UNIDAD 6 ESPACIO TRIDIMENSIONAL: EL PLANO
|
|
|
- José Ignacio Martin Lucero
- hace 7 años
- Vistas:
Transcripción
1 UIDAD 6 ESPACIO TRIDIMESIOAL: EL PLAO Objetivos
2
3 Geometría analítica Introducción x 1, x 2, x 3 x 1, x 2 y x 3, x 1, x 2 x 3 Vector dirigido. segmento A dirección A B B B A u v w u u u = (u 1,u 2 u u u = (u 1,u 2,u 3 255
4 n u n espacio vectorial escalar n Operaciones con vectores Suma y resta Ejemplo 1 a b a + b a b a + b a b M ultiplicación de vectores por escalares u u u u 256
5 Geometría analítica Ejemplo 2 a a a a a magnitud u u Definición u = (u 1, u 2,...,u n u u Vectores unitarios vector unitario u u 0 u = (u 1, u 2 u n u u u u u Ejemplo 3 v 2 v 257
6 v v v v v 2 v 4 w w = w w Vectores coordenados unitarios dimensiones 2 dos i j 258
7 Geometría analítica 3 i j k i j k 259
8 v v i j i j i j i j = i j v Ejemplo 4 u v w u = i + 2j k v i + j k w i j + k u + v + w u + 2v w i + 2j k i j k i j + k u + 2v w i + 2j k i j k i j k u + 2v w i j k Producto escalar u + 2v w = 2i j + 2k u = v = u v u v c 260
9 Geometría analítica Ejemplo 5 C D Ángulo entre vectores A B V 2 y Ejemplo 6 A B A B 261
10 A B paralelismo ortogonalidad Vectores paralelos A B V n paralelos A B A B V n A B A B y A = B B = A Ejemplo 7 F G F G F = G, F = G F G 262
11 Geometría analítica Vectores ortogonales A B V n A B Ejemplo 8 B A B A A A B B A B proyección componente A componente de A A B B B B A A A B componente A B 263
12 Ejemplo 9 A B A = 2j k B = 4j A = 2 a 2 A = (a a 2 a A a A a A a 2 a a 2 A A B 2 264
13 Geometría analítica Ejemplo 10 A = 2j k B = 4j A B Producto vectorial Definición A B V A = (a, a 2, a B = (b, b 2, b Ejemplo 11 A = 2i j k B i + j + 2k A B vectores paralelos 265
14 A B A B = dextrógiro A B V A B A B A B A B A B A B B A 6.1. Definición de plano ( P(x, y, z 266
15 Geometría analítica Definición de espacio euclidiano de dimensión tres. El espacio euclidiano de dimensión tres, denotado por 3, es el conjunto de puntos P, representados por las ternas ordenadas de números reales (x 1, x 2, x 3 ). Definición de plano en 3. Es la sección comprendida por dos vectores no paralelos que forman un paralelogramo para el cual existe un par de 3 puntos P, P o y dos vectores linealmente independientes (son linealmente independientes si la única combinación lineal de ellos igualada a cero es aquella cuyos escalares son cero). A, B 3, tales que los podemos denotar como un conjunto de la siguiente manera: Ejemplo 12 A = 2i + k i + 2k P P P P = (x, y, z Ejemplo 13 P P(x, y, z 267
16 (x, y, z P ecuaciones del plano en posiciones especiales. z =, z = c, c y y = c x x = c 268
17 Geometría analítica 6.2. Ecuaciones del plano Ecuación normal de un plano cualquiera. x + y + z = 0 ecuación normal del plano, p A, B, C, D, K 269
18 0 ecuación del plano en for ma general. A, B, C K p>0 K D Ejemplo 14 K K 270
19 Geometría analítica p Ecuación vectorial del plano P P P A B = A B A B k(a B k P P P P P P P P P P 0 P P 0 = A + B P A B P P P A B A B P 0 A B P P P 0 271
20 A P P P P P P P P 0 P P P P P B A A B P 0 P P P P P P P P 0 Ecuación cartesiana del plano P P P P (P P 0 P P 0 P = P 0 (x y z a b c a, b, c, x 0, y 0, z = ecuación cartesiana del plano x, y z d P 0 P P P P = P 0 P P P P 0 P P 272
21 Geometría analítica P 0 Ejemplo 15 j P d = P 0 a = b c = d = a, b c y j y P Ejemplo 16 P y Ecuación paramétrica del plano u v 273
22 Ejemplo 17 u x v x y x + v x y + z v u = x, 274
23 Geometría analítica Ejercicio 1 M a 1 = a 2 =. M B C A 6.3. Distancia de un punto a un plano Distancia de un plano al origen. P P P 275
24 P 0 Q Q Q Q =, Q Q Q P 0 Q = P 0 Q P 0 2 P Q d Q Q = d d d d Ejemplo 18 d 276
25 Geometría analítica 2 2 k k 2 2 Ejemplo 19 d d d 277
26 P (x, y, z 0 P Ax + By + Cz + D P P 0 (x 0, y 0, z 0 Teorema. Sean 0 la ecuación general de un plano y P 1 (x 1, y 1, z 1 ) un punto que no está en el plano. Entonces, la distancia perpendicular d del plano a P 1 está dada por: (6) Ejemplo 20 A, B, C, D, x 1, y 1 z 1 278
27 Geometría analítica d 6.4. Intersección y ángulo entre planos I ntersección de planos. 2 (x, y, z) 279
28 Ejemplo 21 P P P P 2 280
29 Geometría analítica P s s y y 2 z 2 z Ejemplo 22 a,, b a b y z y x, y, z 281
30 (d, e, d e m m, m m Ejemplo 23 0 x x 282
31 Geometría analítica y y z z P Ejemplo 24 x z = x z = y,,, P P P P 283
32 Ángulo entre dos planos. Ejemplo
33 Geometría analítica Ejercicio 2 Ejercicios resueltos. P 0 P 0 P 0 = P P P 0 P(x, y, z. x y z. 285
34 P D P D D D = 9 x y z : 0 286
35 Geometría analítica B, C D A, A 6. A = B = C = D = B A E = C A D E D E P 0 D
36 =., 2 P 2 v v = u = v u u P P P P 288
37 Geometría analítica (K 2 d 2 t t t t t 289
38 P d x x
39 Geometría analítica Y 291
40 Autoevaluación = i 2j +k, = 2i 2j k x =. = 2i + j + 2k, = i + j k y = 2. 4 x y z 292
41 Geometría analítica P M M 2 M 1 M M d d d d x + y z x + y + 2z 293
42 Ejercicios opcionales x z y M 1 a b Oxy M 294
43 Geometría analítica Respuestas a los ejercicios 1 P 0. d 2 Respuestas a la autoevaluación 295
44 Respuestas a los ejercicios opcionales a a =, b, a =, b 2 296
TEMA 6. Geometría Analítica(1) Nombre CURSO: 1 BACH CCNN. Vectores (1) y E de los correspondientes extremos.
TEMA 6. Geometría Analítica(1) Nombre CURSO: 1 BACH CCNN Vectores (1) 1.- Sea el vector AB, en el que el punto A(3, 2) es el origen y B(5, 6) el extremo. a) Si cada uno de los puntos C(9, 3), D( 4,4) y
Tema 3: Vectores libres
Tema 3: Vectores libres FISICA I, 1º Grado en Ingeniería Enregética, Robótica y Mecatrónica Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Escalares y vectores Vectores libres Producto
3. ÁLGEBRA LINEAL // 3.2. GEOMETRÍA
3. ÁLGEBRA LINEAL // 3.2. GEOMETRÍA ANALÍTICA EN EL PLANO Y EN EL ESPACIO. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS 3.2.1. Rectas en el plano y en el espacio La recta que pasa por el punto
Tema 2: Álgebra vectorial
Tema 2: Álgebra vectorial FISICA I, 1º Grado en Ingeniería Civil Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Magnitudes escalares y vectoriales Definición de vector Vectores
GEOMETRÍA EN EL ESPACIO
GEOMETRÍA EN EL ESPACIO 1. PUNTOS Y VECTORES OPERACIÓN TEORÍA Y FORMULACIÓN EJEMPLO Coordenadas de un punto Punto medio de un segmento Dividir un segmento en n partes iguales Coordenadas de un vector (
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio
Unidad 5: Geometría analítica del plano.
Geometría analítica del plano 1 Unidad 5: Geometría analítica del plano. 1.- Vectores. Operaciones con vectores. Un vector fijo es un segmento entre dos puntos, A y B del plano, al que se le da una orientación
UNIVERSIDAD DEL NORTE Departamento de Matemáticas y Estadística. Álgebra Lineal. RESUMEN DE TEMAS DEL EXAMEN FINAL
1. Definiciones básicas. UNIVERSIDAD DEL NORTE Departamento de Matemáticas y Estadística. Álgebra Lineal. RESUMEN DE TEMAS DEL EXAMEN FINAL I. Sistemas homogéneos y subespacios de R n. (a) Para el sistema
A. VECTORES 1. VECTORES FIJOS Y VECTORES LIBRES
RESUMEN DE GEOMETRÍA MATEMÁTICAS II A. VECTORES 1. VECTORES FIJOS Y VECTORES LIBRES Un vector fijo de origen A y extremo B, siendo A y B puntos del espacio, es un segmento orientado caracterizado por:
TEMA 6 VECTORES Y GEOMETRÍA ANALÍTICA EN EL PLANO 6.1 LOS VECTORES Y SUS OPERACIONES
TEMA 6 VECTORES Y GEOMETRÍA ANALÍTICA EN EL PLANO 4--7 6. LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un vector es un segmento orientado. Un vector AB queda determinado por dos puntos, origen A y extremo
Tema 2: Vectores libres
Tema 2: Vectores libres FISICA I, 1º Grado en Ingeniería Aeroespacial Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Magnitudes escalares y vectoriales Definición de vector Vectores
Vectores. Vectores equipolentes RESUMEN. es un segmento orientado que va del punto A (origen) al. punto B (extremo).
RESUMEN Vectores Un vector fijo es un segmento orientado que va del punto A (origen) al punto B (extremo). Un vector fijo es nulo cuando el origen y su extremo coinciden. Módulo del vector Es la longitud
Bloque 3. Geometría y Trigonometría Tema 2 Vectores Ejercicios resueltos
Bloque 3. Geometría y Trigonometría Tema Vectores Ejercicios resueltos 3.- Obtener el vector PQ, donde los puntos P y Q son los dados 4 5 b) P00,, Q90, a) P,, Q, 83 83 d) P4,, Q3, 7 c) P,, Q, 4 5 PQ 5,
3 de noviembre de 2010
Algebra Lineal Universidad del Norte 3 de noviembre de 2010 Segmentos dirigidos en E n. Suponemos que ya se ha introducido un sistema coordenado en el espacio euclidiano correspondiente e identificaremos,
RESUMEN DE VECTORES. representa por AB El módulo de un vector es un número siempre positivo o cero.
RESUMEN DE VECTORES Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). ELEMENTOS DE UN VECTOR: Dirección de un vector: La dirección del vector es la dirección
1º Bachillerato Matemáticas I Tema 5: Vectores Ana Pascua García
Página 1 de 13 Introducción Vectores: Algo más que números En este tema estudiaremos qué son los vectores en el plano real, R, sus propiedades, y a utilizarlos para entre otras cosas resolver problemas
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 005 MATEMÁTICAS II TEMA : ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio
VECTORES : Las Cantidades Vectoriales cantidades escalares
VECTORES En física hay dos tipos de cantidades: Las Cantidades Vectoriales son aquellas que tiene tanto magnitud como dirección y sentido sobre la dirección), mientras que las cantidades escalares son
y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy).
UNIDAD II: VECTORES EN DOS Y TRES DIMENSIONES Un espacio vectorial (o espacio lineal) es el objeto básico de estudio en la rama de la matemática llamada álgebra lineal. A los elementos de los espacios
REPASO DE ALGEBRA VECTORIAL
REPASO DE ALGEBRA VECTORIAL Vectores en R 2 : Un vector v en el plano R 2 = XY es un par ordenado de números reales (a,b). Los números reales a y b se llaman componentes del vector v. El vector cero es
TEMA 4. VECTORES EN EL ESPACIO
TEMA 4. VECTORES EN EL ESPACIO Dados dos puntos y, se define el vector como el segmento orientado caracterizado por su módulo, su dirección y su sentido. En coordenadas: Dos vectores son equipolentes si
VECTORES vector Vector posición par ordenado A(a, b) representa geométricamente segmento de recta dirigido componentes del vector
VECTORES Un vector (Vector posición) en el plano es un par ordenado de números reales A(a, b). Se representa geométricamente por un segmento de recta dirigido, cuyo punto inicial es el origen del sistema
TEMA 8. GEOMETRÍA ANALÍTICA.
TEMA 8. GEOMETRÍA ANALÍTICA. 8..- El plano. Definimos el plano euclideo como el conjunto de puntos ( x, y) R. Así, cada punto del plano posee dos coordenadas. Para representar puntos del plano utilizaremos
es un segmento orientado que va del punto A (origen) al Dos vectores son equipolentes cuando tienen igual módulo, dirección y
RESUMEN Vectores Un vector fijo es un segmento orientado que va del punto A (origen) al punto B (extremo). Un vector fijo es nulo cuando el origen y su extremo coinciden. Módulo del vector Es la longitud
Tema 6: Ángulos y distancias en el espacio
Tema 6: Ángulos y distancias en el espacio February, 017 1 Ángulos entre elementos del espacio Los ángulos entre elementos del espacio, es una aplicación sencilla del producto escalar. Recuerdo las condiciones
REPRESENTACIÓN ANALÍTICA DE UNA RECTA Una recta puede ser representada de las siguientes formas:
LA RECTA Una recta queda definida en el espacio si se conocen: 1) Un punto de ella y la dirección de la recta, definiéndose ésta con un vector; o bien 2) Dos puntos de la recta; o 3) Dos planos no paralelos
ESPACIO AFÍN REAL TRIDIMENSIONAL. Sistema de referencia (E3, V3, f). Coordenadas cartesianas.
1. Puntos y Vectores. ESPACIO AFÍN REAL TRIDIMENSIONAL Sistema de referencia (E3, V3, f). Coordenadas cartesianas. 2. Primeros resultados analíticos. Vector que une dos puntos. Punto medio de un segmento.
RESUMEN DE VECTORES. Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). ELEMENTOS DE UN VECTOR:
RESUMEN DE VECTORES Un vector fijo AB es un segmento orientado que va del punto A (origen) al punto B (extremo). Componentes de un vector Si las coordenadas de los puntos A y B son ELEMENTOS DE UN VECTOR:
CÁLCULO II ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B
ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS CÁLCULO II VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B b) A B + C c) 4A 3B d) 4(A + B) 5C e) 1 2 (A B) + 1 4 C 2. Sean
GEOMETRÍA EN EL ESPACIO.
GEOMETRÍA EN EL ESPACIO.. ESPACIOS VECTORIALES VECTOR FIJO Segmento orientado. Queda determinado por Origen A(a, a, a ); extremo B(b, b, b ) Módulo: Longitud del AB ( b a) ( b a) ( b a) segmento AB Características:
Formulario: Geometría Analítica
Universidad Autónoma del Estado de México UAEM Facultad de Ingeniería Formulario: Geometría Analítica Elaborado por: Estudiante en Ingeniería en Electrónica Formulario Geometría Analítica 1. VECTORES EN
Ecuaciones de la recta en el espacio
Ecuaciones de la recta en el espacio Ecuación vectorial de la recta Sea P(x 1, y 1 ) es un punto de la recta r y uu su vector director, el vector PPXX tiene igual dirección que uu, luego es igual a uu
Análisis Matemático II Curso 2018 Práctica introductoria
Análisis Matemático II Curso 018 Práctica introductoria Cónicas - Sus ecuaciones y gráficas 1. Encontrar la forma estándar de cada cónica y graficar. a) x + y 6y = 0 b) x + y 1 = 0 c) x(x + 1) y = 4 d)
ALGEBRA LINEAL. Capítulo III: Vectores en los espacios bidimensional y tridimensional. MsC. Andrés Baquero. jueves, 2 de julio de 15
ALGEBRA LINEAL Capítulo III: Vectores en los espacios bidimensional y tridimensional MsC. Andrés Baquero jueves, 2 de julio de 15 Introducción a los vectores Vectores Geométricos Vectores Geométricos Vectores
MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA TEMA 3: Distancias, ángulos y lugares geométricos.
MATEMÁTICASII Curso académico 2015-2016 BLOQUE GEOMETRÍA TEMA 3: Distancias, ángulos y lugares geométricos. 3.1 DISTANCIAS EN EL ESPACIO 3.1.1 Distancia entre dos puntos Dados los puntos A(x 0, y 0, z
EJERCICIOS PAU MATEMÁTICAS II ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com
GEOMETRÍA 1- Dados el punto P(1,-1,0) y la recta : 1 0 3 3 0 a) Determine la ecuación general del plano (Ax+By+Cz+D=0) que contiene al punto P y a la recta s. b) Determine el ángulo que forman el plano
ALGEBRA Y GEOMETRIA ANALITICA
Diplomatura en Ciencia y Tecnología ALGEBRA Y GEOMETRIA ANALITICA SEGUNDO CUATRIMESTRE DE 009 Profesora Mariana Suarez PRACTICA N 8: RECTA EN EL ESPACIO PLANO ALGEBRA Y GEOMETRIA ANALITICA - Segundo cuatrimestre
Geometría del plano y el espacio
Geometría del plano y el espacio AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Geometría del plano y el espacio 1 / 21 Objetivos Al final de este tema tendréis que Conocer
GEOMETRIA EN EL ESPACIO
GEOMETRIA EN EL ESPACIO ECUACIONES DE LA RECTA Y EL PLANO EN EL ESPACIO Una recta queda determinada por un punto conocido P, y un vector director. Luego, si X es un punto genérico de la recta, se obtiene
Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática.
Álgebra Geometría Analítica Vectores en R en R 3. Rectas planos en el espacio Prof. Gisela Saslavs Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática..
EJERCICIOS DE GEOMETRÍA
1) Sean las rectas EJERCICIOS DE GEOMETRÍA x 2y 6z 1 r : x y 0 x y 1 s: z 2 a a) Determinar la posición relativa de r y s según los valores de a. b) Calcular la distancia entre las rectas r y s cuando
MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES
MATEMÁTICASII Curso académico 2015-2016 BLOQUE GEOMETRÍA. TEMA 1: VECTORES 1.1 VECTORES DEL ESPACIO. VECTORES LIBRES DEL ESPACIO Sean y dos puntos del espacio. Llamaremos vector (fijo) a un segmento orientado
Problemas de vectores
Problemas de vectores 1.- Expresa el vector mm = (1, 2, 3) como combinación lineal de los vectores: uu = (1, 0, 1), vv = (1, 1, 0) y ww = (0, 1, 1). 2.- Siendo uu = (1, 0, 1), vv = (1, 1, 0) y ww = (0,
TEMA 11. VECTORES EN EL ESPACIO
TEMA 11. VECTORES EN EL ESPACIO Dados dos puntos y, se define el vector como el segmento orientado caracterizado por su módulo, su dirección y su sentido. Dos vectores son equipolentes si tienen el mismo
V E C T O R E S L I B R E S E N E L P L A N O
V E C T O R E S L I B R E S E N E L P L A N O 1. V E C T O R E S F I J O S Y V E C T O R E S L I B R E S E N E L P L A N O Existen magnitudes como la fuerza, la velocidad, la aceleración, que no quedan
ALGEBRA Y GEOMETRIA ANALITICA
Diplomatura en Ciencia y Tecnología ALGEBRA Y GEOMETRIA ANALITICA SEGUNDO CUATRIMESTRE DE 2009 Profesora Mariana Suarez PRACTICA N 7: SISTEMA COORDENADO TRIDIMENSIONAL. VECTORES. PRACTICA 7: Sistema coordenado
Espacio Cartesiano R 3
Espacio Cartesiano R 3 El espacio Euclidiano Vayamos ahora al espacio euclidiano. Para introducir en el coordenadas cartesianas, basta tomar tres planos concurrentes y perpendiculares dos a dos Este espacio
Teoría Tema 6 Ecuaciones de la recta
página 1/14 Teoría Tema 6 Ecuaciones de la recta Índice de contenido Base canónica en dos dimensiones como sistema referencial...2 Ecuación vectorial de la recta...4 Ecuación paramétrica de la recta...6
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio
Planos y Rectas. 19 de Marzo de 2012
el Geometría en el Planos y Rectas Universidad Autónoma Metropolitana Unidad Iztapalapa 19 de Marzo de 2012 el Anteriormente vimos que es posible encontrar un número infinito de vectores, no paralelos
1 VECTORES EN EL ESPACIO
1 VECTORES EN EL ESPACIO 1.1 OPERACIONES CON VECTORES El vector AB, definido entre los puntos A y B tiene las siguientes características: Módulo AB : Distancia de A a B. Dirección: es la recta sobre la
GEOMETRÍA ANALÍTICA. VECTORES Y ECUACIONES DE LA RECTA
GEOMETRÍA ANALÍTICA. VECTORES Y ECUACIONES DE LA RECTA r r 1 Dados los ectores u ( 8, 4) y (1, ), calcula: a) Dos ectores unitarios con la misma dirección que u r. b) Dos ectores ortogonales a y de módulo.
TEMA 11: VECTORES EN EL ESPACIO
Matemáticas º Bachillerato. Geometría Analítica TEMA : VECTORES EN EL ESPACIO. VECTORES EN EL ESPACIO OPERACIONES CON VECTORES. BASE DEL CONJUNTO DE VECTORES DEL ESPACIO. PRODUCTO ESCALAR DE DOS VECTORES
. Halla los valores de α en cada uno de los siguientes casos: a) (1 punto) u r, v
EJERCICIOS BLOQUE III: GEOMETRÍA (04-M;Jun-A-4) Considera la recta r que pasa por los puntos A (,0, ) y (,,0 ) a) ( punto) Halla la ecuación de la recta s paralela a r que pasa por C (,,) b) (5 puntos)
Matemáticas II Bachillerato Ciencias y Tecnología 2º Curso ESPACIO AFÍN Introducción Ecuaciones de la recta...
Unidad 5 ESPACIO AFÍN 5.. Introducción.... - - 5.. Ecuaciones de la recta.... - - 5.3. Ecuaciones del plano.... - 4-5.4. Posiciones relativas (Incidencia y paralelismo).... - 6 - Anexo I.- EJERCICIOS...
DEPARTAMENTO DE MATEMÁTICAS Página 1
DEPARTAMENTO DE MATEMÁTICAS Página 1 APROBADO EN EL CONSEJO DE LA FACULTAD DE CIENCIAS ACTA DEL 13 DE ABRIL DE 2010 DEL PROGRAMAS DEL DEPARTAMENTO DE MATEMÁTICAS El presente formato tiene la finalidad
TEMA 4 VECTORES VECTORES TEMA 4. 1.º BACHILLERATO - CIENCIAS VECTOR FIJO. VECTOR LIBRE. SUMA DE VECTORES LIBRES
TEMA 4 VECTORES VECTOR FIJO. VECTOR LIBRE. Un ector fijo en IR 2 está determinado por dos puntos A y B, llamados respectiamente, origen y extremo del ector. Su representación gráfica es una flecha que
EL ESPACIO AFÍN EUCLIDEO
EL ESPACIO AFÍN EUCLIDEO DEFINICIÓN: Dado el Espacio Afín donde es el espacio ordinario, es el espacio de los vectores libres y f es la aplicación que a cada par de puntos (A,B) asocia el vector libre.
EJERCICIOS BLOQUE III: GEOMETRÍA
EJERCICIOS BLOQUE III: GEOMETRÍA (05-M4;Jun-B-4) Sea el plano π x + y z + 8 a) (5 puntos) Calcula el punto, P simétrico del punto (,,5 ) b) ( punto) Calcula la recta r, simétrica de la recta plano π P
TEMA 11.- VECTORES EN EL ESPACIO
TEMA 11.- VECTORES EN EL ESPACIO 1.- INTRODUCCIÓN Un vector fijo AB del espacio (también lo era en el plano) es un segmento orientado que tiene su origen en un punto A y su extremo en otro punto B. Estos
Unidad 7 Producto vectorial y mixto. Aplicaciones.
Unidad 7 Producto vectorial y mixto. Aplicaciones. 5 SOLUCIONES 1. Al ser u v =(,5,11), se tiene que ( u v) w = ( 17,13, 9 ). Como v w =( 3,, 7), por tanto u ( v w) = ( 19,11, 5).. Se tiene que: 3. Queda:
GEOMETRÍA ANALÍTICA EN EL ESPACIO (PRODUCTOS ESCALAR, VECTORIAL Y MIXTO) PRODUCTO ESCALAR DE DOS VECTORES. número real
GEOMETRÍA ANALÍTICA EN EL ESPACIO (PRODUCTOS ESCALAR, VECTORIAL Y MIXTO) PRODUCTO ESCALAR DE DOS VECTORES El producto escalar de dos vectores v y u es un número real, que se obtiene multiplicando los módulos
Espacio métrico 2º Bachillerato
Espacio métrico 2º Bachillerato Presentación elaborada por la profesora Ana Mª Zapatero a partir de los materiales utilizados en el centro (Editorial SM) Ángulo entre dos rectas El ángulo de dos rectas
Tema 6 La recta Índice
Tema 6 La recta Índice 1. Ecuación vectorial de la recta... 2 2. Ecuaciones paramétricas de la recta... 2 3. Ecuación continua de la recta... 2 4. Ecuación general de la recta... 3 5. Ecuación en forma
Geometría Vectorial y Anaĺıtica
Geometría Vectorial y Anaĺıtica Tema 3 - Geometría de las Transformaciones Lineales del Plano Daniel Cabarcas Jaramillo Escuela de Matemáticas Universidad Nacional de Colombia, Sede Medelĺın Medelĺın,
Geometría analítica del plano
8 Geometría analítica del plano Objetivos En esta quincena aprenderás a: Reconocer los elementos de un vector identificando cuando dos vectores son equipolentes. Hacer operaciones con vectores libres tanto
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 7 MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio 4,
Bloque 2. Geometría. 3. La recta. 1. Definición de recta
Bloque 2. Geometría 3. La recta 1. Definición de recta Para representar puntos en un plano (superficie de dos dimensiones) utilizamos dos rectas graduadas y perpendiculares, cuyo corte es el punto 0 de
Geometría analítica. 3. Calcula u+ vy u v analítica y gráficamente en los siguientes. a) u (1, 3) y v(5,2) b) u (1, 3) y v(4,1) Solución:
5 Geometría analítica. Operaciones con vectores Piensa y calcula Dado el vector v (3, 4) del dibujo siguiente, calcula mentalmente su longitud y la pendiente. D A v(3, 4) C O Longitud = 5 Pendiente = 4/3
VECTORES EN EL ESPACIO
5 VECTORES EN EL ESPACIO Página 133 REFLEXIONA Y RESUELVE Relaciones trigonométricas en el triángulo Halla el área de este paralelogramo en función del ángulo a: 5 cm a cm Halla el área de este triángulo
Trabajo Práctico N 4: I) VECTORES EN R 2 Y R 3
Trabajo Práctico N 4: I) VECTORES EN R Y R Ejercicio 1: Las fuerzas que actúan en un cuerpo se localizan en un plano, entonces se pueden representar mediante elementos de R. Determine la fuerza que hay
TEMA 5. VECTORES. Dados dos puntos del plano y.
TEMA 5. VECTORES. Dados dos puntos del plano y. Se define el vector de origen A y extremo B como el segmento orientado caracterizado por su módulo (su longitud), dirección (la de la recta que lo contiene)
El espacio euclídeo El espacio vectorial R n. Definición. Conjunto de todas las n-uplas de números reales:
Lección 1 El espacio euclídeo 1.1. El espacio vectorial R n Definición. Conjunto de todas las n-uplas de números reales: R n = {(x 1,x 2,...,x n ) : x 1,x 2,...,x n R} Nos interesan los casos n = 2 y n
Vectores. 2)Coordenadas y base Combinación lineal Vectores linealmente dependiente Bases. Bases canónica
Vectores 1) Vectores en R 2 Vector fijo en el plano Elementos de un vector fijo ( módulo, dirección, sentido, origen y extremo) Vectores equipolentes Vector libres Propiedad fundamental de los vectores
GEOMETRIA DEL ESPACIO
GEOMETRIA DEL ESPACIO GEOMETRIA DEL ESPACIO SUPERFICIES REPRESENTADAS EN R³ POR LAS SIGUIENTES ECUACIONES: 1.- DESCRIBA Y BOSQUEJE LA SUPERFICIE EN R³ REPRESENTADA POR LA ECUACION: X=Y. 2.- Que puntos
TEMA No 3.- VECTORES EN EL PLANO.
3.1.- CONCEPTO DE VECTOR. UNIDAD EDUCATIVA ROMULO GALLEGOS TEMA No 3.- VECTORES EN EL PLANO. Mérida, 4 de mayo de 2017 Un vector fijo es un segmento de recta orientado y dirigido que tiene su origen en
Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática.
Álgebra Geometría Analítica Prof. Gisela Saslavsk Vectores en R en R 3. Rectas planos en el espacio Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática..
INGENIERO EN COMPUTACION TEMA: RECTA EN EL PLANO
UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO CENTRO UNIVERSITARIO UAEM ZUMPANGO INGENIERO EN COMPUTACION TEMA: RECTA EN EL PLANO ELABORÓ: M. EN C. LUIS ENRIQUE KU MOO FECHA: SEPTIEMBRE DE 2016 UNIDAD DE APRENDIZAJE
Definición 1.28 (Determinación de una recta) Una recta en el plano viene determinada por un punto y un vector libre, no nulo, r (P; u )
1.3. La recta en el plano afín La recta está formada por puntos del plano en una dirección dada. La ecuación de la recta es la condición necesaria y suficiente que deben cumplir las coordenadas de un punto
GEOMETRIA ANALITICA EN EL ESPACIO
CAPITULO VII CALCULO II GEOMETRIA ANALITICA EN EL ESPACIO Es el estudio de las formas geométricas en un sistema ordenado. Un sistema de ejes coordenados en el espacio, dividen al espacio en ocho octangulos.
