Solución numérica de Ecuaciones Diferenciales Elípticas en Regiones Planas Irregulares Usando Mallas Estructuradas.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Solución numérica de Ecuaciones Diferenciales Elípticas en Regiones Planas Irregulares Usando Mallas Estructuradas."

Transcripción

1 Solución numérica de Ecuaciones Diferenciales Elípticas en Regiones Planas Irregulares Usando Mallas Estructuradas. F. Domínguez-Mota, S. Mendoza*, M. Equihua y J.G. Tinoco U.M.S.N.H. Seminario del Laboratorio de Cómputo Científico Facultad de Ciencias, UNAM.

2 Índice Introducción

3 Introducción Existen métodos variacionales eficientes y robustos para generar mallas estructuradas suaves y convexas en regiones planas irregulares. Para esta clase de mallas, los esquemas en diferencias finitas se emplean para aproximar la solución de ecuaciones diferenciales en dichas regiones.

4 La idea principal de la generación variacional de mallas para generar mallas estructuradas suaves y convexas consiste en minimizar un funcional apropiado.

5 Funcionales Los funcionales usados para generar las mallas de los problemas propuestos son, el funcional de Suavidad Bilateral F SB = 1 2N N [ λq 2α q q=1 k 1 + α q y el funcional de Área Bilateral-Longitud. F ABL = N [ q=1 1 k 1 + α q + + λ ] q 2α q k 2 + α q ] 1 + λ q k 2 + α q

6 Bases Definición Una malla x(ξ, η) = (x(ξ, η), y(ξ, η)) sobre una región Ω R 2 es una biyección continua x : R Ω donde R es el cuadrado unitario [0, 1] [0, 1]. η y x = x( ξ, η) ξ x Figura: Malla sobre la región Ω

7 Malla I Denotemos una malla de m por n puntos. P1,n Pi,n Pm,n P1,j P i,j Pm,j P1,1 Pi,1 P m,1 G = {P i,j 1 i m, 1 j n}

8 Para el caso de 1D. Esquemas en diferencias. du(x) dx d 2 u(x) dx 2 xi u i+1 u i 1 2h xi u i+1 2u i + u i 1 h 2

9 Malla lógicamente rectangular Ω Ω Para regiones planas irregulares se trabaja con esquemas en diferencias finitas cuya evaluación no es tan simple como en el caso rectangular.

10 grad u(x, y) = ( Dx (u) D y (u) (D x (u)) i,j (u i+1,j+1 u i,j )(y i,j+1 y i+1,j ) (u i,j+1 u i+1,j )(y i+1,j+1 y i,j ) 2Ω i,j (D y (u)) i,j (u i+1,j+1 u i,j )(x i,j+1 x i+1,j ) (u i,j+1 u i+1,j )(x i+1,j+1 x i,j ) 2Ω i,j ) u i,j+1 ui+1,j+1 u i,j ui+1,j

11 La idea principal es reemplazar las derivadas por combinaciones lineales: dados p 1, p 2,..., p k, queremos encontrar coeficientes Γ 1, Γ 2,..., Γ k tales que q u x l y q l x=x i Γ i u i. Como sabemos, en regiones rectangulares no es difícil calcular el valor de Γ i. El cálculo de estos coeficientes a sido estudiados por ejemplo por Tinoco y Shashkov. Para este trabajo hemos usado los esquemas desarrollados para ecuaciones elípticas.

12 N NW NE W C E SW S SE Para el operador (K(x, y) u(x, y)) en un nodo p i,j de la malla es aproximado mediante: [ (K(x, y) u(x, y))] i,j C i,j u i,j + E i,j u i+1,j + NE i,j u i+1,j+1 + N i,j u i,j+1 + NW i,j u i 1,j+1 + W i,j u i 1,j + SW i,j u i 1,j 1 + S i,j u i,j 1 + SE i,j u i+1,j 1

13 E ( K11 (P i,j ) E i,j = (y i,j+1 y i+1,j ) 2A i,j ( K11 (P i,j 1 ) + (y i+1,j y i,j 1 ) 2A i,j 1 ( K12 (P i,j ) (y i,j+1 y i+1,j ) 2A i,j ( K12 (P i,j 1 ) (y i+1,j y i,j 1 ) 2A i,j 1 ( K12 (P i,j ) (x i,j+1 x i+1,j ) 2A i,j ) (y i,j y i+1,j+1 ) ) (y i+1,j 1 y i,j ) ) (x i,j x i+1,j+1 ) ) (x i+1,j 1 x i,j ) ) (y i,j y i+1,j+1 )

14 E cont... ( K12 (P i,j 1 ) (x i+1,j x i,j 1 ) 2A i,j 1 ( K22 (P i,j ) + (x i,j+1 x i+1,j ) 2A i,j ( K22 (P i,j 1 ) + (x i+1,j x i,j 1 ) P i,j = (x i,j, y i,j ) ( ) K11 K K(x, y) = 12 K 12 K 22 2A i,j 1 ) (y i+1,j 1 y i,j ) ) (x i,j x i+1,j+1 ) ) (x i+1,j 1 x i,j )

15 Donde K es evaluado en el centro de la celda CE ij y A i,j es el promedio de las áreas de las celdas CE i,j, CE i 1,j, CE i,j 1 y CE i 1,j 1. NW N NE CE i 1,j CE i,j W C E CE i 1,j 1 CE i,j 1 SW S SE

16 Regiones Como ejemplos numéricos se presentan tres regiones poligonales con las que trabajamos: Swan, Great Britain y Michoacán. Swan Great Britain Michoacán

17 Mallados Usamos mallas convexas para estas regiones con 21, 41, 61 y 81 puntos las cuales fueron generadas minimizando los funcionales de Suavidad Bilateral y Área Bilateral-Longitud. Figura: Great Britain

18 Ejemplos Numéricos Para comparar, empleamos elemento finito. En ambos casos los sistemas algebraicos se resolvieron usando Gauss-Seidel. Primer ejemplo. K(x, y) = ( ), u = 2 exp(2x + y).

19 Ejemplos Numéricos Segundo ejemplo. con y D = P = K(x, y) = P T DP, ( cos( π 8 ) sin( π 8 ) ) sin( π 8 ) cos( π 8 ) ( 1 + 2x 2 + y x 2 + 2y 2 u = sin(πx) sin(πy). )

20 Ejemplos Numéricos Tercer ejemplo. con y D = P = K(x, y) = P T DP, ( cos( π 4 ) sin( π 4 ) ) sin( π 4 ) cos( π 4 ) ( 1 + 2x 2 + y 2 + y x 2 + 2y 2 + x 3 u = sin(πx) sin(πy). )

21 Resultados ejemplo 1 Malla err h 2 Orden err d 2 Orden ENG21ABL 2.07E E-03 ENG41ABL 5.22E E ENG61ABL 2.96E E ENG81ABL 1.40E E ENG21SB 3.53E E-03 ENG41SB 8.01E E ENG61SB 5.69E E ENG81SB 1.62E E MIC21ABL E E-03 MIC41ABL E E MIC61ABL E E MIC81ABL E E

22 Problema 1 7 x FEM FDM 1.ENG21ABL 2.ENG21SB 3.ENG41ABL 4.ENG41SB 5.ENG61ABL 6.ENG61SB 7.ENG81ABL 8.ENG81SB 9.MIC21ABL 10.MIC21SB 11.MIC41ABL 12.MIC41SB 13.MIC61ABL 14.MIC61SB 15.MIC81ABL 16.MIC81SB 17.SWA21ABL 18.SWA21SB 19.SWA41ABL 20.SWA41SB 21.SWA61ABL 22.SWA61SB 23.SWA81SB 24.SWA81ABL Figura: FEM vs FDM El error con la norma Euclidiana para el problema 1.

23 Resultados ejemplo 2 Malla err h 2 Order err d 2 Order ENG21ABL E E-04 ENG41ABL E E ENG61ABL E E ENG81ABL E E ENG21SB E E-03 ENG41SB E E ENG61SB E E ENG81SB E E MIC21ABL E E-04 MIC41ABL E E MIC61ABL E E MIC81ABL E E

24 Problema x FEM FDM 1.ENG21ABL 2.ENG21SB 3.ENG41ABL 4.ENG41SB 5.ENG61ABL 6.ENG61SB 7.ENG81ABL 8.ENG81SB 9.MIC21ABL 10.MIC21SB 11.MIC41ABL 12.MIC41SB 13.MIC61ABL 14.MIC61SB 15.MIC81ABL 16.MIC81SB 17.SWA21ABL 18.SWA21SB 19.SWA41ABL 20.SWA41SB 21.SWA61ABL 22.SWA61SB 23.SWA81SB 24.SWA81ABL Figura: FEM vs FDM El error con la norma Euclidiana para el problema 2.

25 Resultados ejemplo 3 Malla err h 2 Order err d 2 Order ENG21ABL E E-04 ENG41ABL E E ENG61ABL E E ENG81ABL E E ENG21SB E E-03 ENG41SB E E ENG61SB E E ENG81SB E E MIC21ABL E E-04 MIC41ABL E E MIC61ABL E E MIC81ABL E E

26 Problema x FEM FDM 1 1.ENG21ABL 2.ENG21SB 3.ENG41ABL 4.ENG41SB 5.ENG61ABL 6.ENG61SB 7.ENG81ABL 8.ENG81SB 9.MIC21ABL 10.MIC21SB 11.MIC41ABL 12.MIC41SB 13.MIC61ABL 14.MIC61SB 15.MIC81ABL 16.MIC81SB 17.SWA21ABL 18.SWA21SB 19.SWA41ABL 20.SWA41SB 21.SWA61ABL 22.SWA61SB 23.SWA81SB 24.SWA81ABL Figura: FEM vs FDM El error con la norma Euclidiana para el problema 3.

27 Se tienen resultados satisfactorios aplicando diferencias finitas. Es del mismo orden que con el esquema en elemento finito. Se trabaja con esquemas sencillos.

28 Contacto Francisco Javier Domínguez Mota José Gerardo Tinoco Ruiz Mario Enrique Equihua Tinoco Sanzon Mendoza Armenta Gracias...

Método de diferencias finitas para ecuaciones diferenciales parciales elípticas. (Parte II)

Método de diferencias finitas para ecuaciones diferenciales parciales elípticas. (Parte II) Método de diferencias finitas para ecuaciones diferenciales parciales elípticas (Parte II) Métodos numéricos para sistemas lineales Solución numérica de EDPs requiere resolver sistemas de ecuaciones lineales

Más detalles

Clase No. 20: Integrales impropias MAT 251. Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 14

Clase No. 20: Integrales impropias MAT 251. Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 14 Clase No. 2: Integrales impropias MAT 251 Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) 26.11.211 1 / 14 Integrandos con singularidades (I) Cuando el integrando o alguna de sus derivadas de bajo orden

Más detalles

Laboratorio Nº 4 Ecuaciones diferenciales de orden n. Ecuación lineal homogénea. Soluciones linealmente independientes

Laboratorio Nº 4 Ecuaciones diferenciales de orden n. Ecuación lineal homogénea. Soluciones linealmente independientes Universidad Diego Portales Segundo Semestre 2007 Facultad de Ingeniería Instituto de Ciencias Básicas Asignatura: Ecuaciones Diferenciales Laboratorio Nº 4 Ecuaciones diferenciales de orden n. Ecuación

Más detalles

Capítulo 3 El Método de los Elementos de Contorno y la Formulación Hipersingular.

Capítulo 3 El Método de los Elementos de Contorno y la Formulación Hipersingular. Capítulo 3 El Método de los Elementos de Contorno y la Formulación Hipersingular. 3.1. Introducción El Método de los Elementos de Contorno (MEC) se ha implantado firmemente en numerosos campos de la ingeniería

Más detalles

MÉTODO DE DIFERENCIAS FINITAS Y EL USO DE MATLAB PARA ECUACIONES ELÍPTICAS SOBRE CONDUCTIVIDAD TÉRMICA

MÉTODO DE DIFERENCIAS FINITAS Y EL USO DE MATLAB PARA ECUACIONES ELÍPTICAS SOBRE CONDUCTIVIDAD TÉRMICA UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE CIENCIAS DEPARTAMENTO DE MATEMÁTICA XIV CONVENCIÓN DE INVESTIGACIÓN MÉTODO DE DIFERENCIAS FINITAS Y EL USO DE MATLAB PARA ECUACIONES ELÍPTICAS SOBRE CONDUCTIVIDAD

Más detalles

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2016 Licencia Creative Commons 4.0 Internacional J.

Más detalles

C U R S O : MATEMÁTICA

C U R S O : MATEMÁTICA C U R S O : MATEMÁTICA GUÍA TEÓRICO PRÁCTICA Nº 27 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Una ecuación de segundo grado es una ecuación susceptible de llevar a la forma ax 2 + bx + c = 0,

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

Lección 1.- Ecuaciones Diferenciales de Primer Orden

Lección 1.- Ecuaciones Diferenciales de Primer Orden Métodos Matemáticos de la Ingeniería Química. 009 0. Lección.- Ecuaciones Diferenciales de Primer Orden - Sección.: al. - Sección.: c, a, 3, 5, 7, 9,, 4 y. - Sección.3: y 3. - Sección.4:, 3, 5 y 5. - Sección.5:,

Más detalles

Operador Diferencial y Ecuaciones Diferenciales

Operador Diferencial y Ecuaciones Diferenciales Operador Diferencial y Ecuaciones Diferenciales. Operador Diferencial Un operador es un objeto matemático que convierte una función en otra, por ejemplo, el operador derivada convierte una función en una

Más detalles

1 ÁLGEBRA DE MATRICES

1 ÁLGEBRA DE MATRICES 1 ÁLGEBRA DE MATRICES 1.1 DEFINICIONES Las matrices son tablas numéricas rectangulares. Se dice que una matriz es de dimensión m n si tiene m filas y n columnas. Cada elemento de una matriz se designa

Más detalles

Algebra Lineal XIX: Rango de una Matriz y Matriz Inversa.

Algebra Lineal XIX: Rango de una Matriz y Matriz Inversa. Algebra Lineal XIX: Rango de una Matriz y Matriz Inversa José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica Universidad de Guanajuato email:

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

Ecuaciones de primer orden Ecuaciones de segundo orden Sistemas de ecuaciones de primer orden Modelo Malthusiano dp dt = rp, P(0) = P 0 donde r es la

Ecuaciones de primer orden Ecuaciones de segundo orden Sistemas de ecuaciones de primer orden Modelo Malthusiano dp dt = rp, P(0) = P 0 donde r es la Simulación numérica Ander Murua Donostia, UPV/EHU Ecuaciones de primer orden Ecuaciones de segundo orden Sistemas de ecuaciones de primer orden Modelo Malthusiano dp dt = rp, P(0) = P 0 donde r es la diferencia

Más detalles

E. Uresti. Otoño Taller de la calculadora TI NSpire CX CAS. E. Uresti. Agenda. Descripción. Generales

E. Uresti. Otoño Taller de la calculadora TI NSpire CX CAS. E. Uresti. Agenda. Descripción. Generales Taller de la Otoño 2014 Generalidades: Operaciones básicas. Uso de variables. Constructores y delimitadores. y desasignación de variables. y factorización de expresiones. Formación de ecuaciones. Solución

Más detalles

Cálculo numérico. Sistemas de ecuaciones lineales.

Cálculo numérico. Sistemas de ecuaciones lineales. José Luis Morales http://allman.rhon.itam.mx/ jmorales Departamento de Matemáticas. ITAM. 2010. Las raíces de x 2 bx + c = 0. r = b ± b 2 4c 2 b = 3.6778, c = 0.0020798 r 1 = 3.67723441190... r 2 = 0.00056558809...

Más detalles

ANALISIS NUMERICO AVANZADO y. Profesor: Dr. Angel N. Menéndez

ANALISIS NUMERICO AVANZADO y. Profesor: Dr. Angel N. Menéndez MATERIA: ANALISIS NUMERICO AVANZADO y ANALISIS NUMERICO IIa Profesor: Dr. Angel N. Menéndez Análisis Numérico II Diferencias finitas problemas parabólicos DIFERENCIAS FINITAS PROBLEMA PARABOLICOS 1/56

Más detalles

Cálculo en varias variables

Cálculo en varias variables Cálculo en varias variables Dpto. Matemática Aplicada Universidad de Málaga Resumen Límites y continuidad Funciones de varias variables Límites y continuidad en varias variables 1 Límites y continuidad

Más detalles

Cromodinámica Cuántica en la norma de Coulomb

Cromodinámica Cuántica en la norma de Coulomb Cromodinámica Cuántica en la norma de Coulomb Instituto de Física y Matemáticas (IFM) Universidad Michoacana de San Nicolás de Hidalgo (UMSNH) Morelia, Michoacán XXIV Reunión Anual de la División de Partículas

Más detalles

Expresiones Regulares y Derivadas Formales

Expresiones Regulares y Derivadas Formales y Derivadas Formales Las Derivadas Sucesivas. Universidad de Cantabria Esquema 1 2 3 Derivadas Sucesivas Recordemos que los lenguajes de los prefijos dan información sobre los lenguajes. Derivadas Sucesivas

Más detalles

Integración numérica MAT 1105 F EJERCICIOS RESUELTOS. 1. Obtenga: a) Integrando por el método del trapecio. Se utilizan las siguientes formulas:

Integración numérica MAT 1105 F EJERCICIOS RESUELTOS. 1. Obtenga: a) Integrando por el método del trapecio. Se utilizan las siguientes formulas: MAT 1105 F Integración numérica EJERCICIOS RESUELTOS 1 1. Obtenga: a) Integrando por el método del trapecio. Se utilizan las siguientes formulas: Donde: 4 2 Ecuación lineal Luego, Área del trapecio -1-1

Más detalles

NUMEROS ALGEBRAICOS Y TRASCENDENTES

NUMEROS ALGEBRAICOS Y TRASCENDENTES página NUMEROS ALGEBRAICOS Y TRASCENDENTES Eugenio P. Balanzario. Julio, 23. Instituto de Matemáticas, UNAM-Morelia. Apartado Postal 6-3 (Xangari). 5889, Morelia Michoacán, MEXICO. e-mail address: ebg@matmor.unam.mx..

Más detalles

TUBO DE KUNDT ONDAS ESTACIONARIAS

TUBO DE KUNDT ONDAS ESTACIONARIAS TUBO DE KUNDT ONDAS ESTACIONARIAS 1. OBJETIVO Estudio de ondas acústicas y su propagación en el interior del tubo de Kundt. Cálculo de la velocidad del sonido. 2.- FUNDAMENTO TEÓRICO La resultante de dos

Más detalles

4.1. Polinomios y teoría de ecuaciones

4.1. Polinomios y teoría de ecuaciones CAPÍTULO 4 Polinomios y teoría de ecuaciones 4.1. Polinomios y teoría de ecuaciones Un polinomio real en x, o simplemente polinomio en x es una expresión algebraica de la forma a n x n + a n 1 x n 1 +

Más detalles

Conceptos básicos de Geometría

Conceptos básicos de Geometría Dr. Eduardo A. RODRÍGUEZ TELLO CINVESTAV-Tamaulipas 15 de enero del 2013 Dr. Eduardo RODRÍGUEZ T. (CINVESTAV) 15 de enero del 2013 1 / 25 1 Geometría Afín Geometría Euclidiana Áreas y ángulos Dr. Eduardo

Más detalles

Generación de variables aleatorias continuas Método de rechazo

Generación de variables aleatorias continuas Método de rechazo Generación de variables aleatorias continuas Método de rechazo Georgina Flesia FaMAF 18 de abril, 2013 Método de Aceptación y Rechazo Repaso Se desea simular una v. a. X discreta, con probabilidad de masa

Más detalles

Carrera: ECC

Carrera: ECC 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Análisis Numérico Ingeniería Electrónica ECC-00 --.- HISTORIA DEL PROGRAMA Lugar

Más detalles

Descomposición en forma canónica de Jordan (Segunda versión)

Descomposición en forma canónica de Jordan (Segunda versión) Descomposición en forma canónica de Jordan (Segunda versión) Francisco J. Bravo S. 1 de septiembre de 211 En esta guía se presentan los resultados necesarios para poder construir la forma de Jordan sin

Más detalles

Tema 5: Sistemas de ecuaciones lineales.

Tema 5: Sistemas de ecuaciones lineales. TEORÍA DE ÁLGEBRA: Tema 5 DIPLOMATURA DE ESTADÍSTICA 1 Tema 5: Sistemas de ecuaciones lineales 1 Definiciones generales Definición 11 Una ecuación lineal con n incognitas es una expresión del tipo a 1

Más detalles

Tema 6: Ecuaciones diferenciales lineales.

Tema 6: Ecuaciones diferenciales lineales. Tema 6: Ecuaciones diferenciales lineales Una ecuación diferencial lineal de orden n es una ecuación que se puede escribir de la siguiente forma: a n (x)y (n) (x) + a n 1 (x)y (n 1) (x) + + a 0 (x)y(x)

Más detalles

1. Estudio de la caída de un puente.

1. Estudio de la caída de un puente. 1 1. Estudio de la caída de un puente. A. Introducción Las oscilaciones de un puente bajo la acción de una fuerza externa pueden estudiarse a partir de la resolución de una ecuación a derivadas parciales

Más detalles

Lección 4.1. Aplicaciones de la Derivada: Valores Máximos y Mínimos. 04/07/2011 Prof. José G. Rodríguez Ahumada 1 de 16

Lección 4.1. Aplicaciones de la Derivada: Valores Máximos y Mínimos. 04/07/2011 Prof. José G. Rodríguez Ahumada 1 de 16 Lección 4.1 Aplicaciones de la Derivada: Valores Máximos y Mínimos 04/07/011 Prof. José G. Rodríguez Ahumada 1 de 16 Objetivo Al finalizar esta lección podrás: Diferenciar entre los valores extremos relativos

Más detalles

Formulación del problema de la ruta más corta en programación lineal

Formulación del problema de la ruta más corta en programación lineal Formulación del problema de la ruta más corta en programación lineal En esta sección se describen dos formulaciones de programación lineal para el problema de la ruta más corta. Las formulaciones son generales,

Más detalles

MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1. Transformaciones conformes

MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1. Transformaciones conformes MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1 Transformaciones conformes 1 Determinar donde son conformes las siguientes transformaciones: (a) w() = 2 + 2 (b) w() = 1 + i (c) w() = + 1 (d) w() = En cada

Más detalles

Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio

Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio Fundamentos matemáticos Grado en Ingeniería agrícola y del medio rural Tema 3 Geometría del plano y del espacio José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es

Más detalles

Órdenes y funciones básicas (segunda parte) Práctica 2.

Órdenes y funciones básicas (segunda parte) Práctica 2. Práctica 2. Órdenes y funciones básicas (segunda parte) Operaremos con matrices, resolveremos ecuaciones y Objetivos: sistemas y calcularemos límites, derivadas e integrales 2 3 7 Una matriz es una lista

Más detalles

MATEMÁTICAS 2º BACH CC y TECN INTEGRAL DEFINIDA

MATEMÁTICAS 2º BACH CC y TECN INTEGRAL DEFINIDA 1. APROXIMACIÓN DE ÁREAS BAJO UNA CURVA Hay infinidad de funciones extraídas del mundo real (científico, económico, física )para las cuales tiene especial relevancia calcular el área bajo su gráfica. Vamos

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES SISTEMAS DE ECUACIONES LINEALES Índice: 1.Introducción--------------------------------------------------------------------------------------- 2 2. Ecuaciones lineales------------------------------------------------------------------------------

Más detalles

Cálculo Diferencial en una variable

Cálculo Diferencial en una variable Tema 2 Cálculo Diferencial en una variable 2.1. Derivadas La derivada nos proporciona una manera de calcular la tasa de cambio de una función Calculamos la velocidad media como la razón entre la distancia

Más detalles

ELEMENTOS DE GEOMETRÍA. Eduardo P. Serrano

ELEMENTOS DE GEOMETRÍA. Eduardo P. Serrano ELEMENTOS DE GEOMETRÍA Eduardo P. Serrano Este Apunte de Clase está dirigido a los alumnos de la materia Elementos de Cálculo Numérico para Biólogos. Tiene por objeto exponer algunos conceptos básicos

Más detalles

La cuerda vibrante. inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical

La cuerda vibrante. inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical la cuerda es extensible La cuerda vibrante inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical y(x, t) la posición depende

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E1000. (1) Sea f(x) una función cuya derivada es

CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E1000. (1) Sea f(x) una función cuya derivada es CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E000 ) Sea f) una función cuya derivada es f ) = 3 3 4 3+) 50 + 6 y con dominio igual al de su derivada. Determine los intervalos de monotonía

Más detalles

Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta

Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta Geometría Analítica Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas Isidro Huesca Zavaleta La Integración de dos Ciencias La Geometría Analítica nació de la integración de dos ciencias

Más detalles

Problemas de Geometría Analítica del Espacio

Problemas de Geometría Analítica del Espacio 1) Dados los vectores u(4, 4, 8), v( 2,, 5), w(3, 5, 8) y a(22,, 11). Hallar los valores de x, y, z que verifican la combinación lineal a = x u + y v + z w. 2) Dados los vectores a( 5, 19, n) y b( h, 3,

Más detalles

Introducción al Método de los Elementos Finitos

Introducción al Método de los Elementos Finitos 1 S 4 v 2 v 1 5 2 de los Elementos Finitos Parte 9 de los Elementos de Borde Alberto Cardona, Víctor Fachinotti Cimec-Intec (UNL/Conicet), Santa Fe, Argentina Método de Elementos de Borde (MEB) Sea el

Más detalles

Descripciones de los niveles de logro modificados (ALD, siglas en inglés) de la prueba de evaluación MCA en matemáticas Grados 5 a 8

Descripciones de los niveles de logro modificados (ALD, siglas en inglés) de la prueba de evaluación MCA en matemáticas Grados 5 a 8 Descripciones de los niveles de logro modificados (ALD, siglas en inglés) de la prueba de evaluación MCA en matemáticas Grados 5 a 8 Grado 5 No cumple los estándares de logro modificados (Grado 5) Los

Más detalles

Sistemas de ecuaciones lineales dependientes de un parámetro

Sistemas de ecuaciones lineales dependientes de un parámetro Vamos a hacer uso del Teorema de Rouché-Frobenius para resolver sistemas de ecuaciones lineales de primer grado. En particular, dedicaremos este artículo a resolver sistemas de ecuaciones lineales que

Más detalles

Preliminares Interpolación INTERPOLACIÓN Y APROXIMACIÓN POLINOMIAL

Preliminares Interpolación INTERPOLACIÓN Y APROXIMACIÓN POLINOMIAL INTERPOLACIÓN Y APROXIMACIÓN POLINOMIAL Contenido Preliminares 1 Preliminares Teorema 2 Contenido Preliminares Teorema 1 Preliminares Teorema 2 Teorema Preliminares Teorema Teorema: Serie de Taylor Supongamos

Más detalles

Álgebra y Trigonometría Clase 2 Ecuaciones, desigualdades y Funciones

Álgebra y Trigonometría Clase 2 Ecuaciones, desigualdades y Funciones Álgebra y Trigonometría Clase 2 Ecuaciones, desigualdades y Funciones CNM-108 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

Transformada de Laplace: Aplicación a vibraciones mecánicas

Transformada de Laplace: Aplicación a vibraciones mecánicas Transformada de Laplace: Aplicación a vibraciones mecánicas Santiago Gómez Jorge Estudiante de Ingeniería Electrónica Universidad Nacional del Sur, Avda. Alem 1253, B8000CPB Bahía Blanca, Argentina thegrimreaper7@gmail.com

Más detalles

Tema 3: Espacios vectoriales

Tema 3: Espacios vectoriales Tema 3: Espacios vectoriales K denotará un cuerpo. Definición. Se dice que un conjunto no vacio V es un espacio vectorial sobre K o que es un K-espacio vectorial si: 1. En V está definida una operación

Más detalles

Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : v = x 2 yē x + x 2 tē y (3.1)

Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : v = x 2 yē x + x 2 tē y (3.1) Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : Se pide: v = x yē x + x tē y (3.1) a. A qué tipo de formalismo corresponde este análisis del escurrimiento, lagrangeano o eulereano?

Más detalles

Clase 9 Sistemas de ecuaciones no lineales

Clase 9 Sistemas de ecuaciones no lineales Clase 9 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo, 2016 con dos incógnitas Un sistema de dos ecuaciones en el que al menos una ecuación es no lineal, se llama

Más detalles

4 Ecuaciones diferenciales de orden superior

4 Ecuaciones diferenciales de orden superior CAPÍTULO 4 Ecuaciones diferenciales de orden superior 4. educción de orden allar un método para encontrar soluciones que formen un conjunto fundamental de la ED será nuestro trabajo en las siguientes secciones.

Más detalles

Conjunto R 3 y operaciones lineales en R 3

Conjunto R 3 y operaciones lineales en R 3 Conjunto R 3 y operaciones lineales en R 3 Objetivos. Definir el conjunto R 3 y operaciones lineales en R 3. Requisitos. Conjunto de los números reales R, propiedades de las operaciones aritméticas en

Más detalles

Tema: Excel Formulas, Funciones y Macros

Tema: Excel Formulas, Funciones y Macros 1 Facultad Escuela Lugar de Ejecución : Ingeniería. : Biomédica : Laboratorio de Biomédica Tema: Excel Formulas, Funciones y Macros Objetivos Específicos Conocer los conceptos básicos en relación a la

Más detalles

Primer examen parcial del curso Física II, M

Primer examen parcial del curso Física II, M Primer examen parcial del curso Física II, 106015M Prof. Beatriz Londoño 11 de octubre de 2013 Tenga en cuenta: Escriba en todas las hojas adicionales su nombre! Hojas sin nombre no serán corregidas El

Más detalles

Formas modulares y la curva y 2 = x 3 35x 98

Formas modulares y la curva y 2 = x 3 35x 98 Formas modulares y la curva y 2 = x 3 35x 98 Dulcinea Raboso Paniagua Trabajo de fin de Máster Curso 2008 2009 Director: Fernando Chamizo Lorente Universidad Autónoma de Madrid Curvas eĺıpticas. Formas

Más detalles

CONCEPTO DE TRABAJO. 2. Trabajo de las fuerzas aplicadas sobre un sistema de partículas Generalización del concepto de función de fuerzas...

CONCEPTO DE TRABAJO. 2. Trabajo de las fuerzas aplicadas sobre un sistema de partículas Generalización del concepto de función de fuerzas... NEPT DE TRABAJ Índice 1. Trabajo de una fuerza sobre una partícula 2 1.1. Definición de trabajo elemental........................... 2 1.1.1. Nomenclatura................................. 2 1.1.2. Propiedades..................................

Más detalles

Métodos Numéricos. Carrera: BQM Participantes. Representantes de las academias de Ingeniería Bioquímica. Academia de Ingeniería

Métodos Numéricos. Carrera: BQM Participantes. Representantes de las academias de Ingeniería Bioquímica. Academia de Ingeniería 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Métodos Numéricos Ingeniería Bioquímica BQM - 0524 3-2-8 2.- HISTORIA DEL PROGRAMA

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS CC SOCIALES CAPÍTULO 2 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Diferenciación numérica: Método de Euler explícito

Diferenciación numérica: Método de Euler explícito Clase No. 21: MAT 251 Diferenciación numérica: Método de Euler explícito Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/

Más detalles

INTEGRACIÓN NUMÉRICA

INTEGRACIÓN NUMÉRICA INTEGRACIÓN NUMÉRICA En los cursos de Cálculo Integral, nos enseñan como calcular una integral definida de una función contínua mediante una aplicación del Teorema Fundamental del Cálculo: Teorema Fundamental

Más detalles

Julio C. Carrillo E. Profesor Escuela de Matemáticas Universidad Industrial de Santander. Monday, November 5, 2007 at 8:44 am (FA07.

Julio C. Carrillo E. Profesor Escuela de Matemáticas Universidad Industrial de Santander. Monday, November 5, 2007 at 8:44 am (FA07. Julio C. Carrillo E. Profesor Escuela de Matemáticas Universidad Industrial de Santander Monday, November 5, 2007 at 8:44 am (FA07.01,02) Para uso exclusivo en el salón de clase. 2007 c Julio C. Carrillo

Más detalles

Sistemas de ecuaciones no lineales

Sistemas de ecuaciones no lineales Práctica 6 Sistemas de ecuaciones no lineales En esta práctica revisaremos algunos métodos básicos para la resolución numérica de sistemas de ecuaciones no lineales 61 Método iterativo del punto fijo Partimos

Más detalles

6.4 Método de solución de las ecuaciones diferenciales parciales (directos, equiparables con las ordinarias, separación de variables)

6.4 Método de solución de las ecuaciones diferenciales parciales (directos, equiparables con las ordinarias, separación de variables) 6.4 Método de solución de las ecuaciones diferenciales parciales(directos, equiparables con las ordinarias, separación de variables) 439 6.4 Método de solución de las ecuaciones diferenciales parciales

Más detalles

1. Curvas Regulares y Simples

1. Curvas Regulares y Simples 1. Regulares y Simples en R n. Vamos a estudiar algunas aplicaciones del calculo diferencial e integral a funciones que están definidas sobre los puntos de una curva del plano o del espacio, como por ejemplo

Más detalles

MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes

MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes MÓDULO Nº 3 Nivelación Matemática 2005 Módulo Nº3 Contenidos Polígonos Circunferencia y Círculo Volúmenes Nivelación Polígonos Polígono Regular: Son aquellos polígonos que tienen todos sus lados y ángulos

Más detalles

ECUACIONES DIMENSIONALES

ECUACIONES DIMENSIONALES ECUACIONES DIMENSIONALES 1. En la expresión x = k v n / a, x = distancia, v = velocidad, a = aceleración y k es una constante adimensional. Cuánto vale n para que la expresión sea dimensionalmente homogénea?

Más detalles

ECUACIONES EN DERIVADAS PARCIALES Tópicos previos

ECUACIONES EN DERIVADAS PARCIALES Tópicos previos ECUACIONES EN DERIVADAS PARCIALES Tópicos previos Para tomar el curso de ecuaciones en derivadas parciales es importante la familiaridad del alumno con los conceptos que se detallan a continuación. Sugerimos

Más detalles

Modelos Estocásticos I Tercer Examen Parcial Respuestas

Modelos Estocásticos I Tercer Examen Parcial Respuestas Modelos Estocásticos I Tercer Examen Parcial Respuestas. a Cuál es la diferencia entre un estado recurrente positivo y uno recurrente nulo? Cómo se define el período de un estado? Demuestre que si el estado

Más detalles

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial Tema 1 Espacios Vectoriales. 1.1. Definición de Espacio Vectorial Notas 1.1.1. Denotaremos por N, Z, Q, R, C, a los conjuntos de los números Naturales, Enteros, Racionales, Reales y Complejos, respectivamente.

Más detalles

CAPÍTULO 2. SOLUCIÓN DE ECUACIONES DE UNA VARIABLE

CAPÍTULO 2. SOLUCIÓN DE ECUACIONES DE UNA VARIABLE En este capítulo analizaremos uno de los problemas básicos del análisis numérico: el problema de búsqueda de raíces. Si una ecuación algebraica o trascendente es relativamente complicada, no resulta posible

Más detalles

Clase 8 Matrices Álgebra Lineal

Clase 8 Matrices Álgebra Lineal Clase 8 Matrices Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia Matrices Definición Una matriz es un arreglo rectangular de números denominados entradas

Más detalles

Preparatoria Sor Juana Inés de la Cruz Cálculo Diferencial Tutorial: Optimización Ing. Jonathan Quiroga Tinoco

Preparatoria Sor Juana Inés de la Cruz Cálculo Diferencial Tutorial: Optimización Ing. Jonathan Quiroga Tinoco Preparatoria Sor Juana Inés de la Cruz 1 Cálculo Diferencial Tutorial: Optimización Ing. Jonathan Quiroga Tinoco Grupo: Físico Matemático, Químico Biológico y Económico Administrativo Diciembre de 2014

Más detalles

CURSO VIRTUAL PARA COORDINAR EL EMPLEO DE LOS MÉTODOS NUMÉRICOS NECESARIOS PARA LAS MATERIAS DEL ÁREA DE INGENIERÍA QUÍMICA

CURSO VIRTUAL PARA COORDINAR EL EMPLEO DE LOS MÉTODOS NUMÉRICOS NECESARIOS PARA LAS MATERIAS DEL ÁREA DE INGENIERÍA QUÍMICA CURSO VIRTUAL PARA COORDINAR EL EMPLEO DE LOS MÉTODOS NUMÉRICOS NECESARIOS PARA LAS MATERIAS DEL ÁREA DE INGENIERÍA QUÍMICA M.J. Muñoz (1), J. Sánchez-Oneto (1), M. S. Bruzón (2), G. Cabrera (1), C. Pereyra

Más detalles

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0.

y = 2x + 8x 7, y = x 4. y = 4 x, y = x + 2, x = 2, x = 3. x = 16 y, x = 6 y. y = a x, y = x, x y = a. (1 x)dx. y = 9 x, y = 0. . Encuentre el área de la región limitada por las curvas indicadas:.. y = x, y = x +... x = y, x = y +... y = x +, y = x +, y = x....5..6..7..8..9..0....... y = x + 8x 7, y = x. y = x, y = x +, x =, x

Más detalles

Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación

Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación Profesor: Jaime Álvarez Maldonado Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación DIFERENCIAS FINITAS Ayudante: Rodrigo Torres Aguirre El método

Más detalles

Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior

Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior L. A. Núñez * Centro de Astrofísica Teórica, Departamento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela

Más detalles

UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO

UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO FACULTAD DE CS. QUIMICAS, FISICAS Y MATEMATICAS I. DATOS GENERALES DEPARTAMENTO ACADEMICO DE INFORMATICA SILABO 1.1 Asignatura : METODOS NUMERICOS 1.2 Categoría : OE 1.3 Código : IF758VCI 1.4 Créditos

Más detalles

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD CIENCIAS DE LA COMPUTACION

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD CIENCIAS DE LA COMPUTACION BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD CIENCIAS DE LA COMPUTACION PROGRAMA DE LA MATERIA CORRESPONDIENTE A LA INGENIERIA EN CIENCIAS DE LA COMPUTACIÓN. Coordinación: NOMBRE DE LA MATERIA: Área

Más detalles

3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE

3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE 3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE ECUACIONES LINEALES Y MATRICES COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2011-2012 3.1.1. Resolución de sistemas de ecuaciones lineales. Método

Más detalles

* e e Propiedades de la potenciación.

* e e Propiedades de la potenciación. ECUACIONES DIFERENCIALES 1 REPASO DE ALGUNOS CONCEPTOS PREVIOS AL ESTUDIO DE LAS ECUACIONES DIFERENCIALES 1. Cuando hablamos de una función en una variable escribíamos esta relación como y = f(x), esta

Más detalles

Práctica 5 Cálculo integral y sus aplicaciones

Práctica 5 Cálculo integral y sus aplicaciones Práctica 5 Cálculo integral y sus aplicaciones 5.1.- Integración con Mathematica o Integrales indefinidas e integrales definidas Mathematica nos permite calcular integrales mediante la instrucciones: Integrate[expresión

Más detalles

Estática de Vigas. 20 de mayo de 2006

Estática de Vigas. 20 de mayo de 2006 Estática de Vigas 0 de mayo de 006 Los elementos estructurales que vamos a estudiar en este capítulo estarán sometidos a fuerzas o distribuciones aplicadas lateral o transversalmente a sus ejes y el objetivo

Más detalles

ERRORES. , siempre que p 0.

ERRORES. , siempre que p 0. ERRORES Indice 1. Errores 2. Clases de errores 3. Números en coma flotante 4. Aritmética del punto flotante 4.1. Errores 4.2. Operaciones en punto flotante 4.3. Problemas con operaciones en punto flotante

Más detalles

ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República

ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República ALN Repaso matrices In. Co. Facultad de Ingeniería Universidad de la República Definiciones básicas - Vectores Definiciones básicas - Vectores Construcciones Producto interno: ( x, y n i x y i i ' α Producto

Más detalles

Resolución numérica de Ecuaciones en Derivadas Parciales (EDP) con Elementos Finitos usando FreeFem++

Resolución numérica de Ecuaciones en Derivadas Parciales (EDP) con Elementos Finitos usando FreeFem++ Resolución numérica de Ecuaciones en Derivadas Parciales (EDP) con Elementos Finitos usando FreeFem++ Esquema del curso Qué problemas queremos resolver? Análisis Numérico:El Método de los Elementos Finitos

Más detalles

Matrices y determinantes. Sistemas de ecuaciones lineales

Matrices y determinantes. Sistemas de ecuaciones lineales Tema 0 Matrices y determinantes Sistemas de ecuaciones lineales 01 Introducción Definición 011 Se llama matriz a un conjunto ordenado de números, dispuestos en filas y columnas, formando un rectángulo

Más detalles

R no es enumerable. Por contradicción, supongamos que existe una biyección f : N! R. diagonalización de Cantor. Para cada i 2 N:

R no es enumerable. Por contradicción, supongamos que existe una biyección f : N! R. diagonalización de Cantor. Para cada i 2 N: R no es enumerable Por contradicción, supongamos que existe una biyección f : N! R. I Vamos a obtener una contradicción usando el método de diagonalización de Cantor. Para cada i 2 N: f (i) = n i.d i,0

Más detalles

Integración sobre superficies

Integración sobre superficies Problemas propuestos con solución Integración sobre superficies IABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Parametrizaciones 1 2. Área de una superficie

Más detalles

Integral indefinida. Integral indefinida es el conjunto de las infinitas primitivas que puede tener una función.

Integral indefinida. Integral indefinida es el conjunto de las infinitas primitivas que puede tener una función. Integral indefinida 1. Integración Integrar es el proceso recíproco del de derivar, es decir, dada una función f(x), busca aquellas funciones F(x) que al ser derivadas conducen a f(x). Se dice, entonces,

Más detalles

Clase 8 Sistemas de ecuaciones no lineales

Clase 8 Sistemas de ecuaciones no lineales Clase 8 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo, 2013 con dos incógnitas Un sistema de dos ecuaciones en el que al menos una ecuación es no lineal, se llama

Más detalles

Aplicaciones de los S.E.D.O.

Aplicaciones de los S.E.D.O. Tema 7 Aplicaciones de los S.E.D.O. 7. Introducción Nota: APUNTES INCOMPLETOS Estudiaremos en este Tema algunos modelos de interés en las Ciencias Naturales que utilizan para su modelización sistemas de

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA GERENCIA ACADEMICA COORDINACION DE PREGRADO PROYECTO INGENIERIA 1272-416/ALGEBRA DE ESTRUCTURAS SEMESTRE:

UNIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA GERENCIA ACADEMICA COORDINACION DE PREGRADO PROYECTO INGENIERIA 1272-416/ALGEBRA DE ESTRUCTURAS SEMESTRE: GERENCIA ACADEMICA COORDINACION DE PREGRADO PROYECTO INGENIERIA PROGRAMA: ALGEBRA LINEAL CÓDIGO ASIGNATURA: 1272-521 PRE-REQUISITO: 1272-416/ALGEBRA DE ESTRUCTURAS SEMESTRE: 90-II UNIDADES DE CRÉDITO:

Más detalles

MÉTODO NUMÉRICO HEURÍSTICO PARA EL CÁLCULO DE RAÍCES DE POLINOMIOS

MÉTODO NUMÉRICO HEURÍSTICO PARA EL CÁLCULO DE RAÍCES DE POLINOMIOS MÉTODO NUMÉRICO HEURÍSTICO PARA EL CÁLCULO DE RAÍCES DE POLINOMIOS Ramón Cantú Cuéllar Luis Chávez Guzmán José Luis Cantú Mata Resumen En este artículo se propone un nuevo método numérico, para obtener

Más detalles

ECUACIONES.

ECUACIONES. . ECUACIONES... Introducción. Recordemos que el valor numérico de un polinomio (y, en general, de cualquier epresión algebraica) se calcula sustituyendo la/s variable/s por números (que, en principio,

Más detalles

EXAMEN EXTRAORDINARIO 8 de julio de 2016

EXAMEN EXTRAORDINARIO 8 de julio de 2016 CÁLCULO I EXAMEN EXTRAORDINARIO 8 de julio de 16 Apellidos: Titulación: Duración del eamen: horas y 3 minutos Fecha publicación notas: 18-7-16 Fecha revisión eamen: 1-7-16 Todas las respuestas deben de

Más detalles

Matrices, Determinantes y Sistemas Lineales.

Matrices, Determinantes y Sistemas Lineales. 12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión

Más detalles