadascuna de les següents equacions:
DERIVADES. TÈCNIQUES DE DERIVACIÓ
UNITAT 7 DERIVADES. TÈCNIQUES DE DERIVACIÓ Pàgina 56 Tangents a una corba y f (x) 5 5 9 4 Troba, mirant la gràfica i les rectes traçades, f'(), f'(9) i f'(4). f'() 0; f'(9) ; f'(4) 4 Digues uns altres
Gràficament: una funció és contínua en un punt si en aquest punt el seu gràfica no es trenca
Funcions contínues Funcions contínues Continuïtat d una funció Si x 0 és un nombre, la funció f(x) és contínua en aquest punt si el límit de la funció en aquest punt coincideix amb el valor de la funció
Proves d accés a la Universitat per a més grans de 25 anys Convocatòria 2013
Pàgina 1 de 5 Sèrie 3 Opció A A1.- Digueu de quin tipus és la progressió numèrica següent i calculeu la suma dels seus termes La progressió és geomètrica de raó 2 ja que cada terme s obté multiplicant
TEMA 5 : Derivades. Tècniques de derivació. Activitats
TEMA 5 : Derivades. Tècniques de derivació Activitats. Calculeu, mitjançant la definició de derivada, la derivada de les funcions següents en els punts indicats: a) f() en f() + 4 5 en - c) f() 6 + 5 en
ANÀLISI. MATEMÀTIQUES-2
1. ANÀLISI. Caldrà repassar alguns temes de cursos anteriors, com el tema de Funcions polinòmiques i, els de Funcions reals i Límits de funcions, caldrà recordar també els gràfics i propietats més importants
CARACTERÍSTIQUES DE FUNCIONS ELEMENTALS
CARACTERÍSTIQUES DE FUNCIONS ELEMENTALS 1. FUNCIÓ CONSTANT (document d'ajuda: 1_funcio_constant.html ) Expressió algèbrica: f(x) = n. Gràfica: 2. FUNCIÓ LINEAL (document d'ajuda: 2_funcio_lineal.html )
Una funció és una relació entre dues variables, de tal manera que al variar el valor d'una d'elles va variant el valor de l'altra.
UNITAT 7: FUNCIONS. Definició Una funció és una relació entre dues variables, de tal manera que al variar el valor d'una d'elles va variant el valor de l'altra. Eemple: Completa: f() g() - h() - - (-)
QUADERN d ESTUDI de RECTES TANGENTS
QUADERN d ESTUDI de RECTES TANGENTS per a les PAU i 2n de Batxillerat Autor: Pepe Ródenas Borja [email protected] http://manifoldo.weebly.com Descripció del material: Aquest quadern consisteix
Sèrie 5. Resolució: 1. Siguin i les rectes de d equacions. a) Estudieu el paral lelisme i la perpendicularitat entre les rectes i.
Oficina d Accés a la Universitat Pàgina 1 de 11 Sèrie 5 1. Siguin i les rectes de d equacions : 55 3 2 : 3 2 1 2 3 1 a) Estudieu el paral lelisme i la perpendicularitat entre les rectes i. b) Trobeu l
Examen Final 17 de gener de 2013
MATEMÀTIQUES FIB-UPC Examen Final 7 de gener de 03 a) Representeu gràficament la corba definida per l equació y = x 5x. b) Determineu si el conjunt C = { x R x 5x 6 } és fitat superiorment inferiorment)
ACTIVITATS. a) b) c) d) INS JÚLIA MINGUELL 2n Batxillerat. dv, 18 de març Alumne:
INS JÚLIA MINGUELL 2n Batxillerat Matemàtiques Tasca Continuada 4 «Matrius i Sistemes d equacions lineals» Alumne: dv, 18 de març 2016 LLIURAMENT: dm, 5 d abril 2016 NOTA: cal justificar matemàticament
UIB 2 + f (x) + f(x) ց ց ր ր Per tant, el punt ( 3. Una altra forma de veure-ho és calcular la derivada segona i mirar el signe en x = 3: 2 f (x) =
El cas positiu no té solució. Si analitzam el cas negatiu, ens surt x = x+, d on x =. A continuació fem la taula següent per veure si el valor obtingut és un màxim, mínim o un punt de sella. x + f (x)
11 Límits de funcions. Continuïtat i branques infinites
Límits de funcions. Continuïtat i branques infinites Pàgina 7 A través d'una lupa a) A = + d " A = " + d A = 0 d "+ Soroll i silenci I = + d " 0 I = 0 d "+ Pàgina 75 a) Cert Cert Cert d) Cert e) Fals f)
1. Què tenen en comú aquestes dues rectes? Com són entre elles? 2. En què es diferencien aquestes dues rectes?
En la nostra vida diària trobem moltes situacions de relació entre dues variable que es poden interpretar mitjançant una funció de primer grau. La seva expressió algebraica és del tipus f(x)=mx+n. També
VECTORS I RECTES AL PLA. Exercici 1 Tenint en compte quin és l'origen i quin és l'extrem, anomena els següents vectors: D
VECTORS I RECTES AL PLA Un vector és un segment orientat que és determinat per dos punts, A i B, i l'ordre d'aquests. El primer dels punts s'anomena origen i el segons es denomina extrem, i s'escriu AB.
Propietats de les desigualtats.
Inequacions Desigualtats Direm que a < b a és menor que b si b a és un nombre positiu. Gràficament, a queda a l esquerra de b. Direm que a > b a major que b si a b és un nombre positiu. Gràficament, a
Sigui un carreró 1, d amplada A, que gira a l esquerra i connecta amb un altre carreró, que en direm 2, que és perpendicular al primer i té amplada a.
ENUNCIAT: Sigui un carreró 1, d amplada A, que gira a l esquerra i connecta amb un altre carreró, que en direm 2, que és perpendicular al primer i té amplada a. Dos transportistes porten un vidre de longitud
Indiqueu en quins punts Y = f(x) no és contínua, el tipus de discontinuïtats de cada cas i les asímptotes que presenta. (0,1 9 +0,8=1,7 punts)
Generalitat de Catalunya Departament d Ensenyament Institut Jaume Balmes Nom: 1.- Trobeu la funció inversa o recíproca de la funció recorregut de la funció yf(). f ( ) Departament de Matemàtiques 1MA:
Matemàtiques Sèrie 1. Instruccions
Proves d accés a cicles formatius de grau superior de formació professional inicial, d ensenyaments d arts plàstiques i disseny, i d ensenyaments esportius 0 Matemàtiques Sèrie SOLUCIONS, CRITERIS DE CORRECCIÓ
TEMA 5 : Límits de funcions. Continuïtat
TEMA : Límits de uncions. Continuïtat.. LÍMIT D UNA FUNCIÓ EN UN PUNT... Conceptes bàsics a c signiica que pren valors cada vegada més pròims a c. Es llegei tendei a c : ;.9;.8;..., ;.9;.99;.999... c -
Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 6 PAU 2012
Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 6 SÈRIE 4 1 1 k 1.- Determineu el rang de la matriu A = 1 k 1 en funció del valor del paràmetre k. k 1 1 [2 punts] En ser la matriu
FUNCIONS REALS. MATEMÀTIQUES-1
FUNCIONS REALS. 1. El concepte de funció. 2. Domini i recorregut d una funció. 3. Característiques generals d una funció. 4. Funcions definides a intervals. 5. Operacions amb funcions. 6. Les successions
Districte Universitari de Catalunya
Proves dʼaccés a la Universitat. Curs 2009-2010 Matemàtiques Sèrie 1 Responeu a CINC de les sis qüestions següents. En les respostes, expliqueu sempre què és el que voleu fer i per què. Cada qüestió val
Polinomis i fraccions algèbriques
Tema 2: Divisivilitat. Descomposició factorial. 2.1. Múltiples i divisors. Cal recordar que: Si al dividir dos nombres enters a i b trobem un altre nombre enter k tal que a = k b, aleshores diem que a
FUNCIONS EXPONENCIALS I LOGARÍTMIQUES. MATEMÀTIQUES-1
FUNCIONS EXPONENCIALS I LOGARÍTMIQUES. 1. Funcions exponencials. 2. Equacions exponencials. 3. Definició de logaritme. Propietats. 4. Funcions logarítmiques. 5. Equacions logarítmiques. 1. Funcions exponencials.
TEMA 4: Equacions exponencials i logarítmiques
TEMA 4: Equacions exponencials i logarítmiques 4.1. EXPONENCIALS Definim exponencial de base a i exponent n:. Propietats de les exponencials: (1). (2) (3) (4) 1 (5) 4.2. EQUACIONS EXPONENCIALS Anomenarem
SOLUCIONARI Unitat 1. Exercicis. Comencem. 1. La gràfica velocitat-temps corresponent a dos mòbils és la que pots veure a la dreta (fig. 1.3).
SOLUCIONARI Unitat Comencem La funció f() és decreient en l interval (, ). Fes un raonament com el que em fet anteriorment per determinar on decrei amb més rapidesa, si ens movem prop de o si o fem prop
TEMA 4 : Programació lineal
TEMA 4 : Programació lineal 4.1. SISTEMES D INEQUACIONS DE PRIMER GRAU AMB DUES INCÒGNITA La solució d aquest sistema és l intersecció de les regions que correspon a la solució de cadascuna de les inequacions
Tema 1: TRIGONOMETRIA
Tema : TRIGONOMETRIA Raons trigonomètriques d un angle - sinus ( projecció sobre l eix y ) sin α sin α [, ] - cosinus ( projecció sobre l eix x ) cos α cos α [ -, ] - tangent tan α sin α / cos α tan α
Examen FINAL M2 FIB-UPC 12 de juny de 2015
Examen FINAL M FIB-UPC 1 de juny de 015 1. ( punts Sigui a R, calculeu els límits següents segons els valors d a: n + n n + a+ a+n a n n n, n n + n!.. ( punts Considereu la integral següent: I = 1.8 1
TEMA 1 : Aplicacions de les derivades
TEMA 1 : Aplicacions de les derivades 1.1. INFORMACIÓ EXTRETA DE LA PRIMERA DERIVADA 1.1.1 Creixement i decreixement de funcions Definició: f és creixent en x 0 existeix (x 0 - a, x 0 + a), un entorn del
1. Continuïtat i ĺımit de funcions de vàries variables
Càlcul 2 1. Continuïtat i ĺımit de funcions de vàries variables Dept. de Matemàtica Aplicada I www.ma1.upc.edu Universitat Politècnica de Catalunya 12 Febrer 2012 Copyleft c 2012 Reproducció permesa sota
1.4 Derivades: Unitat de síntesi (i repàs)
1.4 Derivades: Unitat de síntesi (i repàs) 11. Problemes de: optimització, extrems ( ), punts d inflexió ( ), rectes tangents (T) i interpretació de gràfiques (G): A.- Considereu tots els prismes rectes
DERIVADES: exercicis bàsics ex D.1
DERIVADES: eercicis bàsics e D.. Estudiar la derivabilitat de les funcions que s indiquen, calculant el seu camp de derivabilitat. Escriure l epressió de la funció derivada corresponent, en el cas de que
SOLUCIONARI Unitat 2. Comencem. Exercicis
SOLUCIONARI Unitat Comencem Representa en paper mil limetrat la funció f() + 4. Traça amb la màima cura possible la recta tangent a la paràbola en el punt P(, ). Mesura amb un transportador l angle que
Matemàtiques Sèrie 1. Instruccions
Proves d accés a cicles formatius de grau superior de formació professional inicial, d ensenyaments d arts plàstiques i disseny, i d ensenyaments esportius 2011 Matemàtiques Sèrie 1 Dades de la persona
Exercicis de derivades
Variació mitjana d'una funció 1. Calcula la variació mitjana de la funció f (x) = x 2 2 x als següents intervals: a) [ 1, 3 ] b) [0, 4 ] c) [1, 5 ] 2. Donada la funció següent: a) Quina és la variació
Institut Jaume Balmes Aplicacions de les derivades I
MS 1) Donada la funció y 6 + 8 a) Troba la recta tangent en el seu punt d'infleió. b) Troba la recta normal en el punt de 1 (1+0,5 1,5 punts) ) A la vista de la gràfica d'aquesta funció. a) Estudia la
Problemes d Anàlisi. Problema 4 Un granger desitja tancar en un terreny rectangular adjacent a un riu.
Problemes d Anàlisi Càlcul diferencial Problema 1 Siga f : R R la funció donada per f() = a + b + c + d Determineu els coeficients a, b, c, d sabent que f té un etrem local en el punt d abscissa = 0, que
LÍMITS DE FUNCIONS. CONTINUÏTAT I BRANQUES INFINITES
LÍMITS DE FUNCIONS. CONTINUÏTAT I BRANQUES INFINITES Pàgina 7 REFLEIONA I RESOL Aproimacions successives Comprova que: f () = 6,5; f (,9) = 6,95; f (,99) = 6,995 Calcula f (,999); f (,9999); f (,99999);
SOLUCIONS DE LES ACTIVITATS D APRENENTATGE
SOLUCIONS DE LES ACTIVITATS D APRENENTATGE 55 Activitat 1 Dels nombres següents, indica quins són enters. a) 4 b) 0,25 c) 2 d) 3/5 e) 0 f) 1/2 g) 9 Els nombres enters són: 4, 2, 0 i 9. Activitat 2 Si la
Prova d accés a la Universitat (2013) Matemàtiques II Model 1. (b) Suposant que a = 1, trobau totes les matrius X que satisfan AX + Id = A, on Id
UIB Prova d accés a la Universitat () Matemàtiques II Model Contestau de manera clara i raonada una de les dues opcions proposades. Es disposa de 9 minuts. Cada qüestió es puntua sobre punts. La qualificació
LA FUNCIÓ EXPONENCIAL I LA FUNCIÓ LOGARÍTMICA. FUNCIONS DEFINIDES A TROSSOS. Funció exponencial
LA FUNCIÓ EXPONENCIAL I LA FUNCIÓ LOGARÍTMICA. FUNCIONS DEFINIDES A TROSSOS. Funció eponencial La funció eponencial és de la forma f () = a, on a > 0, a 1 El valor a s anomena base de la funció eponencial.
LES FRACCIONS Una fracció és part de la unitat Un tot es pren com a unitat La fracció expressa un valor amb relació a aquest tot
LES FRACCIONS Termes d una fracció: a b Numerador Denominador 1.- ELS TRES SIGNIFICATS D UNA FRACCIÓ 1.1. Una fracció és part de la unitat Un tot es pren com a unitat La fracció expressa un valor amb relació
Proporcionalitat i percentatges
Proporcionalitat i percentatges Proporcions... 2 Propietats de les proporcions... 2 Càlul del quart proporcional... 3 Proporcionalitat directa... 3 Proporcionalitat inversa... 5 El tant per cent... 6 Coneixement
Unitat 2. POLINOMIS, EQUACIONS I INEQUACIONS
Unitat 2. POLINOMIS, EQUACIONS I INEQUACIONS 2.1. Divisió de polinomis. Podem fer la divisió entre dos monomis, sempre que m > n. Si hem de fer una divisió de dos polinomis, anirem calculant les divisions
REPRESENTACIÓ DE FUNCIONS
1. FUNCIONS PRINCIPALS REPRESENTACIÓ DE FUNCIONS 1.1 Rectes Forma: 4 5 1.2 Paràboles Forma: 1.3 Funcions amb radicals Forma: 1.4 Funcions de proporcionalitat inversa Forma: 1.5 Exponencials Forma: 2 1.6
UNITAT LES REFERÈNCIES EN L ÚS DELS CÀLCULS
UNITAT LES REFERÈNCIES EN L ÚS DELS CÀLCULS 2 Referències Una referència reconeix una cel la o un conjunt de cel les dins d un full de càlcul. Cada cel la està identificada per una lletra, que indica la
3. FUNCIONS DE RECERCA I REFERÈN- CIA
1 RECERCA I REFERÈN- CIA Les funcions d aquest tipus permeten fer cerques en una taula de dades. Les funcions més representatives són les funcions CONSULTAV i CONSULTAH. Aquestes realitzen una cerca d
Geometria / GE 2. Perpendicularitat S. Xambó
Geometria / GE 2. Perpendicularitat S. Xambó Vectors perpendiculars Ortogonal d un subespai Varietats lineals ortogonals Projecció ortogonal Càlcul efectiu de la projecció ortogonal Aplicació: ortonormalització
Generalitat de Catalunya Departament d Educació Institut d Educació Secundària Jaume Balmes. Nom i Cognoms: Grup: Data:
Generalitat de Catalunya Departament d Educació Institut d Educació Secundària Jaume Balmes Departament de Matemàtiques n BATX MA Eamen FINAL Nom i Cognoms: Grup: Data: -5-007 r BLOC: ) Trobeu els límits:
LA RECTA. Exercicis d autoaprenentatge 1. Siga la gràfica següent:
LA RECTA Recordeu: Una recta és una funció de la forma y = mx + n, on m i n són nombres reals. m és el pendent de la recta i n és l ordenada a l origen. L ordenada a l origen ens indica el punt de tall
Definir els límits d integració en dominis 3D (R 3 ) Càlcul 2 - Aula Lliure
Definir els límits d integració en dominis 3D (R 3 ) Càlcul 2 - Aula Lliure Quim Primavera 2017 Introducció Estem a l espai (R 3 ) i els punts del domini tenen tres components: (x, y, z). El nostre domini
j Introducció al càlcul vectorial
FÍSICA 00 9 j Introducció al càlcul vectorial j Activitats finals h Qüestions 1. La suma dels vectors unitaris i, j és un altre vector unitari? Justifiqueu la resposta fent un gràfic. Els vectors unitaris
Districte Universitari de Catalunya
Proves d Accés a la Universitat. Curs 2012-2013 Matemàtiques Sèrie 4 Responeu a CINC de les sis qüestions següents. En les respostes, expliqueu sempre què voleu fer i per què. Cada qüestió val 2 punts.
Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 6 PAU 2008 QÜESTIONS
Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 6 SÈRIE 4 Aquestes pautes no preveuen tots els casos que en la pràctica es poden presentar. Tampoc no pretenen donar totes les possibles
1. RECTA TANGENT I NORMAL 2. DETERMINACIÓ DE PARÀMETRES 3. CREIXEMENT I DECREIXEMENT 4. VELOCITAT I ACELERACIÓ - PUNTS SINGULARS
APLICACIONS DE LA DERIVADA 1. RECTA TANGENT I NORMAL. DETERMINACIÓ DE PARÀMETRES 3. CREIXEMENT I DECREIXEMENT 4. VELOCITAT I ACELERACIÓ - PUNTS SINGULARS 1. RECTA TANGENT I NORMAL 1.1 Trobeu l equació
Un sistema lineal de dues equacions amb dues incògnites és un conjunt de dues equacions que podem representar de la manera:
Un sistema lineal de dues equacions amb dues incògnites és un conjunt de dues equacions que podem representar de la manera: ax + by = k a x + b y = k Coeficients de les incògnites: a, a, b, b. Termes independents:
EXERCICIS - SOLUCIONS
materials del curs de: MATEMÀTIQUES SISTEMES D EQUACIONS EXERCICIS - SOLUCIONS AUTOR: Xavier Vilardell Bascompte [email protected] ÚLTIMA REVISIÓ: 21 d abril de 2009 Aquests materials han estat realitzats
TEMA 3: Polinomis 3.1 DEFINICIONS:
TEMA 3: Polinomis 3.1 DEFINICIONS: Anomenarem monomi qualsevol expressió algèbrica formada per la multiplicació d un nombre real i d una variable elevada a un exponent natural. El nombre es diu coeficient
ÍNDEX 1 DEFINICIÓ 2 PER A QUÈ SERVEIX 3 COM ES REPRESENTA 4 PRIMER CONCEPTE 5 ESCALA DE REDUCCIÓ I ESCALA D AMPLIACIÓ 6 PROCEDIMENT DE CÀLCUL
Francesc Sala, primera edició, abril de 1996 última revisió, desembre de 2007 ÍNDEX 1 DEFINICIÓ 2 PER A QUÈ SERVEIX COM ES REPRESENTA 4 PRIMER CONCEPTE 5 ESCALA DE REDUCCIÓ I ESCALA D AMPLIACIÓ 6 PROCEDIMENT
Oficina d Accés a la Universitat Pàgina 1 de 10 PAU 2014 Criteris específics de correcció i qualificació per ser fets públics un cop finalitzades
Oficina d Accés a la Universitat Pàgina 1 de 10 SÈRIE 3 Responeu a CINC de les sis qüestions següents. En les respostes, expliqueu sempre què voleu fer i per què. Cada qüestió val punts. Podeu utilitzar
1.- Sabem que el vector (2, 1, 1) és una solució del sistema ax + by + cz = a + c bx y + bz = a b c. . cx by +2z = b
Oficina d Organització de Proves d Accés a la Universitat Pàgina de 5 PAU 0 - Sabem que el vector (,, ) és una solució del sistema ax + by + cz = a + c bx y + bz = a b c cx by +z = b Calculeu el valor
Tema 2: GEOMETRIA ANALÍTICA AL PLA
Tema : GEOMETRIA ANALÍTICA AL PLA Vector El vector AB és el segment orientat amb origen al punt A i extrem al punt B b a A B Les projeccions del vector sobre els eixos són les components del vector: a
10 Àlgebra vectorial. on 3, -2 i 4 són les projeccions en els eixos x, y, y z respectivament.
10 Àlgebra vectorial ÀLGEBR VECTORIL Índe P.1. P.. P.3. P.4. P.5. P.6. Vectors Suma i resta vectorial Producte d un escalar per un vector Vector unitari Producte escalar Producte vectorial P.1. Vectors
La recta. La paràbola
LA RECTA, LA PARÀBOLA I LA HIPÈRBOLA La recta Una recta és una funció de la forma y = m + n. m és el pendent de la recta i n és l ordenada a l origen. L ordenada a l origen ens indica el punt de tall amb
1.- Elements d una recta Vector director d una recta Vector normal d una recta Pendent d una recta
.- Elements d una recta..- Vector director d una recta..- Vector normal d una recta.3.- Pendent d una recta.- Equacions d una recta..- Equació ectorial, paramètrica i contínua..- Equació explícita.3.-
UNITAT FUNCIONS D ÚS AVANÇAT
UNITAT FUNCIONS D ÚS AVANÇAT 5 Funcions d Informació i altres funcions d interès Les funcions d Informació s utilitzen per obtenir dades sobre les cel les, el seu contingut, la seva ubicació, si donen
Gràfiques del moviment rectilini uniforme (MRU)
x = x 0 + v (t-t 0 ) si t 0 = 0 s x = x 0 + vt D4 Gràfiques del moviment rectilini uniforme (MRU) Gràfica posició-temps Indica la posició del cos respecte el sistema de referència a mesura que passa el
INTERACCIÓ GRAVITATÒRIA
INTERACCIÓ GRAVITATÒRIA REPÀS FÓRMULES DE MOVIMENT MRU MRUA CAIGUDA LLIURE MRUA on MCU LLEIS DE KEPLER 1ª. Tots els planetes es mouen al voltant del sol seguint òrbites el líptiques. El Sol està a un dels
FÍSICA NUCLEAR. En tots els àtoms trobem: Càrrega. Massa. Protons +1, C 1,0071 1, Nucli. Neutrons - 1,0085 1,
Física n Batxillerat Tota forma de matèria que existeix a l'univers prové de la combinació de 0 àtoms diferents. El 99% de la matèria de tot l'univers està formada per àtoms d'hidrogen. L'% restant el
UNITAT DIDÀCTICA 10 L ÍMITS DE FUNCIONS. CONTINUÏTAT I BRANQUES INFINITES
7 UNITAT DIDÀCTICA 0 Refleiona i resol Aproimacions successives El valor de la funció f () = + 5 0 per a = 5 no es pot obtenir directament perquè el denominador es fa zero. L obtindrem per aproimacions
EXERCICIS MATEMÀTIQUES 1r BATXILLERAT
Treball d estiu/r Batillerat CT EXERCICIS MATEMÀTIQUES r BATXILLERAT. Aquells alumnes que tinguin la matèria de matemàtiques pendent, hauran de presentar els eercicis el dia de la prova de recuperació.
Tema 2. Els aparells de comandament elèctrics.
2 ELS APARELLS DE COMANDAMENT Els aparells de comandament són elements presents en qualsevol circuit o instal lació i que serveixen per governar-los. En aparença, alguns aparells de comandament poden semblar
TEMA 1: Trigonometria
TEMA 1: Trigonometria La trigonometria, és la part de la geometria dedicada a la resolució de triangles, es a dir, a determinar els valors dels angles i dels costats d un triangle. 1.1 MESURA D ANGLES
DIBUIX TÈCNIC PER A CICLE SUPERIOR DE PRIMÀRIA
DIBUIX TÈCNIC PER A CICLE SUPERIOR DE PRIMÀRIA Abans de començar cal tenir uns coneixements bàsics que estudiareu a partir d ara. PUNT: No es pot definir, però podem dir que és la marca més petita que
Àmbit de les matemàtiques, de la ciència i de la tecnologia M14 Operacions numèriques UNITAT 2 LES FRACCIONS
M1 Operacions numèriques Unitat Les fraccions UNITAT LES FRACCIONS 1 M1 Operacions numèriques Unitat Les fraccions 1. Concepte de fracció La fracció es representa per dos nombres enters que s anomenen
SOLUCIONARI Unitat 5
SOLUCIONARI Unitat 5 Comencem Escriu tres equacions que no tinguin solució en el conjunt. Resposta oberta. Per exemple: a) x b) 5x 0 c) x Estableix tres equacions que no tinguin solució en el conjunt.
Unitat 1. Nombres reals.
Unitat 1. Nombres reals. Conjunts numèrics: - N = Naturals - Z = Enters - Q = Racionals: Són els nombres que es poden expressar com a quocient de dos nombres enters. El conjunt dels nombres racionals,
TEMA 4 : Geometria analítica al pla. Vectors i la Recta. Activitats
TEMA 4 : Geometria analítica al pla. Vectors i la Recta Activitats 1. Donats els punts A(2,1), B(6,5),i C(-1,4): a) Representa els vectors AB i CA i estudia totes les seves característiques b) Calcula
TEMA 4 : Matrius i Determinants
TEMA 4 : Matrius i Determinants MATRIUS 4.1. NOMENCLATURA. DEFINICIÓ Una matriu és un conjunt de mxn elements distribuïts en m files i n columnes, A= Aquesta és una matriu de m files per n columnes. És
1. SISTEMA D EQUACIONS LINEALS
1. SISTEMA D EQUACIONS LINEALS 1.1 Equacions lineals Una equació lineal està composta de coeficients (nombres reals) acompanyats d incògnites (x, y, z,t..o ) s igualen a un terme independent, i les solucions
SOLUCIONS DE LES ACTIVITATS D APRENENTATGE
SOLUCIONS DE LES ACTIVITATS D APRENENTATGE 3 Activitat Completa els productes següents. a) 0 = 5... e) 0 = 5... b)... = 5 3 f) 25 =... 5 c) 5 =... g) 55 = 5... d) 30 = 5... h) 40 =...... a) 0 = 5 0 e)
Unitat 2 EQUACIONS DE PRIMER GRAU. Matemàtiques, Ciència i Tecnologia 5. TRANSFORMACIONS D EXPRESSIONS ALGEBRAIQUES UNITAT 2 EQUACIONS DE PRIMER GRAU
Unitat 2 EQUACIONS DE PRIMER GRAU 37 38 Matemàtiques, Ciència i Tecnologia 5. TRANSFORMACIONS D EXPRESSIONS ALGEBRAIQUES UNITAT 2 QUÈ TREBALLARÀS? què treballaràs? En acabar la unitat has de ser capaç
EL CAMP B i la regla de la mà dreta
Escola Pia de Sabadell Física de 2n de Batxillerat (curs 2013-14) E EL CAMP B i la regla de la mà dreta Pepe Ródenas Borja 1 Vectors en 3D 2 Com pot girar una baldufa 3 Producte vectorial i mà dreta 4
Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 6 PAU 2009
Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 6 SÈRIE 1 QÜESTIONS 1.- Considereu la matriu A = ( ) A 2 1 0 =. 2 1 [2 punts] ( ) a 0. Calculeu el valor dels paràmetres a i b perquè
