PARTE II TEORÍA LINEAL DE LA ELASTICIDAD PARA MATERIALES ISOTRÓPICOS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PARTE II TEORÍA LINEAL DE LA ELASTICIDAD PARA MATERIALES ISOTRÓPICOS"

Transcripción

1 PARTE II TEORÍA LINEAL DE LA ELASTICIDAD PARA MATERIALES ISOTRÓPICOS 1

2 G. CLASIFICACIÓN DE LAS DEFORMACIONES PURAS

3 DEFORMACIÓN PURA Cuando en el desplazamiento la parte correspondiente a un movimiento rígido se anula, a la deformación se le llama deformación pura. La clasificación que sigue se refiere a deformaciones puras exclusivamente. En tal caso, H E 3

4 DEFORMACIÓN PURA Cuando en el desplazamiento la parte correspondiente a un movimiento rígido se anula, a la deformación se le llama deformación diferencial pura. La clasificación que sigue se refiere a deformaciones puras exclusivamente. En tal caso, Donde e E ij La trasa de es H 1 = E tr E u = ip jq iq jp ip iq e ij u p x q u x p q 4

5 COMENTARIO INICIAL Las matrices de deformaciones diferenciales unitarias asociadas a las deformaciones puras son matrices simétricas. Un resultado fundamental del algebra de matrices que subyace en las discusiones que van a continuación es que toda matriz simétrica es diagonal (es decir, se diagonaliza) cuando se utilizan las direcciones principales como ejes de coordenadas. 5

6 DILATACIÓN PURA Se dice que E corresponde a una dilatación pura cuando es diagonal y todos los elementos de la diagonal son iguales. La magnitud de la dilatación (o simplemente la dilatación) es u 3u1 x1 3u x 3u3 x3 En tal caso la matriz de deformaciones unitarias se puede escribir como E En el caso más general de deformaciones cualesquiera en que E es arbitraria, la dilatación se define como Cuando 0 se le llama contracción E u tre ip iq u x p q 6

7 DEFORMACIONES ISOCÓRICAS Un esatdo de deformación es isocórico en un punto, cuando la dilatación se anula en ese punto. Es decir : u 0 EXTENSIÓN SIMPLE Un esatdo de deformación es una extensión simple en un punto cuando en ese punto se puede introducir un sistema Cartesiano (ortogonal) de coordenadas tal que en él 0 0 E DISTORSIÓN SIMPLE Un esatdo de deformación es una distorsión simple en un punto cuando en ese punto se puede introducir un sistema Cartesiano (ortogonal) de coordenadas tal que en él 0 0 E

8 RELACIONES ENTRE LAS CLASES DE DEFORMACIONES PURAS 8

9 TODA DEFORMACIÓN ISOCÓRICA ES LA SUPERPOSICIÓN DE DOS DEFORMACIONES SIMPLES Suponga E isocórica y diaginalícela : donde Luego E e e e e e e e e e 0 0 e 0 0 e e e 33 9

10 TODO ESTADO DE DEFORMACIÓN PURA ES LA SUPERPOSICIÓN DE UNA DILATACIÓN SIMPLE Y UNA DEFORMACIÓN ISOCÓRICA Porque: 1 1 E I + E I

11 TODO ESTADO DE DEFORMACIÓN PURA ES LA SUPERPOSICIÓN DE UNA DILATACIÓN SIMPLE Y DOS DE DISTORSIÓN SIMPLE Esta afirmación es un corolario de los resultados anteriores 11

12 H. CLASIFICACIÓN DE LOS ESFUERZOS 1

13 COMENTARIO INICIAL Tanto las deformaciones unitarias puras como los estados de esfuerzo están caracterizados por matrices simétricas. Debido a ello el análisis de unas y los otros son muy similares. Sin embargo, las diferencias principales radican en las interpretaciones físicas respectivas. Para facilitar éstas, las ilustraciones se harán para el caso de estados homogéneos de esfuerzo y usando coordenadas en las direcciones principales. 13

14 EL TENSOR DE ESFUERZOS

15 LAS TRACCIONES La tracción en un punto de la frontera de un sólido está dada por T n Dado que se ha diagonalizado : Consecuentemente : T1 11n1 T n T3 33n

16 ESTADO DE ESFUERZO ISOTRÓPICO En este caso, por lo que I Dado que se ha diagonalizado : Consecuentemente : T1 11n1 T n T3 33n

17 TENSIÓN SIMPLE Este caso corresponde a Consecuentemente : T1 11n1 T 0 T3 0 ESFUERZO CORTANTE PURO En este caso y : 17

18 TENSIÓN SIMPLE 18

19 TODO ESTADO DE ESFUERZOS ES LA SUPERPOSICIÓN DE UN ESTADO ISOTRÓPICO Y DOS DE CORTANTE La demostración es análoga 19

20 I. EL TENSOR ELÁSTICO PARA MATERIALES ISOTRÓPICOS 0

21 El número de constantes independientes que intervienen en el tensor elástico son cuando más 36, y 1 cuando la función de densidad de energía ( strain-energy density function; ver [0], p.60) existe. Veremos a continuación que cuando el material elástico es isotrópico ellas se reducen a y se obtendrá la expresión general de la relación esfuerzo deformación que gobierna esa clase de materiales. Dado que todo estado de deformación es la superposición de una dilatación simple y dos distorsiones simples, bastará determinar el esfuerzo producido por estas dos clases de deformaciones: las dilataciones simples y las distorsiones simples. 1

22 DOS HECHOS BÁSICOS Primero : CI 3 ki Segundo : C Aquí a k y se les llama el módulos de compresibilidad y de cortante, respectivamente.

23 1. EL ESFUERZO PRODUCIDO POR UNA DILATACIÓN SIMPLE Sea E una dilatación simple, entonces: CE 3kE. EL ESFUERZO PRODUCIDO POR UNA DEFORMACIÓN ISOCÓRICA Sea E una distorisión simple, entonces: CE E 3

24 OBTENCIÓN DEL TENSOR ELÁSTICO Se utlizará la identidad E I E I 3 3 Entonces 3k CE ki E I IE E 3 3 Y pasando esta últma ecuación a notación indicial : C e ijpq ij pq ij Aquí se han utilizado las siguientes identidades : e ij + ip jq iq jp 1 up = ip jq iq jp y u = x Los parámetros y son las constantes de Lamè. Note que = k 3 q u x p q pq u x p q 4

25 EL TENSOR ELÁSTICO ISOTRÓPICO En resumen, para materiales isotrópicos el tensor elástico está dado por C + ijpq pq ij ip jq iq jp 5

26 PARÁMETROS USADOS EN ELASTICIDAD, Constantes de Lamè; k Módulo de compresibilidad Los principales son : Razón de Poisson ; E Módulo de young ; E 3 E E ; k E k + ; E ; k

27 J. ECUACIONES GOBERNANTES PARA MATERIALES ISOTRÓPICOS 7

28 ECUACIONES DE LA ELASTODINÁMICA (ONDAS ELÁSTICAS) 8

29 La ecuación de movimiento es : u Cu b t que en notación indicial se escribe : Donde C u ijpq pq ij i q Cijpq t x x j p + u b ip jq iq jp Luego u uu b t i 9

30 ECUACIONES DE LA ELASTOSTÁTICA 30

31 La ecuación que gobierna el equilibrio de los sistemas elásticos es : Cu b Cuando: C se tiene : El operador definido. + ijpq pq ij uu b ip jq iq jp es positivo 31

32 ALGUNOS RESULTADOS DEL CÁLCULO En lo que sigue se van a utilizar los siguientes resultados a) = 0 y = 0 b) v = 0 v = c) w= 0 w w 0 w= d) Todo campo vectorial u puede expresarse en la forma : u = v w donde v es isocórico ( v = 0) y w es irrotacional = 0 e) Todo campo vectorial upuede expresarse en la forma : u = T 3

33 K. REPRESENTACIÓN DE SOLUCIONES 33

34 USO DE POTENCIALES EN DINÁMICA Tomando u = y sustituyendo en la ecuación u uu b t Donde, para simplificar, se suponondrá que b 0 se obtiene 0 t t Descomponemos esta ecuación en dos: 0 y 0 t t Las cuales se satisfacen cuando y t t Aquí: 1 1 and 34

35 L. FORMULACIONES VARIACIONALES 35

36 APÉNDICE 1 CAPÍTULO IX 36

37 DILATACIÓN PURA Se dice que E corresponde a una dilatación pura cuando es diagonal y todos los elementos de la diagonal son iguales. La magnitud de la dilatación (o simplemente la dilatación) es u p ui u ip jp xp xj En tal caso la matriz de deformaciones unitarias se puede escribir como 1 ui eij ip jq iq jp x j 37

38 EJERCICIOS CAPÍTULO IX 38

39 EJERCICIO 1 LINEALIZACIÓN DE ECUACIONES Considere la ecuación no lineal 1x1 1x1 1x 1x 1 x 0 1 x 41x x 1 1 n x =10 x

40 EJERCICIO DEMUESTRE QUE EL NÚMERO DE CONSTANTES INDEPENDIENTES ES CUANDO MÁS DE 36 40

CAPÍTULO 2 OBTENCION DE LOS PARAMETROS GENERALES PARA UNA SOLA CAPA DE MATERIAL COMPUESTO SOMETIDA A TENSIÓN

CAPÍTULO 2 OBTENCION DE LOS PARAMETROS GENERALES PARA UNA SOLA CAPA DE MATERIAL COMPUESTO SOMETIDA A TENSIÓN CAPÍTULO 2 OBTENCION DE LOS PARAMETROS GENERALES PARA UNA SOLA CAPA DE MATERIAL COMPUESTO SOMETIDA A TENSIÓN 2.1 Introducción 2.1.1 Clasificación de los materiales compuestos. Las características de los

Más detalles

FEM para Mecánica 3D. Miguel Ángel Otaduy. Animación Avanzada 7 de Marzo de 2014

FEM para Mecánica 3D. Miguel Ángel Otaduy. Animación Avanzada 7 de Marzo de 2014 FEM para Mecánica 3D Miguel Ángel Otaduy Animación Avanzada 7 de Marzo de 2014 Índice Repaso Hoy Funciones de forma Formulación fuerte formulación débil Matriz de rigidez Ec. de elasticidad en 3D Deformación

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO ELEMENTOS DE MECÁNICA DEL MEDIO CONTINUO 1521 4 08 Asignatura Clave Semestre Créditos Ingeniería Mecánica e Industrial

Más detalles

1. Elasticidad lineal

1. Elasticidad lineal 1. Elasticidad lineal 1.1. Descripción del problema El problema de esfuerzos en elasticidad lineal se plantea para un sólido que ocupa la región del espacio Ω con una frontera Γ (cf. figura 1). La posición

Más detalles

Elasticidad Ecuaciones constitutivas

Elasticidad Ecuaciones constitutivas Elasticidad Ecuaciones constitutivas Recordemos el Tensor de Esfuerzos Ahora pensemos qué pasa cuando aplicamos una fuerza a un cuerpo, es posible que éste se deforme (cambie de forma) Cambio en el desplazamiento

Más detalles

EJERCICIOS COMPLEMENTARIOS DE ELASTICIDAD AÑO ACADÉMICO

EJERCICIOS COMPLEMENTARIOS DE ELASTICIDAD AÑO ACADÉMICO EJERCICIOS COMPLEMENTARIOS DE ELASTICIDAD AÑO ACADÉMICO 2011-2012 Prob 1. Sobre las caras de un paralepípedo elemental que representa el entorno de un punto de un sólido elástico existen las tensiones

Más detalles

Producto tensorial entre tensores

Producto tensorial entre tensores Tensores cartesianos Producto tensorial entre tensores Producto tensorial entre tensores Se define el producto tensorial entre los tensores S CT(m) y T CT(n) como el tensor S T CT(n + m): S T = S i1...i

Más detalles

Elasticidad! Ecuaciones constitutivas

Elasticidad! Ecuaciones constitutivas Elasticidad Ecuaciones constitutivas Recordemos el Tensor de Esfuerzos Ahora pensemos qué pasa cuando aplicamos una fuerza a un cuerpo, es posible que éste se deforme (cambie de forma) Cambio en el desplazamiento

Más detalles

CARTA DESCRIPTIVA. Antecedente(s): Resistencia de Materiales

CARTA DESCRIPTIVA. Antecedente(s): Resistencia de Materiales CARTA DESCRIPTIVA I. Identificadores de la asignatura Clave: CBE221000 Créditos: 8 Materia: Mecánica del Medio Continuo Departamento: Ingeniería Civil y Ambiental Instituto: Ingeniería y Tecnología Modalidad:

Más detalles

Relaciones esfuerzo deformación

Relaciones esfuerzo deformación Capítulo Relaciones esfuerzo deformación En esta sección se emplea la primera ley de la termodinámica para derivar la relación esfuerzo deformación..1. Relaciones constitutivas Se llama modelo constitutivo

Más detalles

Elementos de Física de los Medios Continuos

Elementos de Física de los Medios Continuos Elementos de Física de los Medios Continuos Martín Rivas e-mail:martin.rivas@ehu.es http://tp.lc.ehu.es/martin.htm Departamento de Física Teórica e Historia de la Ciencia UPV/EHU Leioa, Mayo 2014 En la

Más detalles

DDM sin Multiplicadores de Lagrange: Ecuación de Elasticidad. Dr. Ernesto Rubio Acosta IIMAS, UNAM

DDM sin Multiplicadores de Lagrange: Ecuación de Elasticidad. Dr. Ernesto Rubio Acosta IIMAS, UNAM DDM sin Multiplicadores de Lagrange: Ecuación de Elasticidad Dr. Ernesto Rubio Acosta IIMAS, UNAM ernesto@uxdea4.iimas.unam.mx Participantes Dr. Ismael Herrera Revilla Colaboradores Dr. Robert Yates Alumnos

Más detalles

Deformaciones. Contenidos

Deformaciones. Contenidos Lección 2 Deformaciones Contenidos 2.1. Concepto de deformación................... 14 2.2. Deformación en el entorno de un punto.......... 15 2.2.1. Vector deformación. Componentes intrínsecas........

Más detalles

dx = x El tensor x/ X se denomina tensor gradiente de la deformación F = x

dx = x El tensor x/ X se denomina tensor gradiente de la deformación F = x Capítulo 2 Cinemática El desarrollo de las expresiones contenidas en este capítulo se lleva a cabo en un sistema de referencia general cartesiano {I 1 I 2 I 3 }. La notación es, con algunas diferencias,

Más detalles

Introducción a la Química Computacional

Introducción a la Química Computacional OBTENCIÓN DE VALORES Y VECTORES PROPIOS DE UN SISTEMA POLIATÓMICO: APLICACIÓN EN LOS ORBITALES MOLECULARES El problema de las ecuaciones simultáneas en el cálculo variacional se puede expresar según: HC

Más detalles

Mediante este programa se persigue desarrollar las siguientes habilidades:

Mediante este programa se persigue desarrollar las siguientes habilidades: PROPÓSITO: El programa de esta asignatura está dirigido a los estudiantes del primer semestre de la Facultad de Ingeniería, con la finalidad de ofrecerles una capacitación teórica práctica en los principios

Más detalles

Punto material: Una partícula. Puede ocupar distintos puntos espaciales en su movimiento alolargodeltiempo.

Punto material: Una partícula. Puede ocupar distintos puntos espaciales en su movimiento alolargodeltiempo. 1.11 Ecuaciones del movimiento 1.11. Ecuaciones del movimiento La descripción más elemental del movimiento del Medio Continuo puede llevarse a cabo mediante funciones matemáticas que describan la posición

Más detalles

Contenido PRESENTACIÓN...V CONTENIDO...VII NOMENCLATURA...XV ABREVIATURAS...XIX OPERADORES...XX UNIDADES...XXI

Contenido PRESENTACIÓN...V CONTENIDO...VII NOMENCLATURA...XV ABREVIATURAS...XIX OPERADORES...XX UNIDADES...XXI Contenido Contenido PRESENTACIÓN...V CONTENIDO...VII NOMENCLATURA...XV ABREVIATURAS...XIX OPERADORES...XX UNIDADES...XXI INTRODUCCIÓN... 1 1 LA MECÁNICA...1 2 QUÉ ES LA MECÁNICA DEL CONTINUO?...1 2.1 Hipótesis

Más detalles

2 =0 (3.146) Expresando, las componentes del tensor de esfuerzos en coordenadas cartesianas como: 2 ; = 2 2 ; =

2 =0 (3.146) Expresando, las componentes del tensor de esfuerzos en coordenadas cartesianas como: 2 ; = 2 2 ; = 3.7. Función de Airy Cuando las fuerzas de cuerpo b son constantes en un sólido con estado de deformación o esfuerzo plano, el problema elástico se simplifica considerablemente mediante el uso de una función

Más detalles

Postulados de Cauchy

Postulados de Cauchy 1.4. Tracción 1.4.1. Postulados de Cauchy Consideremos un medio continuo sobre el que actúan las correspondientes fuerzas de cuerpo ysuperficiales (ver Fig. 1.14). Consideremos también una partícula P

Más detalles

Esta definición se puede ampliar a cualquier par de bases de los espacio inicial y final MATRIZ DE UNA APLICACIÓN LINEAL EN BASES ARBITRARIAS

Esta definición se puede ampliar a cualquier par de bases de los espacio inicial y final MATRIZ DE UNA APLICACIÓN LINEAL EN BASES ARBITRARIAS Cambios de base 3 3. CAMBIOS DE BASE Dada una aplicación lineal : y la base,,, se ha definido matriz en bases canónicas de la aplicación lineal a la matriz,, cuyas columnas son las coordenadas de en la

Más detalles

ÁLGEBRA LINEAL I NOTAS DE CLASE UNIDAD 2

ÁLGEBRA LINEAL I NOTAS DE CLASE UNIDAD 2 ÁLGEBRA LINEAL I NOTAS DE CLASE UNIDAD 2 Abstract Estas notas conciernen al álgebra de matrices y serán actualizadas conforme el material se cubre Las notas no son substituto de la clase pues solo contienen

Más detalles

Prob 2. A Una pieza plana de acero se encuentra sometida al estado tensional homogéneo dado por:

Prob 2. A Una pieza plana de acero se encuentra sometida al estado tensional homogéneo dado por: PRÁCTICAS DE ELASTICIDAD AÑO ACADÉMICO 2012-201 Prob 1. El estado tensional de un punto de un sólido elástico se indica en la Figura donde las tensiones se epresan en MPa. Se pide: a. Calcular el vector

Más detalles

P xx ( r) P xy ( r) P xz ( r) P xy ( r) P yy ( r) P yz ( r) P xz ( r) P yz ( r) P zz ( r) d S = ds ˆn( r) (2)

P xx ( r) P xy ( r) P xz ( r) P xy ( r) P yy ( r) P yz ( r) P xz ( r) P yz ( r) P zz ( r) d S = ds ˆn( r) (2) EL TENSOR DE PRESIONES La discusión siguiente se centra en el tensor de presiones; sin embargo, los conceptos matemáticos pueden ser extendidos a otras clases de tensores. El tensor de presiones es un

Más detalles

Capítulo 3 El Método de los Elementos de Contorno y la Formulación Hipersingular.

Capítulo 3 El Método de los Elementos de Contorno y la Formulación Hipersingular. Capítulo 3 El Método de los Elementos de Contorno y la Formulación Hipersingular. 3.1. Introducción El Método de los Elementos de Contorno (MEC) se ha implantado firmemente en numerosos campos de la ingeniería

Más detalles

Práctica nº 1: Álgebra Tensorial

Práctica nº 1: Álgebra Tensorial ETSI de CAMINOS, CANALES Y PUERTOS DE MADRID METODOS MATEMATICOS DE LAS TECNICAS (Matemáticas) PRACTICAS Práctica nº 1: Álgebra Tensorial 201011 a) Ejercicios y cuestiones de vectores Ejercicio 1. Resolver

Más detalles

Sustituyendo la ec. (2.61) en la ecs. (2.26) se tienen las componentes del tensor de esfuerzos: = = =

Sustituyendo la ec. (2.61) en la ecs. (2.26) se tienen las componentes del tensor de esfuerzos: = = = 2.4. Termo-elasticidad en materiales isotrópicos Considere un medio continuo no restringido constituido por un material elástico isotrópico en una configuración no deformada. Si se presenta un cambio uniforme

Más detalles

MECÁNICA DEL SÓLIDO REAL (3º, Máquinas). Curso 2010/ TEST Nº 1

MECÁNICA DEL SÓLIDO REAL (3º, Máquinas). Curso 2010/ TEST Nº 1 MECÁNICA DEL SÓLIDO REAL (3º, Máquinas). Curso 2010/11. 17-2-2011 Nombre... Nº... TEST Nº 1 Nº Tema Indicar si son verdaderas () o falsas () las siguientes afirmaciones / 1 1 En un modelo de medio continuo

Más detalles

TUTORIAL RES ESFUERZOS NORMAL Y CORTANTE

TUTORIAL RES ESFUERZOS NORMAL Y CORTANTE TUTORIAL RES ESFUERZOS NORMAL Y CORTANTE En este tutorial hablaremos sobre los esfuerzos normales y cortantes a los que se ve sometido cualquier prisma mecánico, sus ecuaciones de equilibrio, y un primer

Más detalles

Mecánica de Materiales Compuestos

Mecánica de Materiales Compuestos Departamento de Mecánica de Medios ontinuos Teoría de structuras Master en Mecánica structural Avanada DDG Mecánica de Materiales ompuestos Tema. Análisis de la lámina urso / Autores: nrique Barbero Pouelo,

Más detalles

Tema 6: Transformación de esfuerzos y deformaciones unitarias

Tema 6: Transformación de esfuerzos y deformaciones unitarias Tema 6: Transformación de esfuerzos y deformaciones unitarias 6.1. Estado de esfuerzo en coordenadas cartesianas Considere un cuerpo tridimensional, cuyo comportamiento del material es elástico lineal

Más detalles

2. Convención de Einstein de supresión del símbolo de suma 3

2. Convención de Einstein de supresión del símbolo de suma 3 Índice 1. Vectores y tensores 2 2. Convención de Einstein de supresión del símbolo de suma 3 3. Notación vectorial y notación indicial 4 3.1. Índices libres..................................... 4 3.2.

Más detalles

TEMA 4 SISTEMAS DE 2 GRADOS DE LIBERTAD. Sistemas de 2 Grados de Libertad

TEMA 4 SISTEMAS DE 2 GRADOS DE LIBERTAD. Sistemas de 2 Grados de Libertad TEMA 4 SISTEMAS DE GRADOS DE LIBERTAD Sistemas de Grados de Libertad ELEMENTOS DE MÁQUINAS Y VIBRACIONES - 4. - TEMA 4 SISTEMAS DE GRADOS DE LIBERTAD ELEMENTOS DE MÁQUINAS Y VIBRACIONES - 4. - TEMA 4 SISTEMAS

Más detalles

Capítulo2. Estado de deformación CAPÍTULO 2 ESTADO DE DEFORMACIÓN

Capítulo2. Estado de deformación CAPÍTULO 2 ESTADO DE DEFORMACIÓN Capítulo. Estado de deformación CAPÍTULO ESTADO DE DEFORMACIÓN Introducción En este capítulo se estudia el movimiento relativo de una partícula elemental de un medio continuo con respecto a otra, lo que

Más detalles

z zz xy yx Figura 7.1: Esfuerzos sobre un elemento de fluido.

z zz xy yx Figura 7.1: Esfuerzos sobre un elemento de fluido. 87 Capítulo 7 Flujo Viscoso Se analiará en este capítulo las ecuaciones diferenciales de movimiento que gobiernan el movimiento de un fluido viscoso µ 0. Se considerarán en el desarrollo de estas ecuaciones

Más detalles

Fuerzas superficiales

Fuerzas superficiales 1.2 Fuerzas 1.2. Fuerzas Las fuerzas que pueden actuar sobre un medio continuo pueden ser de dos tipos: Fuerzas superficiales y de cuerpo. 1.2.1. Fuerzas superficiales Se define como fuerzas superficiales

Más detalles

1. Las matrices se denotan con letras mayúsculas. Por ejemplo, A, B, C, X,...

1. Las matrices se denotan con letras mayúsculas. Por ejemplo, A, B, C, X,... CAPÍTULO 1 ALGEBRA MATRICIAL 11 Introducción Definición 111 (Matriz) Definimos una matriz como un arreglo rectangular de elementos, llamados escalares, sobre un álgebra F Más que hacer referencia especifica

Más detalles

PROGRAMA DE ESTUDIO. Práctica ( ) Teórica (x ) Presencial ( x ) Teórica-prácti ( ) Híbrida ( )

PROGRAMA DE ESTUDIO. Práctica ( ) Teórica (x ) Presencial ( x ) Teórica-prácti ( ) Híbrida ( ) PROGRAMA DE ESTUDIO Nombre de la asignatura: MECANICA DEL MEDIO CONTINUO Clave: IME03 Fecha de elaboración: Horas Horas Semestre semana Ciclo Formativo: Básico ( ) Profesional ( X ) Especializado ( ) Horas

Más detalles

3. Método de Rayleigh-Ritz

3. Método de Rayleigh-Ritz 3. Método de Rayleigh-Ritz La solución del problema de elasticidad consiste en encontrar la función desplazamiento u válida para todo el dominio y que verifique las condiciones de contorno. El método de

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO MECÁNICA DEL MEDIO CONTINUO 0416 9º 09 Asignatura Clave Semestre Créditos Ingeniería en Ciencias de la Tierra Geofísica

Más detalles

1) Tensor de momento sísmico de cizalla pura. El vector de desplazamiento es paralelo al

1) Tensor de momento sísmico de cizalla pura. El vector de desplazamiento es paralelo al 1) Tensor de momento sísmico de cizalla pura. El vector de desplazamiento es paralelo al plano de falla. Se supone una fuente puntual situada en el medio isotrópico. Se trabaja con dos vectores unitarios:

Más detalles

TENSORES Resumen de teoría sobre álgebra de tensores

TENSORES Resumen de teoría sobre álgebra de tensores TENSORES Resumen de teoría sobre álgebra de tensores www.thefiniteelement.com Actualizado el 22/07/2012 1. Resumen sobre álgebra de tensores 1.1 Introducción Las propiedades de un medio contínuo no cambian

Más detalles

Álgebra Geométrica de Clifford

Álgebra Geométrica de Clifford Apéndice A Álgebra Geométrica de Clifford El álgebra geométrica es un sistema cuyos elementos son llamados multivectores y está caracterizada por un producto geométrico. Esta álgebra, su teoría y propiedades,

Más detalles

APÉNDICE A. Algebra matricial

APÉNDICE A. Algebra matricial APÉNDICE A Algebra matricial El estudio de la econometría requiere cierta familiaridad con el álgebra matricial. La teoría de matrices simplifica la descripción, desarrollo y aplicación de los métodos

Más detalles

Listado de Figuras. Figura 3.1 Fases materiales de un compuesto Figura 3.2 Deformación a cortante ε y deformación a cortante ingenieril γ.

Listado de Figuras. Figura 3.1 Fases materiales de un compuesto Figura 3.2 Deformación a cortante ε y deformación a cortante ingenieril γ. Listado de Figuras Figura 3.1 Fases materiales de un compuesto... 8 Figura 3.2 Deformación a cortante ε y deformación a cortante ingenieril γ. 10 Figura 3.3 Sistema de coordenadas global y material.,,,,,,,,,,,,,,,,,,...

Más detalles

Termoelasticidad lineal

Termoelasticidad lineal Capítulo 5 Termoelasticidad lineal n el capítulo anterior estudiamos el modelo más sencillo de la mecánica de sólidos, a saber, el de los cuerpos elásticos. n este análisis encontramos la relación que

Más detalles

Tema 2 Datos multivariantes

Tema 2 Datos multivariantes Aurea Grané Máster en Estadística Universidade Pedagógica 1 Aurea Grané Máster en Estadística Universidade Pedagógica 2 Tema 2 Datos multivariantes 1 Matrices de datos 2 Datos multivariantes 2 Medias,

Más detalles

El esfuerzo axil. Contenidos

El esfuerzo axil. Contenidos Lección 8 El esfuerzo axil Contenidos 8.1. Distribución de tensiones normales estáticamente equivalentes a esfuerzos axiles.................. 104 8.2. Deformaciones elásticas y desplazamientos debidos

Más detalles

Un escalar, caracterizado por un componente como la temperatura, el área, etc., se le denomina tensor de orden cero.

Un escalar, caracterizado por un componente como la temperatura, el área, etc., se le denomina tensor de orden cero. Capítulo 1 Introducción 1.1. Algebra tensorial y análisis 1.1.1. Definiciones y terminología El uso de notación indicial es ventajosa porque generalmente hace posible escribir en forma compacta formulas

Más detalles

- Todos. - Todos. - Todos. Proporciona los conocimientos científicos para el diseño de elementos mecánicos

- Todos. - Todos. - Todos. Proporciona los conocimientos científicos para el diseño de elementos mecánicos Nombre de la asignatura: Mecánica de Sólidos. Carrera : Ingeniería Mecánica Clave de la asignatura: MCM-934 Clave local: Horas teoría horas practica créditos: 3--8.- UBICACIÓN DE LA ASIGNATURA A) RELACIÓN

Más detalles

Vectores libres. Física I Grado en Ingeniería de Organización Industrial Primer Curso. Antonio González Fernández/Ana Mª Marco Ramírez Curso 2017/2018

Vectores libres. Física I Grado en Ingeniería de Organización Industrial Primer Curso. Antonio González Fernández/Ana Mª Marco Ramírez Curso 2017/2018 Vectores libres Física I Grado en Ingeniería de Organización Industrial Primer Curso Antonio González Fernández/Ana Mª Marco Ramírez Curso 2017/2018 Dpto. Física Aplicada III Universidad de Sevilla Las

Más detalles

Figura 3.7: Placa con condiciones en la frontera sobre Γ.

Figura 3.7: Placa con condiciones en la frontera sobre Γ. 3.4 Placas 3.4. Placas 3.4.1. PVF Una placa es un elemento estructural limitado por dos planos paralelos, llamados caras, y una superficie cilíndrica, llamada borde o frontera. Su estudio se divide en

Más detalles

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA ESTRUCTURAL

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA ESTRUCTURAL UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA ESTRUCTURAL ASIGNATURA: RESISTENCIA DE MATERIALES CÓDIGO: 1102 UNIDADES: 6 Teoría: 5 horas/semana REQUISITOS: 1101,0254-0255

Más detalles

Eigenvalores y eigenvectores

Eigenvalores y eigenvectores Eigenvalores y eigenvectores Los dos problemas principales del álgebra lineal son: resolver sistemas lineales de la forma Ax = b y resolver el problema de eigenvalores. En general, una matriz actúa sobre

Más detalles

Álgebra Lineal Ma1010

Álgebra Lineal Ma1010 Álgebra Lineal Ma1010 s de Vectores y Matrices es Departamento de Matemáticas ITESM s de Vectores y Matrices es Álgebra Lineal - p. 1/44 En esta lectura veremos conjuntos y matrices ortogonales. Primero

Más detalles

Guía 4: Introducción a tensores Martes 10 de abril de 2012 Tarea: 4d, 10, 13.

Guía 4: Introducción a tensores Martes 10 de abril de 2012 Tarea: 4d, 10, 13. Departamento de Física Facultad de Ciencias Universidad de Chile Métodos de la Física Matemática I Profesor: Gonzalo Gutiérrez Ayudante: Dany López Guía 4: Introducción a tensores Martes de abril de 22

Más detalles

f x = 0 f y = 6 kp=cm 3 f z = 17 kp=cm 3

f x = 0 f y = 6 kp=cm 3 f z = 17 kp=cm 3 Relación de problemas: Elasticidad lineal 1. Una barra de sección rectangular con anchura 100 mm, fondo 50 mm y longitud 2 m se somete a una tracción de 50 Tm; la barra sufre un alargamiento de 1 mm y

Más detalles

Cálculo tensorial. Elvira Martínez Ramírez

Cálculo tensorial. Elvira Martínez Ramírez Dpto. Física y Mecánica Cálculo tensorial Elvira Martínez Ramírez Notación ransformaciones de coordenadas. Giros de ejes cartesianos ipos de tensores Direcciones principales de un tensor de segundo orden

Más detalles

Tensores cartesianos.

Tensores cartesianos. Tensores cartesianos. Transformación de coordenadas. Consideremos dos sistemas de coordenadas cartesianas ortogonales en el plano, identificados como σ y σ. Supongamos que ambos tienen un origen común,

Más detalles

CÍRCULO DE MOHR PARA DEFORMACIÓN

CÍRCULO DE MOHR PARA DEFORMACIÓN CÍRCULO DE MOHR PARA DEFORMACIÓN DEFORMACIÓN PLANA Las deformaciones normal y cortante en un punto de un cuerpo varían con la dirección, en forma análoga a la de los esfuerzos En el plano y pueden ocurrir

Más detalles

Álgebra II (61.08, 81.02) Primer cuatrimestre 2017 Práctica 5. Diagonalización de matrices hermíticas. Formas Cuadráticas.

Álgebra II (61.08, 81.02) Primer cuatrimestre 2017 Práctica 5. Diagonalización de matrices hermíticas. Formas Cuadráticas. Álgebra II (61.08, 81.02) Primer cuatrimestre 2017 Práctica 5. Diagonalización de matrices hermíticas. Formas Cuadráticas. Nota: en todos los ejercicios, salvo que se indique lo contrario, (, ) representa

Más detalles

Mecánica de Fluidos. Análisis Diferencial

Mecánica de Fluidos. Análisis Diferencial Mecánica de Fluidos Análisis Diferencial Análisis Diferencial: Descripción y caracterización del flujo en función de la descripción de una partícula genérica del flujo. 1. Introducción 2. Movimiento de

Más detalles

Guía N o 7. En esta guía E λ (A) denota el espacio propio asociado a λ de la matriz A. 1. Calcular el determinante de las siguientes matrices:

Guía N o 7. En esta guía E λ (A) denota el espacio propio asociado a λ de la matriz A. 1. Calcular el determinante de las siguientes matrices: FACULTAD DE CIENCIAS EXACTAS DPTO. DE MATEMÁTICAS UNIVERSIDAD ANDRÉS BELLO Álgebra Lineal FMM3 Guía N o 7 En esta guía E λ (A) denota el espacio propio asociado a λ de la matriz A.. Calcular el determinante

Más detalles

TEMA 0: Herramientas matemáticas

TEMA 0: Herramientas matemáticas 1 TEMA 0: Herramientas matemáticas Tema 0: Herramientas matemáticas 1. Campos escalares y vectoriales 2. Gradiente 3. Divergencia 4. Rotacional 5. Teoremas de Gauss y de Stokes 5. Representación gráfica

Más detalles

2. Localice el centro del círculo en el punto con coordenadas y =0. = + 2

2. Localice el centro del círculo en el punto con coordenadas y =0. = + 2 1.13. Círculo de Mohr para deformaciones Construcción del círculo de Mohr para deformaciones: 1. Dibujo de un sistema de ejes coordenados con como abscisa, positivo hacia la derecha, y como ordenada, positivo

Más detalles

UNIVERSIDAD DE ANTIOQUIA FACULTAD DE CIENCIAS EXACTAS Y NATURALES PREGRADO EN MATEMÁTICAS

UNIVERSIDAD DE ANTIOQUIA FACULTAD DE CIENCIAS EXACTAS Y NATURALES PREGRADO EN MATEMÁTICAS UNIVERSIDAD DE ANTIOQUIA FACULTAD DE CIENCIAS EXACTAS Y NATURALES PREGRADO EN MATEMÁTICAS Código: CNM- 517 Nombre: Análisis vectorial Prerrequisitos: CNM-295 Duración del semestre: 16 semanas Intensidad

Más detalles

Secretaría de Docencia Dirección de Estudios Profesionales

Secretaría de Docencia Dirección de Estudios Profesionales PROGRAMA DE ESTUDIO POR COMPETENCIAS PLAN DE ESTUDIOS F2 MECÁNICA DEL MEDIO CONTINUO I. IDENTIFICACIÓN DEL CURSO Espacio Educativo: Facultad de Ingeniería Licenciatura: Ingeniería Civil Área de docencia:

Más detalles

Asignatura: TEORÍA DE ESTRUCTURAS

Asignatura: TEORÍA DE ESTRUCTURAS Asignatura: TEORÍA DE ESTRUCTURAS Titulación: INGENIERO TÉCNICO EN OBRAS PÚBLICAS Curso (Cuatrimestre): 2º Primer Cuatrimestre Profesor(es) responsable(s): Dr. Luis Sánchez Ricart Ubicación despacho: Despacho

Más detalles

SISTEMAS DE ECUACIONES LINEALES Y MATRICES

SISTEMAS DE ECUACIONES LINEALES Y MATRICES y SISTEMAS DE ECUACIONES ES Y MATRICES Sergio Stive Solano 1 Febrero de 2015 1 Visita http://sergiosolanosabie.wikispaces.com y SISTEMAS DE ECUACIONES ES Y MATRICES Sergio Stive Solano 1 Febrero de 2015

Más detalles

Álgebra Lineal UCR. Sétimo tema, 2013

Álgebra Lineal UCR. Sétimo tema, 2013 Álgebra Lineal UCR Sétimo tema, 2013 Presentaciones basadas principalmente en Arce,C, Castillo,W y González, J. (2004) Álgebra lineal. Tercera edición. UCR. San Pedro. Otras fuentes serán mencionadas cuando

Más detalles

PROGRAMA DE CURSO. Nombre en Inglés SOLID MECHANICS SCT ,5 5,5. Competencia a la que tributa el curso

PROGRAMA DE CURSO. Nombre en Inglés SOLID MECHANICS SCT ,5 5,5. Competencia a la que tributa el curso Código ME3204 Nombre PROGRAMA DE CURSO MECÁNICA DE SÓLIDOS Nombre en Inglés SOLID MECHANICS es Horas de Horas Docencia Horas de Trabajo SCT Docentes Cátedra Auxiliar Personal 6 10 3 1,5 5,5 Requisitos

Más detalles

ÍNDICE. UNIDAD DIDÁCTICA I TEORÍA DE LA ELASTICIDAD I Objetivos 21

ÍNDICE. UNIDAD DIDÁCTICA I TEORÍA DE LA ELASTICIDAD I Objetivos 21 ÍNDICE Prólogo 15 UNIDAD DIDÁCTICA I TEORÍA DE LA ELASTICIDAD I Objetivos 21 TEMA 1 INTRODUCCIÓN A LA ELASTICIDAD 1.1. Objeto de la Teoría de la Elasticidad y de la Resistencia de Materiales 25 1.2. Sólidos

Más detalles

Algebra Lineal Xa: Álgebra Vectorial en R3

Algebra Lineal Xa: Álgebra Vectorial en R3 Algebra Lineal Xa: Álgebra Vectorial en R3 José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email: jrico@salamanca.ugto.mx

Más detalles

Tema 7.- Métodos numéricos aproximados

Tema 7.- Métodos numéricos aproximados ema 7.- Métodos numéricos aproimados. Introducción técnicas generales. La Aproimación de Galerkin. El Método de los Elementos Finitos 4. Ejercicios Método general de Residuos Ponderados Variable (generaliada):

Más detalles

Álgebra Lineal. Tema 7. Forma normal de una transformación

Álgebra Lineal. Tema 7. Forma normal de una transformación Álgebra Lineal Tema 7. Forma normal de una transformación Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J. S ALAS, A. T ORRENTE Y E.J.S. V

Más detalles

Año CIMTA Centro de Investigaciones en Mecánica Teórica y Aplicada Universidad Tecnológica Nacional Facultad Regional Bahía Blanca

Año CIMTA Centro de Investigaciones en Mecánica Teórica y Aplicada Universidad Tecnológica Nacional Facultad Regional Bahía Blanca ESTABILIDAD II: Termoelasticidad Año 2012 CIMTA Centro de Investigaciones en Mecánica Teórica y Aplicada Universidad Tecnológica Nacional Facultad Regional Bahía Blanca Objetivo Establecer una teoría que

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 2.1-2.2 Espacios Euclídeos. Ortogonalidad (Curso 2011 2012) 1. Se considera un espacio euclídeo de dimensión 3, y en él una base {ē 1, ē 2, ē 3 } tal que el módulo de ē 1 y el

Más detalles

Dinámica del Sólido Rígido

Dinámica del Sólido Rígido Dinámica del Sólido Rígido El presente documento de clase sobre dinámica del solido rígido está basado en los contenidos volcados en la excelente página web del curso de Física I del Prof. Javier Junquera

Más detalles

ANX-PR/CL/ GUÍA DE APRENDIZAJE

ANX-PR/CL/ GUÍA DE APRENDIZAJE PROCESO DE COORDINACIÓN DE LAS ENSEÑANZAS PR/CL/001 Minas y Energia ASIGNATURA 65004014 - PLAN DE ESTUDIOS 06IE - CURSO ACADÉMICO Y SEMESTRE 2017-18 - Primer semestre Índice Guía de Aprendizaje 1. Datos

Más detalles

Capítulo 3. Teoría de la elasticidad. 3.1 Cinemática. Tensor de deformaciones

Capítulo 3. Teoría de la elasticidad. 3.1 Cinemática. Tensor de deformaciones Capítulo 3 Teoría de la elasticidad 3.1 Cinemática En este trabajo abordaremos a los cristales líquidos como cuerpos elásticos. Se entiende por un cuerpo elástico a aquél que tiene la propiedad de regresar

Más detalles

CAPÍTULO 4: 4: LEY LEY DE DE COMPORTAMIENTO

CAPÍTULO 4: 4: LEY LEY DE DE COMPORTAMIENTO CAPÍTULO 4: 4: LEY LEY DE DE COMPORTAMIENTO 1. Introducción. 2. El ensayo de tracción monoaial. 3. Ley de Hooke generalizada. 4. Módulo de cizalladura. 5. Ley de comportamiento en unas coordenadas cualesquiera.

Más detalles

Planos y Rectas. 19 de Marzo de 2012

Planos y Rectas. 19 de Marzo de 2012 el Geometría en el Planos y Rectas Universidad Autónoma Metropolitana Unidad Iztapalapa 19 de Marzo de 2012 el Anteriormente vimos que es posible encontrar un número infinito de vectores, no paralelos

Más detalles

Capítulo 2 Imperfecciones en materiales cristalinos

Capítulo 2 Imperfecciones en materiales cristalinos Capítulo 2 Imperfecciones en materiales cristalinos Dislocaciones Experimento: Magnesio HCP Que predice la teoría? τ = 9x10 3 MPa En la práctica: 1 1,000 a 1 100,000 Dislocaciones: Porción de material

Más detalles

Contenido PRESENTACIÓN...V CONTENIDO...VII NOMENCLATURA...XIII ABREVIATURAS...XVII OPERADORES...XVIII UNIDADES...XIX

Contenido PRESENTACIÓN...V CONTENIDO...VII NOMENCLATURA...XIII ABREVIATURAS...XVII OPERADORES...XVIII UNIDADES...XIX Contenido Contenido PRESENTACIÓN...V CONTENIDO...VII NOMENCLATURA...XIII ABREVIATURAS...XVII OPERADORES...XVIII UNIDADES...XIX INTRODUCCIÓN... 1 1 PRINCIPIOS CONSTITUTIVOS...2 1.1 El Principio del Determinismo...3

Más detalles

MECÁNICA DEL SÓLIDO REAL (3º, Máquinas). Curso 2010/ TEST Nº 2

MECÁNICA DEL SÓLIDO REAL (3º, Máquinas). Curso 2010/ TEST Nº 2 MECÁNICA DEL SÓLIDO REAL (3º, Máquinas). Curso 2010/11. 3-3-2011 Nombre... Nº... TEST Nº 2 Nº Tema Indicar si son verdaderas () o falsas () las siguientes afirmaciones 1 3 Si el vector desplazamiento u

Más detalles

Vectores y matrices. Problemas para examen

Vectores y matrices. Problemas para examen Vectores y matrices Problemas para examen Operaciones lineales con vectores 1. Programación: la suma de dos vectores. Escriba una función que calcule x + y, donde x, y R n. Calcule el número de flops.

Más detalles

y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy).

y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy). UNIDAD II: VECTORES EN DOS Y TRES DIMENSIONES Un espacio vectorial (o espacio lineal) es el objeto básico de estudio en la rama de la matemática llamada álgebra lineal. A los elementos de los espacios

Más detalles

UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO

UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO FACULTAD DE CIENCIAS EXACTAS Y TECNOLOGIAS DEPARTAMENTO ACADEMICO DE ESTRUCTURAS Y CONSTRUCCIONES MATERIA: ESTABILIDAD IV EQUIPO DOCENTE: Prof. Adj.: Dr. Ing.

Más detalles

Ecuaciones lineales de orden superior

Ecuaciones lineales de orden superior ANEXO GUIA 5 Ecuaciones lineales de orden superior Las ideas presentadas para ecuaciones lineales de segundo orden se pueden generalizar a ecuaciones lineales de orden n d n x n + a n 1(t) dn 1 x n 1 +

Más detalles

UNIVERSIDAD JOSE CARLOS MARIATEGUI CAPITULO 2 VECTORES

UNIVERSIDAD JOSE CARLOS MARIATEGUI CAPITULO 2 VECTORES CAPITULO 2 VECTORES 2.1 Escalares y Vectores Una cantidad física que pueda ser completamente descrita por un número real, en términos de alguna unidad de medida de ella, se denomina una cantidad física

Más detalles

CINEMÁTICA 2. Mecánica de Fluidos Avanzada UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO DE HIDRÁULICA E HIDROLOGÍA

CINEMÁTICA 2. Mecánica de Fluidos Avanzada UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO DE HIDRÁULICA E HIDROLOGÍA CINEMÁTICA 2 Mecánica de Fluidos Avanzada UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO DE HIDRÁULICA E HIDROLOGÍA CAMPO DE VELOCIDADES El campo de velocidad está constituido

Más detalles

El Tensor de Deformación

El Tensor de Deformación El Tensor de Deformación Pensemos qué pasa cuando aplicamos una fuerza a un cuerpo, es posible que éste se deforme (cambie de forma) Cambio en el desplazamiento rela1vo durante la deformación No deformado

Más detalles

Álgebra Lineal III: Planos y Líneas. Problemas Resueltos.

Álgebra Lineal III: Planos y Líneas. Problemas Resueltos. Álgebra Lineal III: Planos y Líneas. Problemas Resueltos. José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato

Más detalles

RESISTENCIA DE MATERIALES

RESISTENCIA DE MATERIALES UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL RESISTENCIA DE MATERIALES CARÁCTER: Obligatoria PROGRAMA: Ingeniería Civil DEPARTAMENTO: Ingeniería Estructural CODIGO SEMESTRE

Más detalles

Considerando un elemento diferencial de volumen Ω =, fig. 1.6, e integrando dos veces sucesivas la ec. (1.36): ( ) =0 (1.37) (1.

Considerando un elemento diferencial de volumen Ω =, fig. 1.6, e integrando dos veces sucesivas la ec. (1.36): ( ) =0 (1.37) (1. 1.1.7. Solución de ecuaciones por integración directa Barra sección constante Determine la función, (), que satisface el PVF del elemento barra de definido en la ec. (1.14). Se considerando que la fuerza

Más detalles

ETAPAS BÁSICAS DEL ANÁLISIS MATRICIAL DE UN SISTEMA DISCRETO. Mercedes López Salinas

ETAPAS BÁSICAS DEL ANÁLISIS MATRICIAL DE UN SISTEMA DISCRETO. Mercedes López Salinas ETAPAS BÁSICAS DEL ANÁLISIS MATRICIAL DE UN SISTEMA DISCRETO Mercedes López Salinas PhD. Ing. Civil elopez@uazuay.edu.ec ELEMENTOS FINITOS Facultad de Ciencia y Tecnología Escuela de Ingeniería Civil y

Más detalles

CURSO: MECÁNICA DE SÓLIDOS II

CURSO: MECÁNICA DE SÓLIDOS II UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA CURSO: MECÁNICA DE SÓLIDOS II PROFESOR: ING. JORGE A. MONTAÑO PISFIL CURSO DE

Más detalles

Comisión de Pedagogía - Diego Chamorro Ecuaciones en Derivadas Parciales (Nivel 3).

Comisión de Pedagogía - Diego Chamorro Ecuaciones en Derivadas Parciales (Nivel 3). AMARUN www.amarun.org Comisión de Pedagogía - Diego Chamorro Ecuaciones en Derivadas Parciales (Nivel 3). Lección n 2: Soluciones clásicas de las ecuaciones de Navier-Stokes USFQ, noviembre 215 Índice

Más detalles