Métodos en diferencias en regiones irregulares

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Métodos en diferencias en regiones irregulares"

Transcripción

1 Métodos en diferencias en regiones irregulares Pablo Barrera Sánchez, Guilmer González Flores, Francisco Domínguez Mota XXII ENOAN,

2 Índice 1 Introducción y motivación Introducción y motivación 2 Dominios rectangulares Diferencias finitas Ecuación de calor 1D Ecuación de Poisson 1D Ecuación de Poisson 2D Comentarios finales 3 Dominios irregulares 4 Bibliografía Bibliografía

3 Introducción y motivación Un número importande de ecuaciones diferenciales, que describen el comportamiento de fenómenos reales", no pueden ser resueltos en forma cerrada: Shallow water (uh) t (vh) t h t + (uh) + (vh) x y + (u2 h+ 1 2 gh2 ) x + (uvh) x + (uvh) y + (v 2 h+ 1 2 gh2 ) y = 0 = 0 = 0

4 Introducción y motivación Figure: Circulación del viento en chapala.

5 Introducción y motivación Un problema clásico y simple en su formulación Péndulo simple θ = g L sen θ, θ(0) = θ 0, θ(0) = v 0 involucra un esfuerzo en resolver de manera aproximada la solución.

6 Introducción y motivación Diversos Métodos Algunos de ellos son Colocación Diferencias Finitas Elemento Finito Volúmenes Finitos Métodos Espectrales Métodos sin mallas

7 Introducción y motivación Clasificación de las EDPs Planteamiento general Algunas ecuaciones diferenciales parciales se pueden escribir en la forma A 2 u(x, y)+b 2 x2 x y ( ) 2 u(x, y)+c u(x, y) = f x, y, u, y 2 x u(x, y), u(x, y) y la cual permite una clasificación análoga a las cónicas Elíptica, si B 2 4AC < 0 Parábolica, si B 2 4AC = 0 Hiperbólica si B 2 4AC > 0.

8 Introducción y motivación Ejemplos de la Física Ecuación de Laplace 2 x 2 u(x, y)+ 2 y 2 u(x, y) = 0, representa un problema elíptico bidimensional relativo al fenómeno de calor, distribución de potenciales eléctricos en un campo electrostático, deformación elástica de un sólido, etc. Ecuación de calor 2 t u(x, t) κ u(x, t) = 0, con κ > 0. x 2 Representa usualmente el calor dentro de un alambra aislado (condiciones de dirichlet). Ecuación de onda 2 u(x, t) α 2 2 u(x, t) = 0, representa t 2 x 2 un problema hiperbólico unidimensional.

9 Diferencias finitas Diferencias finitas Métodos La idea principal del Metodo de Diferencias Finitas consiste en reemplazar las derivadas de las ecuaciones diferenciales por combinaciones lineales. Sabemos por definición du dx lim u(x + h) u(x) h 0 h

10 Diferencias finitas Figure: Una aproximación.

11 Diferencias finitas Esquemas Diferencia hacia adelante du u(x i + h) u(x i ) = dx i+1/2 (x i + h) x i u i+1 u i x i+1 x i Diferencia hacia atrás du u i u i 1 = dx 1 1/2 x i x i 1

12 Diferencias finitas Lectura1 Revisemos la lectura1.pdf. Diferencia centrada du u i+1 u i 1 =. dx i x i+1 x i 1

13 Diferencias finitas Esquemas Diferencia de segundo orden d 2 u i u i+1 2u i + u i 1 = dx 2 h 2 d 2 u dx 2 i = u i+1 2u i + u i 1 h 2 +O(h 2 )

14 Ecuación de calor 1D Ecuación de calor 1D Ecuación de calor Se tiene una varilla a la cual se le aplica una fuente de calor inicia y el interés en determinar el comportamiento a lo largo del tiempo u(x, 0) = f(x) u t = κu xx x ( L/2, L/2) condicion inicial u( L/2, t) = T l u(l/2, t) = T r condicion de frontera La primera idea es usar un esquema hacia adelante en el tiempo y un esquema central para la variable espacial. Este esquema es un clásico y se conoce en la literatura como FTCS.

15 Ecuación de calor 1D Práctica 1 Usemos la Practica1.PDF Figure: Primeros pasos en el tiempo.

16 Ecuación de calor 1D Ejercicio 1 Implementar una versión implícita: usar diferencias hacia atrás en el tiempo y diferencias centrales en el espacio u n i u n 1 i Δt = κ un i+1 2un i + u n i 1 Δx 2 Nuevamente, es necesario resolver una sistema de ecuaciones en casa paso del tiempo, un sistema tridiagonal. Pero ganamos estabilidad en el método. Ejercicio implementar este método y comparar con el anterior explícito.

17 Ecuación de calor 1D Ejercicio 2 Implementar Crack-Nicholson La idea es sencilla, aproximar la derivada espacial por un promedio entre diferencias centrales del paso del tiempo siguiente y el actual u xx 1 2 (un+1 i+1 2un+1 i + u n+1 i 1 Δx 2 + un i+1 2un i + ui 1 n Δx 2 ) Nuevamente, es necesario resolver una sistema de ecuaciones en casa paso del tiempo, un sistema tridiagonal el algoritmo de Thomas puede ser usado. Por una parte ganamos estabilidad en el método; sin embargo, el costo por cálculo sube. Ejercicio implementar este método y comparar con el anterior explícito.

18 Ecuación de Poisson 1D Poisson 1D Ecuación Poisson 1D Considere uno de los problemas más sencillo y en 1D u = f, x (0, 1) u(0) = α, u(1) = β, x R. donde el lado derecho es conocido. Si hacemos una partición o una malla del intervalo [0, 1], pensado nuevamente en una malla uniforme de n puntos y usando un esquema de diferencias ceentrales de orden 2

19 Ecuación de Poisson 1D Poisson 1D Esquema en diferencias Como resultado u i+1 2u i + u i 1 h 2 = f(x i ) u 1. u n 1 h 2 f(x 1 )+α h 2 f(x 2 ) =. h 2 f(x n 1 )+β Debemos resolver un sistema tridiagonal.

20 Ecuación de Poisson 2D Ecuación de Poisson 2D Ejemplo 2 u = F, (x, y) R = (0, 1) (0, 1) u = f, (x, y) R. Como resultado tenemos u j+1,k 2u j,k + u j 1,k Δx 2 u j,k+1 2u j,k + u j,k 1 Δy 2 = F j,k j = 1,..., M 1, k = 1,..., N 1 Es necesario resolver una sistema de ecuaciones.

21 Ecuación de Poisson 2D Algorithm 2.1: Algoritmo de la ecuación de Poisson 1 Data: n 2 dx = 1/(n 1);dy = dx; 3 itersor = 1; while flag y itersor < kmaxsor do uold = u(2 : (n 1), 2 : (n 1)); for i = 2 to n 1 do for j = 2 to n 1 do u(i, j) = soreval(f(i, j), u((i 1) : (i + 1),(j 1) : (j + 1)), dx, dy,ω); itersor = itersor + 1; err = norm(uold u(2 : (n 1), 2 : (n 1))); if err < tolsor then flag0 = 0; return u ;

22 Ecuación de Poisson 2D Algorithm 2.2: Función soreval 1 Data: f, x, dx, dy,ω 2 dxx = Δx 2 ; 3 dyy = Δy 2 ; 4 dxy = 4ΔxΔy; 5 p = Ω (f +2 0/dxy (x(3, 1) x(1, 1)+x(1, 3) x(3, 3))+1/dxx (x(2, 1)+x(2, 3)) /dyy (x(1, 2)+x(3, 2)))/2/(1/dxx + 1/dyy) (1 Ω) x(2, 2); 8 return p ;

23 Ecuación de Poisson 2D poisson2d.m Usemos el script de Matlab. 5 t= Figure: Solución final.

24 Comentarios finales En general 1 Discretización 2 Métodos explícitos 1 sencillos 2 inestables 3 Métodos implícitos 1 Pueden ser complejos 2 estables Tenemos 3 problemas centrales: 1) Construir una malla de puntos. 2) Elegir el esquema en diferencias a emplear. 3) Resolver un sistema Ax = b.

Parte 9. Ecuaciones en derivadas parciales

Parte 9. Ecuaciones en derivadas parciales Parte 9. Ecuaciones en derivadas parciales Gustavo Montero Escuela Técnica Superior de Ingenieros Industriales Universidad de Las Palmas de Gran Canaria Curso 2006-2007 Introducción a las ecuaciones en

Más detalles

Parte 9. Ecuaciones en derivadas parciales

Parte 9. Ecuaciones en derivadas parciales Parte 9. Ecuaciones en derivadas parciales Gustavo Montero Escuela Técnica Superior de Ingenieros Industriales Universidad de Las Palmas de Gran Canaria Curso 2004-2005 1 Introducción a las ecuaciones

Más detalles

APLICACIONES COMPUTACIONALES

APLICACIONES COMPUTACIONALES APLICACIONES COMPUTACIONALES INGENIERÍA EJECUCIÓN MECÁNICA ECUACIONES DIFERENCIALES PARCIALES (EDP) MOTIVACIÓN Una ecuación que tiene derivadas parciales de una función desconocida, de dos o más variables

Más detalles

Método de diferencias finitas para ecuaciones diferenciales parciales elípticas. (Parte I)

Método de diferencias finitas para ecuaciones diferenciales parciales elípticas. (Parte I) Método de diferencias finitas para ecuaciones diferenciales parciales elípticas (Parte I) Contenido Ecuaciones en derivadas parciales Ecuaciones en derivadas parciales elípticas Ecuación de Laplace Aproximación

Más detalles

ANALISIS NUMERICO. Práctica 1 - Diferencias Finitas

ANALISIS NUMERICO. Práctica 1 - Diferencias Finitas ANALISIS NUMERICO Práctica 1 - Diferencias Finitas do Cuatrimestre 014 Clasificación de ecuaciones diferenciales en derivadas parciales Eercicio 1 Hallar las regiones donde la ecuación (α + x) u xx + xyu

Más detalles

Introducción a EDP: Ecuaciones hiperbólicas y parabólicas

Introducción a EDP: Ecuaciones hiperbólicas y parabólicas Clase No. 27: MAT 251 Introducción a EDP: Ecuaciones hiperbólicas y parabólicas Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato e-mail: alram@ cimat.mx web: http://www.cimat.mx/

Más detalles

Método de diferencias finitas: María Cecilia Rivara 2011/2

Método de diferencias finitas: María Cecilia Rivara 2011/2 Método de diferencias finitas: discusión y EDPsparabólicas María Cecilia Rivara 2011/2 Contenido 1. Discusión dificultades MDF para problemas elípticos complejos 2. Problemas evolutivos 3. Clasificación

Más detalles

Introducción a los métodos de solución numérica de E.D.P.

Introducción a los métodos de solución numérica de E.D.P. Capítulo 5 Introducción a los métodos de solución numérica de E.D.P. 5.1 Introducción. En lo sucesivo consideramos las notaciones para E.D.P. siguientes: Supongamos una E.D.P. de orden 2 para la función

Más detalles

Introducción a la resolución numérica de problemas para ecuaciones en derivadas parciales (I)

Introducción a la resolución numérica de problemas para ecuaciones en derivadas parciales (I) Introducción a la resolución numérica de problemas para ecuaciones en derivadas parciales (I) Dpto. EDAN, Universidad de Sevilla Dpto. EDAN, Universidad de Sevilla () Resolución de EDP 1 / 15 Recordatorio

Más detalles

3. Ecuación de difusión

3. Ecuación de difusión 3. Ecuación de difusión Modelización Numérica de la Atmósfera 2017 En este capítulo usaremos la ecuación de difusión como vehículo para introducir dos tipos de esquemas: explícitos e implícitos. Se estudiará

Más detalles

Métodos numéricos para problemas de contorno

Métodos numéricos para problemas de contorno Métodos numéricos para problemas de contorno Damián Ginestar Peiró Departamento de Matemática Aplicada Universidad Politécnica de Valencia (UPV) Métodos numéricos para PVF 1 / 28 Programa 1 Introducción

Más detalles

DIFERENCIAS FINITAS PROBLEMA ELIPTICOS

DIFERENCIAS FINITAS PROBLEMA ELIPTICOS Análisis Numérico II Diferencias finitas Problemas Elípticos DIFERENCIAS FINITAS PROBLEMA ELIPTICOS Esquema de los cinco puntos Métodos Seudoevolucionarios Dominios Arbitrarios Ecuación Autoadjunta Esquema

Más detalles

Clasificación de Ecuaciones Diferenciales Parciales

Clasificación de Ecuaciones Diferenciales Parciales Clasificación de Ecuaciones Diferenciales Parciales Yarko Niño C. y Paulo Herrera R. Departamento de Ingeniería Civil, Universidad de Chile Semestre Primavera 2011 Calendario Cátedras sólo los miércoles.

Más detalles

7 Simulación Numérica

7 Simulación Numérica 7 7. Problemas elípticos en una dimensión Los eperimentos numéricos para el caso de una dimensión consistieron en resolver el problema de la ecuación elíptica general de segundo orden Ec. (7.), con condiciones

Más detalles

Ejemplos de Modelos en Ecuaciones Diferenciales en Derivadas Parciales

Ejemplos de Modelos en Ecuaciones Diferenciales en Derivadas Parciales Ejemplos de Modelos en Ecuaciones Diferenciales en Derivadas Parciales Hugo Franco, PhD Principios de Modelado y Simulación CLASIFICACIÓN DE LAS ECUACIONES DIFERENCIALES PARCIALES (PDE s) Definiendo la

Más detalles

Sobre la estabilidad de esquemas de diferencias finitas para la ecuación de advección en regiones planas irregulares.

Sobre la estabilidad de esquemas de diferencias finitas para la ecuación de advección en regiones planas irregulares. Sobre la estabilidad de esquemas de diferencias finitas para la ecuación de advección en regiones planas irregulares. J. G. Tinoco-Ruiz, F. J. Domínguez-Mota, G. Tinoco-Guerrero FACULTAD DE CIENCIAS FÍSICO

Más detalles

Ecuaciones en Derivadas Parciales y Análisis Numérico

Ecuaciones en Derivadas Parciales y Análisis Numérico , Ecuaciones en Derivadas Parciales y Análisis Numérico Prácticas Capítulo 5. Diferencias finitas para la ecuación de ondas. 5.1 Resolviendo la ecuación de ondas Vamos a resolver la ecuación de ondas utilizando

Más detalles

Métodos Matemáticos I

Métodos Matemáticos I E. de Ingenierías Industriales 2012-13 Métodos Matemáticos I Jesús Rojo Parte 3. Métodos en diferencias para las E.D.P. Las ecuaciones en derivadas parciales; ecuaciones de segundo orden Generalidades

Más detalles

Ejemplo. Métodos Numéricos - cap. 7. Ecuaciones Diferenciales PVF 1/5. Problemas de contorno o valores de frontera (PVF) Método del disparo

Ejemplo. Métodos Numéricos - cap. 7. Ecuaciones Diferenciales PVF 1/5. Problemas de contorno o valores de frontera (PVF) Método del disparo 1/5 Problemas de contorno o valores de frontera (PVF) = f(t,, ) para a t b (a) = v y (b) = w Son EDOs de segundo orden, donde se conocen los valores de la función en los etremos del intervalo. Ej. : Problemas

Más detalles

Soluciones Numéricas de Modelos Matemáticos

Soluciones Numéricas de Modelos Matemáticos Cuarta Sesión 9 de febrero de 2011 Contenido Aproximación Numérica 1 Aproximación Numérica 2 3 4 Algunos Métodos Sencillos para EDPs Aproximación numérica a una función por Series de Taylor Serie de Taylor:

Más detalles

Diferencias finitas en la resolución de EDPs

Diferencias finitas en la resolución de EDPs Diferencias finitas en la resolución de EDPs Ejercicios propuestos Ejercicio La ecuación de Laplace se cumple sobre un dominio rectangular de cm cm donde: T (,0) si T (,) = 0 si > T ( 0, T (, 0

Más detalles

Ampliación de Matemáticas y Métodos Numéricos

Ampliación de Matemáticas y Métodos Numéricos 4. Ampliación de EDP. Resolución numérica Ampliación de Matemáticas y Métodos Numéricos M a Luz Muñoz Ruiz José Manuel González Vida Francisco José Palomo Ruiz Francisco Joaquín Rodríguez Sánchez Departamento

Más detalles

Métodos en diferencias para problemas de contorno

Métodos en diferencias para problemas de contorno Métodos numéricos de resolución de ecs. en derivadas parciales Curso 2006-07. Prácticas 1 y 2 Métodos en diferencias para problemas de contorno 1 Resultados sobre existencia de solución de un problema

Más detalles

MÉTODO DE DIFERENCIAS FINITAS Y EL USO DE MATLAB PARA ECUACIONES ELÍPTICAS SOBRE CONDUCTIVIDAD TÉRMICA

MÉTODO DE DIFERENCIAS FINITAS Y EL USO DE MATLAB PARA ECUACIONES ELÍPTICAS SOBRE CONDUCTIVIDAD TÉRMICA UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE CIENCIAS DEPARTAMENTO DE MATEMÁTICA XIV CONVENCIÓN DE INVESTIGACIÓN MÉTODO DE DIFERENCIAS FINITAS Y EL USO DE MATLAB PARA ECUACIONES ELÍPTICAS SOBRE CONDUCTIVIDAD

Más detalles

Resolución de la ecuación de Difusión en 2-D y 3-D utilizando diferencias finitas generalizadas. Consistencia y Estabilidad.

Resolución de la ecuación de Difusión en 2-D y 3-D utilizando diferencias finitas generalizadas. Consistencia y Estabilidad. XXI Congreso de Ecuaciones Diferenciales y Aplicaciones XI Congreso de Matemática Aplicada Ciudad Real, 1-5 septiembre 009 (pp. 1 8) Resolución de la ecuación de Difusión en -D y 3-D utilizando diferencias

Más detalles

ECUACIONES DIFERENC IALES II

ECUACIONES DIFERENC IALES II 92 UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO CENTRO DE FÍSICA APLICADA Y TECNOLOGÍA AVANZADA Y FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN Carrera: Licenciatura en Tecnología Programa de la Asignatura: ECUACIONES

Más detalles

1. El Método de Diferencias Finitas

1. El Método de Diferencias Finitas 1. El Método de Diferencias Finitas Por Guillermo Hernández García El Método consiste en una aproximación de derivadas parciales por expresiones algebraicas envolviendo los valores de la variable dependiente

Más detalles

Solución numérica de Ecuaciones Diferenciales Elípticas en Regiones Planas Irregulares Usando Mallas Estructuradas.

Solución numérica de Ecuaciones Diferenciales Elípticas en Regiones Planas Irregulares Usando Mallas Estructuradas. Solución numérica de Ecuaciones Diferenciales Elípticas en Regiones Planas Irregulares Usando Mallas Estructuradas. F. Domínguez-Mota, S. Mendoza*, M. Equihua y J.G. Tinoco U.M.S.N.H. Seminario del Laboratorio

Más detalles

Métodos Numéricos con Diferencias Finitas para EDPs de evolución

Métodos Numéricos con Diferencias Finitas para EDPs de evolución Práctica 6 Métodos Numéricos con Diferencias Finitas para EDPs de evolución En esta práctica resolveremos algunas ecuaciones en derivadas parciales mediante métodos numéricos que discretizan tanto el espacio

Más detalles

Ecuaciones en Derivadas Parciales y Análisis Numérico

Ecuaciones en Derivadas Parciales y Análisis Numérico Ecuaciones en Derivadas Parciales y Análisis Numérico Prácticas Capítulo 3. Diferencias finitas para la ecuación del calor. 3.1 Resolviendo la ecuación del calor Vamos a resolver la ecuación del calor

Más detalles

Resolución de la ecuación de advección-difusión en 2-D utilizando diferencias finitas generalizadas. Consistencia y Estabilidad.

Resolución de la ecuación de advección-difusión en 2-D utilizando diferencias finitas generalizadas. Consistencia y Estabilidad. XXI Congreso de Ecuaciones Diferenciales y Aplicaciones XI Congreso de Matemática Aplicada Ciudad Real, 1-5 septiembre 009 (pp. 1 8) Resolución de la ecuación de advección-difusión en -D utilizando diferencias

Más detalles

Asignaturas antecedentes y subsecuentes Programación I, Análisis Numérico I y Álgebra Lineal Numérica.

Asignaturas antecedentes y subsecuentes Programación I, Análisis Numérico I y Álgebra Lineal Numérica. PROGRAMA DE ESTUDIOS SIMULACIÓN NUMÉRICA DE ECUACIONES DIFERENCIALES PARCIALES Área a la que pertenece: ÁREA DE FORMACION TRANSVERSAL Horas teóricas: 3 Horas prácticas: 2 Créditos: 8 Clave: F0103 Asignaturas

Más detalles

Método de las Diferencias Finitas y su Aplicación a Problemas de Electrostática

Método de las Diferencias Finitas y su Aplicación a Problemas de Electrostática Método de las Diferencias Finitas y su Aplicación a Problemas de Electrostática A. Zozaya S. 7 de agosto de 4 Resumen En este documento se eplora el método de las diferencias finitas y su aplicación a

Más detalles

Ejemplo. Métodos Numéricos - cap. 7. Ecuaciones Diferenciales PVF. Problemas de contorno o valores de frontera (PVF) Método del disparo 1/5

Ejemplo. Métodos Numéricos - cap. 7. Ecuaciones Diferenciales PVF. Problemas de contorno o valores de frontera (PVF) Método del disparo 1/5 étodos Numéricos - cap. 7. Ecuaciones Diferenciales PVF /5 7/5/ Problemas de contorno o valores de frontera (PVF f(t,, para a t b (a v y (b w Son EDOs de segundo orden, donde se conocen los valores de

Más detalles

Métodos numéricos para sistemas de ecuaciones. (Prácticas) Damián Ginestar Peiró UNIVERSIDAD POLITÉCNICA DE VALENCIA

Métodos numéricos para sistemas de ecuaciones. (Prácticas) Damián Ginestar Peiró UNIVERSIDAD POLITÉCNICA DE VALENCIA Métodos numéricos para sistemas de ecuaciones (Prácticas) Damián Ginestar Peiró UNIVERSIDAD POLITÉCNICA DE VALENCIA 1 Índice general 1. Introducción a las ecuaciones en derivadas parciales 3 1.1. Problemas

Más detalles

Partial Differential Equation PDE Toolbox

Partial Differential Equation PDE Toolbox Partial Differential Equation PDE Toolbox Por: Henry Copete QUE ES PDE TOOLBOX? Es una herramienta de MATLAB que facilita la resolución de problemas de ecuaciones diferenciales parciales (EDP) La solución

Más detalles

ANALISIS NUMERICO AVANZADO y. Profesor: Dr. Angel N. Menéndez

ANALISIS NUMERICO AVANZADO y. Profesor: Dr. Angel N. Menéndez MATERIA: ANALISIS NUMERICO AVANZADO y ANALISIS NUMERICO IIa Profesor: Dr. Angel N. Menéndez Análisis Numérico II Diferencias finitas problemas parabólicos DIFERENCIAS FINITAS PROBLEMA PARABOLICOS 1/56

Más detalles

1) Determinar qué elección de h asegurará, a priori, que la solución numérica del P.C.: con el método de diferencias centrales, existe y es única.

1) Determinar qué elección de h asegurará, a priori, que la solución numérica del P.C.: con el método de diferencias centrales, existe y es única. I. Resolución numérica de Problemas de Contorno en E.D.O.: Métodos en diferencias finitas 1) Determinar qué elección de h asegurará, a priori, que la solución numérica del P.C.: y (x) + 4 sen x y (x) 4

Más detalles

MÉTODO DE DIFERENCIAS FINITAS (FDM)

MÉTODO DE DIFERENCIAS FINITAS (FDM) MÉTODO DE DIFERENCIAS FINITAS (FDM) MÉTODO DE DIFERENCIAS FINITAS (FDM) Cambia ecuaciones diferenciales ecuaciones en diferencias finitas a Relaciona el valor de la variable dependiente en un punto a valores

Más detalles

Ecuaciones diferenciales parciales

Ecuaciones diferenciales parciales Chapter 10 Ecuaciones diferenciales parciales Las ecuaciones diferenciales parciales forman una parte muy importante de la física matemática, ya que modelan sistemas donde hay más de una variable independiente.

Más detalles

Metodos libres de mallas y teoría de funciones radiales

Metodos libres de mallas y teoría de funciones radiales Metodos libres de mallas y teoría de funciones radiales Pedro González-Casanova Henríquez DGSCA, UNAM Seminarios de Modelación Computacional Sociedad Mexicana de Metodos Numericos en Ingenieria y Ciencias

Más detalles

Fecha de elaboración: Agosto de Fecha de última actualización: Julio de 2010.

Fecha de elaboración: Agosto de Fecha de última actualización: Julio de 2010. PROGRAMA DE ESTUDIO Simulación Numérica de Ecuaciones Diferenciales Parciales Programa elaborado por: Programa educativo: Licenciatura en Matemáticas Área de formación: Transversal Horas teóricas: 3 Horas

Más detalles

ECUACIONES DIFERENCIALES EN DERIVADAS PARCIALES

ECUACIONES DIFERENCIALES EN DERIVADAS PARCIALES Análisis Numérico II Ecuaciones Diferenciales en Derivadas Parciales ECUACIONES DIFERENCIALES EN DERIVADAS PARCIALES 1/4 Análisis Numérico II Ecuaciones Diferenciales en Derivadas Parciales ECUACIONES

Más detalles

Simulación de Sistemas Continuos y a Tramos. Prof. Dr. François E. Cellier Institut für Computational Science ETH Zürich.

Simulación de Sistemas Continuos y a Tramos. Prof. Dr. François E. Cellier Institut für Computational Science ETH Zürich. Simulación de Sistemas Continuos y a Tramos Prof. Dr. François E. Cellier Institut für Computational Science ETH Zürich 26 de junio 27 Hasta ahora solamente tratamos con ecuaciones diferenciales ordinarias

Más detalles

Resolución numérica de Ecuaciones en Derivadas Parciales (EDP) con Elementos Finitos usando FreeFem++

Resolución numérica de Ecuaciones en Derivadas Parciales (EDP) con Elementos Finitos usando FreeFem++ Resolución numérica de Ecuaciones en Derivadas Parciales (EDP) con Elementos Finitos usando FreeFem++ Esquema del curso Qué problemas queremos resolver? Análisis Numérico:El Método de los Elementos Finitos

Más detalles

Dinámica de Fluidos Computacional: DFC Discretización temporal. Versión 0.1.0

Dinámica de Fluidos Computacional: DFC Discretización temporal. Versión 0.1.0 Dinámica de Fluidos Computacional: DFC Discretización temporal. Versión 0.1.0 Curso de adaptación al grado en ingeniería aeroespacial para ingenieros técnicos aeronáuticos Adrián Lozano Durán adrian@torroja.dmt.upm.es

Más detalles

En efecto, si tenemos el siguiente problema de contorno (1.1) con condiciones de frontera homogéneas, donde Ω es una región dada donde está definido

En efecto, si tenemos el siguiente problema de contorno (1.1) con condiciones de frontera homogéneas, donde Ω es una región dada donde está definido 1 En los últimos años se ha incrementado el interés teórico y práctico por los métodos de descomposición de dominio [65,89] para la solución numérica de ecuaciones diferenciales parciales que modelan sistemas

Más detalles

Problema de Valor de Frontera

Problema de Valor de Frontera Problema de Valor de Frontera Hermes Pantoja Carhuavilca Facultad de Ingeniería Mecanica Universidad Nacional de Ingenieria Métodos Numérico Hermes Pantoja Carhuavilca 1 de 19 CONTENIDO Problema de Valor

Más detalles

Preliminares Problemas de Valor Inicial Problemas de Contorno ECUACIONES DIFERENCIALES ORDINARIAS

Preliminares Problemas de Valor Inicial Problemas de Contorno ECUACIONES DIFERENCIALES ORDINARIAS ECUACIONES DIFERENCIALES ORDINARIAS Contenido Preliminares 1 Preliminares 2 3 El Método de Disparo Lineal Contenido Preliminares 1 Preliminares 2 3 El Método de Disparo Lineal Preliminares Las ecuaciones

Más detalles

Transferencia de Calor Cap. 5. Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D.

Transferencia de Calor Cap. 5. Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D. Transferencia de Calor Cap. 5 Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D. Métodos numéricos en la conducción de calor Muchos problemas que se encuentran en la practica comprenden configuraciones geométricas

Más detalles

Bajo estas hipótesis la ley de Newton permite escribir las ecuaciones del cohete (ver Figura 1.1) como. = m(t) g + T (t), = g + dx dt (0) = v 0.

Bajo estas hipótesis la ley de Newton permite escribir las ecuaciones del cohete (ver Figura 1.1) como. = m(t) g + T (t), = g + dx dt (0) = v 0. CAPÍTULO 1 INTRODUCCIÓN Ejercicios resueltos Problema 1. Desarrolle un modelo simplificado de un coete como un cuerpo sujeto a la gravedad que se mueve en vertical por el empuje de una fuerza de propulsión

Más detalles

A = α cuyos VAPs son λ = 2 y λ ± = α ± i. (No hace falta que comprobeis este dato.) a) Calcular la solución general real del sistema x = Ax.

A = α cuyos VAPs son λ = 2 y λ ± = α ± i. (No hace falta que comprobeis este dato.) a) Calcular la solución general real del sistema x = Ax. Examen Final de Ecuaciones Diferenciales Fecha: 7 de junio de 013 3 Problemas (7.5 puntos) Tiempo total: horas 30 minutos Problema 1 [.5 puntos]. Consideramos la matriz A = α 1 0 1 α 0, α R, 0 0 cuyos

Más detalles

PRÁCTICA 9. TRANSFORMADA DE FOURIER

PRÁCTICA 9. TRANSFORMADA DE FOURIER PRÁCTICA 9. TRANSFORMADA DE FOURIER Ejercicio. Teorema de la integral de Fourier: sea f una función casi continua en todo intervalo finito del eje x tal que existe la f(x) dx ; sea f (x) la función definida

Más detalles

ÍNDICE Capítulo 2 La transformada de Laplace 1 Capítulo 2 Series de Fourier 49 Capítulo 3 La integral de Fourier y las transformadas de Fourier 103

ÍNDICE Capítulo 2 La transformada de Laplace 1 Capítulo 2 Series de Fourier 49 Capítulo 3 La integral de Fourier y las transformadas de Fourier 103 ÍNDICE Capítulo 2 La transformada de Laplace... 1 1.1 Definición y propiedades básicas... 1 1.2 Solución de problemas con valores iniciales usando la transformada de Laplace... 10 1.3 Teoremas de corrimiento

Más detalles

Lista de ejercicios # 5

Lista de ejercicios # 5 UNIVERSIDAD DE COSTA RICA FACULTAD DE CIENCIAS MA-005 Ecuaciones Diferenciales para Ingeniería ESCUELA DE MATEMÁTICA Segundo Semestre del 206 Lista de ejercicios # 5 Ecuaciones diferenciales en derivadas

Más detalles

Resolución de la ecuación de Ondas en 2-D y 3-D utilizando diferencias finitas generalizadas. Consistencia y Estabilidad.

Resolución de la ecuación de Ondas en 2-D y 3-D utilizando diferencias finitas generalizadas. Consistencia y Estabilidad. XXI Congreso de Ecuaciones Diferenciales y Aplicaciones XI Congreso de Matemática Aplicada Ciudad Real, 1-5 septiembre 009 (pp. 1 8) Resolución de la ecuación de Ondas en -D y 3-D utilizando diferencias

Más detalles

1. Estudio de la caída de un puente.

1. Estudio de la caída de un puente. 1 1. Estudio de la caída de un puente. A. Introducción Las oscilaciones de un puente bajo la acción de una fuerza externa pueden estudiarse a partir de la resolución de una ecuación a derivadas parciales

Más detalles

La ecuación de calor (El problema directo) L. Roberto Hernández C. J. Armando Velazco V.

La ecuación de calor (El problema directo) L. Roberto Hernández C. J. Armando Velazco V. La ecuación de calor (El problema directo) L. Roberto Hernández C. J. Armando Velazco V. 21 de febrero de 2015 1.1. La ecuación de calor Muchos de los problemas estudiados por diversas disciplinas de la

Más detalles

CÁLCULO NUMÉRICO I (Tema 2 - Relación 1)

CÁLCULO NUMÉRICO I (Tema 2 - Relación 1) CÁLCULO NUMÉRICO I (Tema - Relación 1) 1 Cuáles de los siguientes algoritmos son finitos? a) Cálculo del producto de dos números enteros. b) Cálculo de la división de dos números enteros. c) Cálculo de

Más detalles

Prerrequisitos de la asignatura Álgebra Lineal Numérica

Prerrequisitos de la asignatura Álgebra Lineal Numérica Prerrequisitos de la asignatura Álgebra Lineal Numérica El propósito de Álgebra Lineal Numérica es analizar algoritmos típicos de álgebra lineal, optimizando la rapidez y la precisión. Para analizar la

Más detalles

Solución numérica de ecuaciones en derivadas parciales Ecuaciones diferenciales parciales elípticas

Solución numérica de ecuaciones en derivadas parciales Ecuaciones diferenciales parciales elípticas Solución numérica de ecuaciones en derivadas parciales Ecuaciones diferenciales parciales elípticas Ing. Jesús Javier Cortés Rosas M. en A. Miguel Eduardo González Cárdenas M. en A. Víctor D. Pinilla Morán

Más detalles

Cálculo en varias variables

Cálculo en varias variables Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad

Más detalles

Un recorrido por Clawpack: Breve teoría y ejemplos.

Un recorrido por Clawpack: Breve teoría y ejemplos. Un recorrido por Clawpack: Breve teoría y ejemplos. Javier de Jesús Cortés Aguirre. Seminario del Laboratorio de Cómputo Científico. Facultad de Ciencias, UNAM. 14 de mayo del 2009. Introducción. CLAWPACK

Más detalles

02 Elementos finitos para tensión/ compresión axial. Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales

02 Elementos finitos para tensión/ compresión axial. Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 02 Elementos finitos para tensión/ compresión axial Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 1 El método de los elementos finitos El método de los elementos

Más detalles

6.1 Transformada de Fourier

6.1 Transformada de Fourier 6 Función de Green II. Dominios no acotados 23 a t e a PROBLEMAS DE AMPLIACIÓN DE MATEMÁTICAS t i c a s 2 o Ing. Telecomunicaciones CURSO 2009 2010 6 Función de Green II. Dominios no acotados 6.1 Transformada

Más detalles

Formulación de Galerkin El método de los elementos finitos

Formulación de Galerkin El método de los elementos finitos Clase No. 28: MAT 251 Formulación de Galerkin El método de los elementos finitos Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato e-mail: alram@ cimat.mx web: http://www.cimat.mx/

Más detalles

Problemas de AMPLIACIÓN DE MATEMÁTICAS

Problemas de AMPLIACIÓN DE MATEMÁTICAS Problemas de AMPLIACIÓN DE MATEMÁTICAS Ingeniería Industrial. Curso 003-004. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema 6: Ecuaciones en derivadas parciales. 6.1 Series de Fourier

Más detalles

Lectura 8 Ampliación de Matemáticas. Grado en Ingeniería Civil

Lectura 8 Ampliación de Matemáticas. Grado en Ingeniería Civil 1 / 43 Lectura 8 Ampliación de Matemáticas. Grado en Ingeniería Civil Curso Académico 2011-2012 Ecuaciones Diferenciales Ordinarias Método de elementos finitos para problemas de contorno 2 / 43 Para introducir

Más detalles

CÁLCULO III. Problemas

CÁLCULO III. Problemas CÁLCULO III. Problemas Grado en Ingeniería en Tecnologías Industriales Tema 4 Arturo de Pablo Elena Romera Open Course Ware, UC3M http://ocw.uc3m.es/matematicas 4 MÉTODO DE SEPARACIÓN DE VARIABLES 19 4.

Más detalles

APLICACIONES DE LA INTEGRAL DEFINIDA

APLICACIONES DE LA INTEGRAL DEFINIDA APLICACIONES DE LA INTEGRAL DEFINIDA Objetivo: El alumno analizará y comprenderá el uso y la aplicación de la integral definida en la resolución de problemas REGIONES PLANAS LIMITADAS POR DOS CURVAS Sean

Más detalles

Solución a Problemas de tipo Dirichlet usando Análisis

Solución a Problemas de tipo Dirichlet usando Análisis Solución a Problemas de tipo Dirichlet usando Análisis Armónico Marysol Navarro Burruel UNISON 17 Abril, 2013 Marysol Navarro Burruel (UNISON) Análisis Armónico y problemas de tipo Dirichlet 17 Abril,

Más detalles

Cálculo Numérico (0258) TEMA 6 SOLUCIÓN NUMÉRICA DE ECUACIONES DIFERENCIALES ORDINARIAS. Semestre

Cálculo Numérico (0258) TEMA 6 SOLUCIÓN NUMÉRICA DE ECUACIONES DIFERENCIALES ORDINARIAS. Semestre Cálculo Numérico (58) Semestre - TEMA 6 SOLUCIÓN NUMÉRICA DE ECUACIONES DIFERENCIALES ORDINARIAS Semestre - Septiembre U.C.V. F.I.U.C.V. CÁLCULO NUMÉRICO (58) - TEMA 6 Las notas presentadas a continuación

Más detalles

Tema 4: Variable Aleatoria Bidimensional

Tema 4: Variable Aleatoria Bidimensional Curso 2016-2017 Contenido 1 Definición de Variable Aleatoria Bidimensional 2 Distribución y fdp Conjunta 3 Clasificación de Variables Aleatorias Bidimensionales 4 Distribuciones Condicionales 5 Funciones

Más detalles

DESARROLLO DEL MÉTODO DE COLOCACIÓN TREFFTZ-HERRERA. APLICACIÓN A PROBLEMAS DE TRANSPORTE EN LAS GEOCIENCIAS TESIS

DESARROLLO DEL MÉTODO DE COLOCACIÓN TREFFTZ-HERRERA. APLICACIÓN A PROBLEMAS DE TRANSPORTE EN LAS GEOCIENCIAS TESIS UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO INSTITUTO DE GEOFÍSICA POSGRADO EN CIENCIAS DE LA TIERRA DESARROLLO DEL MÉTODO DE COLOCACIÓN TREFFTZ-HERRERA APLICACIÓN A PROBLEMAS DE TRANSPORTE EN LAS GEOCIENCIAS

Más detalles

TEMA 9: TIPOS DE PROBLEMAS DE VALOR FRONTERA EN MÁS DE UNA DIMENSIÓN ESPACIAL EN INGENIERÍA QUÍMICA

TEMA 9: TIPOS DE PROBLEMAS DE VALOR FRONTERA EN MÁS DE UNA DIMENSIÓN ESPACIAL EN INGENIERÍA QUÍMICA TEMA 9: TPOS DE PROBLEMAS DE VALOR FRONTERA EN MÁS DE UNA DMENSÓN ESPACAL EN NGENERÍA QUÍMCA 1. NTRODUCCÓN. 2. RESOLUCÓN DE PROBLEMAS PDE-ELÍPTCOS EN DOS DRECCONES ESPACALES: DFERENCAS FNTAS. 3. BBLOGRAFÍA

Más detalles

Jorge Mozo Fernández Dpto. Matemática Aplicada

Jorge Mozo Fernández Dpto. Matemática Aplicada Álgebra y Ecuaciones Diferenciales Lineales y Matemáticas II E.T.S. Ingenieros de Telecomunicación I.T. Telecomunicación Esp. Telemática y Sistemas de Telecomunicación Curso 2009-2010 Tema 11: Introducción

Más detalles

Curso de Métodos Numéricos. Derivada Numérica

Curso de Métodos Numéricos. Derivada Numérica Curso de Métodos Numéricos. Derivada Numérica Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Universidad: ITESM CEM Fecha: Jueves, 01 de octubre de 2014 Tópicos 1 Definición

Más detalles

Tema 12: Ecuaciones diferenciales de primer orden Métodos elementales de integración. Teoremas de existencia y unicidad. Aplicaciones.

Tema 12: Ecuaciones diferenciales de primer orden Métodos elementales de integración. Teoremas de existencia y unicidad. Aplicaciones. Álgebra Tema 1: Fundamentos Lógica matemática. Teoría de conjuntos. Tema 2: Combinatoria Combinatoria. Conjuntos parcialmente ordenados. Tema 3: Sistemas de ecuaciones lineales Eliminación gaussiana. Sistemas

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ACATLÁN LICENCIATURA EN MATEMÁTICAS APLICADAS Y COMPUTACIÓN

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ACATLÁN LICENCIATURA EN MATEMÁTICAS APLICADAS Y COMPUTACIÓN UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ACATLÁN LICENCIATURA EN MATEMÁTICAS APLICADAS Y COMPUTACIÓN PROGRAMA DE ASIGNATURA ACATLÁN CLAVE: 1064 SEMESTRE: 9 (NOVENO) LÍNEA

Más detalles

SISTEMAS DISCRETOS Y SISTEMAS CONTINUOS. INTRODUCCIÓN AL MÉTODO DE ELEMENTOS FINITOS. Mercedes López Salinas

SISTEMAS DISCRETOS Y SISTEMAS CONTINUOS. INTRODUCCIÓN AL MÉTODO DE ELEMENTOS FINITOS. Mercedes López Salinas SISTEMAS DISCRETOS Y SISTEMAS CONTINUOS. INTRODUCCIÓN AL MÉTODO DE ELEMENTOS FINITOS Mercedes López Salinas PhD. Ing. Civil elopez@uazuay.edu.ec ELEMENTOS FINITOS Facultad de Ciencia y Tecnología Escuela

Más detalles

Diferenciación numérica: Método de Euler explícito

Diferenciación numérica: Método de Euler explícito Clase No. 21: MAT 251 Diferenciación numérica: Método de Euler explícito Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/

Más detalles

Diferenciación numérica: Sistemas de ecuaciones lineales ordinarias Método predictor-corrector Método de disparo

Diferenciación numérica: Sistemas de ecuaciones lineales ordinarias Método predictor-corrector Método de disparo Clase No. 25: Diferenciación numérica: Sistemas de ecuaciones lineales ordinarias Método predictor-corrector Método de disparo MAT 251 Dr. Alonso Ramírez Manzanares CIMAT A.C. e-mail: alram@ cimat.mx web:

Más detalles

Examenes de Física Matemática (Ecuaciones en Derivadas Parciales e Integrales)

Examenes de Física Matemática (Ecuaciones en Derivadas Parciales e Integrales) Examenes de Física Matemática (Ecuaciones en Derivadas Parciales e Integrales) Licenciatura en Física Antonio Cañada Villar Departamento de Análisis Matemático Universidad de Granada FÍSICA MATEMÁTICA

Más detalles

Diferenciación numérica: Método de Euler implícito Métodos tipo Runge-Kutta

Diferenciación numérica: Método de Euler implícito Métodos tipo Runge-Kutta Clase No. 24: Diferenciación numérica: Método de Euler implícito Métodos tipo Runge-Kutta MAT 251 Dr. Alonso Ramírez Manzanares CIMAT A.C. e-mail: alram@ cimat.mx web: http://www.cimat.mx/alram/met_num/

Más detalles

2 Obtener el término general de las siguientes sucesiones definidas por recurrencia: y0 = a > 0

2 Obtener el término general de las siguientes sucesiones definidas por recurrencia: y0 = a > 0 CÁLCULO NUMÉRICO I (Ejercicios Temas 1 y ) 1 Cuáles de los siguientes algoritmos son finitos? (a) Cálculo del producto de dos números enteros. (b) Cálculo de la división de dos números enteros. (c) Cálculo

Más detalles

Un esquema simplificado de primer orden para la solución de ecuaciones de Poisson en regiones irregulares del plano.

Un esquema simplificado de primer orden para la solución de ecuaciones de Poisson en regiones irregulares del plano. Un esquema simplificado de primer orden para la solución de ecuaciones de Poisson en regiones irregulares del plano. F. Domínguez-Mota, P. M. Fernández, G. Tinoco-Guerrero J. G. Tinoco-Ruiz FACULTAD DE

Más detalles

c) Dibujar la gráfica del potencial U(x), las curvas de nivel de la energía E(x, v) y un croquis aproximado del sistema.

c) Dibujar la gráfica del potencial U(x), las curvas de nivel de la energía E(x, v) y un croquis aproximado del sistema. Fecha: 13 de enero de 212 3 Problemas (7.5 puntos) Tiempo total: 3 horas Problema 1 [2.5 puntos]. Este problema es bastante conceptual, con pocos cálculos. Se pide claridad en la exposición y justificar

Más detalles

Curso de Elemento Finito con el software ALGOR

Curso de Elemento Finito con el software ALGOR Curso de Elemento Finito con el software ALGOR Facultad de Ingeniería, UNAM www.algor.com M. en I. Alejandro Farah Instituto de Astronomía, UNAM www.astroscu.unam.mx/~farah Contenido general: - La teoría

Más detalles

Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : v = x 2 yē x + x 2 tē y (3.1)

Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : v = x 2 yē x + x 2 tē y (3.1) Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : Se pide: v = x yē x + x tē y (3.1) a. A qué tipo de formalismo corresponde este análisis del escurrimiento, lagrangeano o eulereano?

Más detalles

ANX-PR/CL/ GUÍA DE APRENDIZAJE. ASIGNATURA Metodos numericos avanzados y ecuaciones diferenciales

ANX-PR/CL/ GUÍA DE APRENDIZAJE. ASIGNATURA Metodos numericos avanzados y ecuaciones diferenciales ANX-PR/CL/001-02 GUÍA DE APRENDIZAJE ASIGNATURA Metodos numericos avanzados y ecuaciones diferenciales CURSO ACADÉMICO - SEMESTRE 2015-16 - Primer semestre GA_56AA_563000019_1S_2015-16 Datos Descriptivos

Más detalles

Diferenciación numérica: Método de Euler explícito

Diferenciación numérica: Método de Euler explícito Clase No. 21: MAT 251 Diferenciación numérica: Método de Euler explícito Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/

Más detalles

Parametrización de curvas Integrales de linea. h"p://www.sc.ehu.es/sqwpolim/metodos_matema6cos/

Parametrización de curvas Integrales de linea. hp://www.sc.ehu.es/sqwpolim/metodos_matema6cos/ Parametrización de curvas Integrales de linea h"p://www.sc.ehu.es/sqwpolim/metodos_matema6cos/ Curvas en el espacio En el espacio, una curva se define por el corte de dos superficies. La forma más general

Más detalles

PROGRAMA DE LA ASIGNATURA: Curso académico 2012/13

PROGRAMA DE LA ASIGNATURA: Curso académico 2012/13 PROGRAMA DE LA ASIGNATURA: Curso académico 2012/13 Identificación y características de la asignatura Denominación Cálculo Numérico Código 100644 Créditos (T+P) Titulación Centro 6T+3P Matemáticas Facultad

Más detalles

Métodos Matemáticos de la Física II

Métodos Matemáticos de la Física II Métodos Matemáticos de la Física II Clasificación de EDP de segundo orden, formas normales y superficies características. Consideramos EDP de segundo orden (1) d a j, 2 u + f(x, u, u) = 0, con a j, = a,j

Más detalles

Ecuaciones en Derivadas Parciales.

Ecuaciones en Derivadas Parciales. Ecuaciones en Derivadas Parciales. 1. Introducción. Una ecuación diferencial en derivadas parciales (PDE), por su semejanza con las ODE, es una ecuación donde una cierta función incógnita u viene definida

Más detalles

Solución Numérica de la ecuación vectorial de Saint-Venant utilizando Métodos Híbridos

Solución Numérica de la ecuación vectorial de Saint-Venant utilizando Métodos Híbridos Solución Numérica de la ecuación vectorial de Saint-Venant utilizando Métodos Híbridos Autora Martha Leticia Ruiz Zavala Asesor Dr. Francisco Javier Domínguez Mota 1 Antecedentes Aguas someras 2 Métodos

Más detalles