COMBINATORIA - SOLUCIONES
|
|
|
- Ramona Parra Figueroa
- hace 7 años
- Vistas:
Transcripción
1 COMINTORI - SOLUCIONES. a) amos un orden (no importa el criterio) a los tres regalos distintos. hora elegimos con orden tres de las cinco personas para, a la ª persona elegida darle el primer regalo, a la ª persona elegida darle el segundo regalo y a la ª persona elegida darle el tercer regalo. Se trata por lo tanto de un problema de variaciones sin repetición de cinco elementos tomados de tres en tres: V 60, b) l tratarse de tres regalos iguales, no hace falta numerarlos. Por lo tanto basta con elegir sin orden a tres de las cinco personas y darles cualquiera de los tres regalos a cada una. Se trata por lo tanto de un problema de! combinaciones sin repetición de cinco elementos tomados de tres en tres: C, 0!!. Elegida cualquiera de sus camisetas (6 posibilidades) la podemos combinar con cualquiera de sus 0 pantalones. Se trata de un diagrama en árbol con 6 ramas que se subdividen en 0 ramificaciones. Por lo tanto: Como van a ser regalados a la misma persona, no importa el orden con que elijamos la pareja de libros sino de qué libros se trate. Por lo tanto basta con elegir sin orden dos de los quince. Se trata por lo tanto de un problema de! combinaciones sin repetición de quince elementos tomados de dos en dos: C, 0!!. a) Tenemos que ordenar todos los cinco miembros de la familia. Se trata por lo tanto de un problema de permutaciones sin repetición de cinco elementos: P! 0 b) Si ponemos al padre en el extremo derecho y a la madre en el extremo izquierdo tenemos que ordenar todos los tres hijos. Es un problema de permutaciones sin repetición de tres elementos P! 6. Pero si ponemos al padre en el extremo izquierdo y a la madre en el extremo derecho de nuevo hay otras P! 6 posibilidades. Por lo tanto: P! 6. ebemos elegir con orden cuatro de los seis resultados del dado con la posibilidad de repetirlos. Se trata de un diagrama en árbol con 6 ramas que se subdividen en otras 6 ramificaciones, a su vez en otras 6 y por último en otras 6. Por lo tanto es un problema de variaciones con repetición de seis elementos tomados de cuatro en cuatro. VR , 6. a) ebemos elegir con orden tres de las cuatro cifras con la posibilidad de repetirlos. Se trata de un diagrama en árbol con ramas que siempre se subdividen en otras cuatro. Por lo tanto es un problema de variaciones con repetición de cuatro elementos tomados de tres en tres: VR 6, b) ebemos elegir con orden tres de las cuatro cifras sin la posibilidad de repetirlos. Se trata de un diagrama en árbol con ramas que se subdividen siempre con una rama menos por lo tanto de un problema de variaciones sin repetición de cuatro elementos tomados de tres en tres: V, c) Tenemos que ordenar todos los cuatro números. Se trata por lo tanto de un problema de permutaciones sin repetición de cuatro elementos: P! d) La cifra debe ser la última. e manera que tendremos que elegir con orden dos de las tres cifras sin la posibilidad de repetirlos. Por lo tanto es un problema de variaciones sin repetición de tres elementos tomados de dos en dos: V 6,
2 7. Se sobreentiende que en fútbol-sala no hay puestos fijos salvo el portero. Por lo tanto no importará el orden con que elijamos a los cuatro jugadores que acompañen al portero. Tendremos entonces que elegir sin orden cuatro de los nueve. Se trata por lo tanto de un problema de combinaciones sin repetición de nueve elementos tomados de cuatro 9 9! en cuatro: C 9, 6!! 8. ebemos elegir con orden tres de los 0 corredores para, al º darle el primer premio, al º para darle el segundo premio y al º para darle el tercer premio. Se trata por lo tanto de un problema de variaciones sin repetición de 0 elementos tomados de tres en tres: V , 9. Se sobreentiende que en la salsa no importa el orden en que mezclemos los tres ingredientes. Tendremos entonces que elegir sin orden tres de los siete ingredientes. Se trata por lo tanto de un problema de combinaciones sin 7 7! repetición de siete elementos tomados de tres en tres: C 7,!! 0. Elegido cualquiera de los alumnos de de ESO (0 posibilidades) podemos continuar con cualquiera de los alumnos de de ESO ( posibilidades), seguir con cualquiera de los alumnos de de ESO ( posibilidades) y terminar con cualquiera de los 8 de º. Se trata de un diagrama en árbol con cuatro fases de ramificación. Por lo tanto: Cada saludo implica a dos personas y no tiene sentido darles un cierto orden. Tendremos entonces que calcular de cuántas manera se pueden elegir sin orden de las personas. Se trata por lo tanto de un problema de! combinaciones sin repetición de dos elementos tomados de en : C, 0!! PROILI - SOLUCIONES. a) Entre las tres cartas elegidas podemos tener de tres a ningún as. El espacio muestral será entonces: E 0,,, { } b) La ley de Laplace debe aplicarse dando la misma probabilidad a cada una de las 0 cartas del mazo y no a cada uno de los cuatro elementos del espacio muestral. Es obvio que es mucho más difícil conseguir ases que lo contrario. Concretando, por ejemplo la probabilidad de obtener tres ases sería: P ( ) mientras que la de no obtener ningún as sería: P ( 0) " la bola extraída, o es un número múltiplo de o es un número par" " la bola extraída es un número par múltiplo de " { 6} {,,,6} "la bola extraída, o no es un número múltiplo de o no es un número par" " la bola extraída no es un número par múltiplo de " {,,,, } " la bola extraída es un número par que no es múltiplo de " {,}
3 . a) El mayor de los dos resultados puede ser cualquier nº del al 6. El espacio muestral será: E {,,,,, 6} b) Ponemos en cada celda el mayor de los dos resultados: mayor b) Vemos en la tabla que disponemos de 6 casos. Hay una celda con un, tres celdas con un etc. La probabilidad de cada suceso elemental será entonces: X P a) Se empieza con la probabilidad de la intersección: 0, La región de su izquierda ( tendrá de probabilidad: 0, 0, 0,. La región de su derecha ( tendrá de probabilidad: 0, 0, 0,. La unión tendrá de probabilidad: 0, + 0, + 0, 0,6. La región periférica tendrá de probabilidad: 0,6 0,. b) Para calcular cada una de las probabilidades siguientes basta con observar el diagrama de Venn y contestar, pero si la probabilidad es condicionada se aplica primero la definición. P ( 0, + 0, + 0, 0,6 P ) 0, ( 0, P ( 0, + 0, + 0, 0,8 P ( 0, 0, P ( / 0, 0, 0, P ( / 0, 0,6 0, 0, 0, 0,. l tratarse de sucesos independientes: P ( 0, 0, 0,. P ( + 0, + 0, 0, 0,7 El suceso que ocurra o que ocurra pero no ambos incluye a su unión ( pero no a su intersección (. Por lo tanto: que ocurra o que ocurra pero no ambos ) 0,7 0, 0, 6. a) N Que no sea ni negro ni diesel / N Que sea diesel sabiendo que su color es negro N / Que no sea negro sabiendo que es diesel N Que sea diesel o que no sea negro b) Se comienza rellenando las celdas con los datos conocidos: total 0, 0 negros, 6 diesel, negros y diesel. Las restantes celdas se calculan restando Negro No Negro iesel 6 No iesel c) P ( N) 0, 8 d) P ( / N) 0,
4 7. a) Ponemos los datos en una tabla de contingencia y los sumamos para hallar los totales: Eléctrico Mecánicos Chapa Mañana 8 Tarde b) P ( Tarde) 0% 0 c) P ( Mecánicos) % 0 d) P ( Mañana / Eléctri cos) 0, 6 0, 8. a) Construimos un diagrama en árbol que muestra las probabilidades del enunciado y sus complementarias: b) P ( ) 0, 0,0 + 0,0 0,0 + 0, 0,06 0, 08 C 9. a) Sabemos que, permutando los tres colores, hay seis casos posibles: NR, RN, NR, NR, RN y RN. En cada uno de los seis casos se obtiene el mismo producto de probabilidades, la suma de todas ellas es entonces uno de estos sumandos multiplicado por seis: 6 70 P ( colores distintos) 6 0, 7 0,9 no b) Se hace de la misma manera, pero a tratarse de un problema sin reemplazamiento los denominadores van disminuyendo a ir extrayendo las bolas: 6 70 P ( colores distintos) 6 0, Construimos un diagrama en árbol que muestra las probabilidades del enunciado y sus complementarias: 8 a) P ( lanca) + 0, b) Se puede calcular con las probabilidades de blanca o negra pero también se puede hacer así: 8 P ( No Roja) Roja) 0, ,0 0, /6 /6 0,0 0,96 0,0 0,9 0,06 /0 /0 /0 /0 6/0 no no l N R l N
5 . Iniciamos el diagrama en árbol con la elección de la moneda, a continuación tenemos en cuenta que la moneda trucada no tiene cruz y por último que cuando salga cara se cambia de moneda. / Cara Cara / / Cara Normal / Cruz / Cruz / Cara / Trucada Cara / Cruz a) P ( Cruces) 0, 8 b) P ( Cara en la ª tirada) + + 0, 6 8. Simbolizamos con E al suceso el alumno es de º de ESO y con E, E, E,, para los restantes niveles de ESO o achillerato. El porcentaje de º de achillerato es el resto hasta 00%, es decir un %. a) Si llamamos al suceso aprobar : P ( E) E) + E) E) + E) E) + E) E) + ) ) + 0,0 0,60 + 0,0 0,0 + 0,8 0,0 + 0,6 0,60 + 0, 0,0 + 0, 0,0 0,0 b) ( ( ) P ) + 0, 0,0 + 0, 0,0 P ( 0, ) + 0, + 0,
CLASIFICAR LOS EXPERIMENTOS. OBTENER EL ESPACIO MUESTRAL
OBJETIVO 1 CLASIICAR LOS EXPERIMENTOS. OBTENER EL ESPACIO MUESTRAL Nombre: Curso: echa: Un experimento determinista es aquel experimento en el que podemos predecir su resultado, es decir, sabemos lo que
TEMA 17: PROBABILIDAD
TEMA 17: PROBABILIDAD Probabilidad de un suceso aleatorio es un numero entre 0 y 1 (más cerca del 0, mas difícil que ocurra. Más cerca del 1 más fácil que ocurra). Suceso seguro: Su probabilidad es 1.
Curs MAT CFGS-17
Curs 2015-16 MAT CFGS-17 Sigue la PROBABILIDAD Resumen de Probabilidad Teoría de probabilidades: La teoría de probabilidades se ocupa de asignar un cierto número a cada posible resultado que pueda ocurrir
CÁLCULO DE PROBABILIDADES
CÁLCULO DE PROBABILIDADES 1. Regla de Laplace. Ejercicio 1. (2005) Ejercicio 2. (2004) María y Laura idean el siguiente juego: cada una lanza un dado, si en los dos dados sale el mismo número, gana Laura;
PROBABILIDAD. b) Lanzar una moneda sobre el suelo y anotar el resultado de la cara que aparece.
I.E.S. Mar Menor - San Javier - (Murcia) - Matemáticas Aplicadas a las Ciencias Sociales I - DEARTAMENTO DE MATEMÁTICAS ROBABILIDAD EXERIMENTOS ALEATORIOS. SUCESOS. Consideremos los siguientes experimentos:
6. PROBABILIDAD I. Eugenio Hernández. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso Universidad Autónoma de Madrid
6. PROBABILIDAD I Universidad Autónoma de Madrid COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2017-2018 6.1. Frecuencia y probabilidad. Modelos de probabilidad FENÓMENO ALEATORIO Un
2) Una persona tiene 6 chaquetas y 10 pantalones. De cuántas formas distintas puede combinar estas prendas?.
ACTIVIDADES COMBINATORIA 1) Se distribuyen tres regalos distintos entre cinco chicos. De cuántas formas pueden hacerlo si: a) cada chico sólo puede recibir un regalo b) a cada chico le puede tocar más
{ } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { } { }
Probabilidad PREGUNTAS MÁS FRECUENTES Repaso de 1º de Bachillerato 1. A qué se denomina Espacio Muestral? Dada una experiencia aleatoria, se denomina Espacio Muestral al conjunto de los resultados posibles
En qué se basa el supuesto de que la frecuencia vaya a un ĺımite? Nunca podemos repetir un experimento tantas veces.
Críticas En qué se basa el supuesto de que la frecuencia vaya a un ĺımite? Nunca podemos repetir un experimento tantas veces. No es una definición muy útil en la práctica porque no da una medida a priori
Espacio muestral. Operaciones con sucesos
Matemáticas CCSS. 1º Bachiller Tema 12. Probabilidad Espacio muestral. Operaciones con sucesos 1. Determina el espacio muestral de los siguientes experimentos a) Lanzar una moneda y anotar el resultado
PROBABILIDAD. Propiedades de la probabilidad
PROBABILIDAD Definición axiomática: Sea E el espacio muestral de cierto experimento aleatorio. La Probabilidad de cada suceso es un número que verifica: ) Cualquiera que sea el suceso A, 0 A). 2) Si dos
TEMA 14 PROBABILIDAD
Objetivos / Criterios de evaluación TEMA 14 PROBABILIDAD O.16.1 Conocer el concepto de suceso aleatorio y sus tipos y operaciones. O.16.2 Cálculo de probabilidades de sucesos simples. Regla de Laplace.
Probabilidad. Probabilidad
Espacio muestral y Operaciones con sucesos 1) Di cuál es el espacio muestral correspondiente a las siguientes experiencias aleatorias. Si es finito y tiene pocos elementos, dilos todos, y si tiene muchos,
Ejercicios elementales de Probabilidad
Ejercicios elementales de Probabilidad 1. Se extrae una carta de una baraja de 52 naipes. Halla la probabilidad de que sea: (a) Un rey. (b) Una carta roja. (c) El 7 de tréboles. (d) Una figura de diamantes.
I.E.S. Ciudad de Arjona Departamento de Matemáticas. 2º BAC MCS
1. Experimentos aleatorios. 2. Operaciones con sucesos. 3. Probabilidad. Regla de Laplace 4. Probabilidad condicionada. Suceso Independiente. 5. Tabla de contingencia 6. Experimentos compuestos. Teorema
PROBABILIDAD ALGUNAS DEFINICIONES
PROBABILIDAD La probabilidad es la rama de la matemática que mide la incertidumbre. Si bien es cierto que surgió de los juegos de azar, en la actualidad tiene variadas aplicaciones. Para calcular el tamaño
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Parte I, Opción A Junio, Ejercicio 3, Parte I, Opción B Reserva 1,
4º ESO D MATEMÁTICAS ACADÉMICAS TEMA 13.- PROBABILIDAD PROFESOR: RAFAEL NÚÑEZ NOGALES
1.- EXPERIMENTOS ALEATORIOS Cuando lanzamos un dado no podemos saber de antemano qué resultado nos va a salir. Sabemos que nos puede salir cualquier número del 1 al 6, pero no cuál. Decimos que lanzar
TEMA 6. PROBABILIDAD
TEMA 6. PROBABILIDAD En este tema vamos a estudiar el comportamiento del azar. A pesar de que entendemos la palabra azar como sinónimo de imprevisible, vamos a ver cómo, en realidad, el azar tiene ciertas
Si dos sucesos A y B son incompatibles, P(A"B) = 0 P(AUB) = P(A) + P(B)
RESUMEN PROBABILIDAD OPERACIONES CON SUCESOS: Unión Intersección Diferencia Diferencia Diferencia simétrica (A o B) (A y B) (Sólo suceso A) (Sólo suceso B) (Sólo suceso A o B) PROPIEDADES DE SUCESOS: Distributiva:
FICHA DE TRABAJO DE CÁLCULO DE PROBABILIDADES
FICHA DE TRABAJO DE CÁLCULO DE PROBABILIDADES EXPERIMENTO ALEATORIO: ESPACIO MUESTRAL Y SUCESOS 1) Se considera el experimento que consiste en la extracción de tres tornillos de una caja que contiene tornillos
TEORÍA Y EJERCICIOS RESUELTOS DE COMBINATORIA Y PROBABILIDAD. Notas teóricas
MATEMÁTICAS º ESO TEORÍA Y EJERCICIOS RESUELTOS DE COMBINATORIA Y PROBABILIDAD Juan J. Pascual COMBINATORIA Y PROBABILIDAD Notas teóricas - Variaciones: Las variaciones son agrupaciones ordenadas de objetos
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA : PROBABILIDAD Junio, Ejercicio 3, Parte I, Opción A Junio, Ejercicio 3, Parte I, Opción B Reserva, Ejercicio
R E S O L U C I Ó N. Hacemos un diagrama de árbol. 5 B 3 N 2 R 4 B 4 B 6 N = =
Dos urnas A y B, que contienen bolas de colores, tienen la siguiente composición: A : blancas, 3 negras y rojas; B : blancas y negras También tenemos un dado que tiene caras marcadas con la letra A y las
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. Página PRACTICA Sucesos Lanzamos tres veces una moneda y anotamos si sale cara o cruz. a) Escribe el espacio muestral. b) Escribe el suceso A la primera vez salió cara. c) Cuál es el suceso contrario
1. EXPERIMENTOS ALEATORIOS.SUCESOS Se llama experimento aleatorio a aquel en el que no se puede predecir el resultado.
UNIDAD 8: PROBABILIDAD 1. EXPERIMENTOS ALEATORIOS.SUCESOS 2. CONCEPTO DE PROBABILIDAD. REGLA DE LAPLACE 3. PROBABILIDAD CONDICIONADA. INDEPENDENCIA DE SUCESOS 4. PROBABILIDAD COMPUESTA 5. PROBABILIDAD
TEMA DE AMPLIACIÓN PROBABILIDAD. 1. Introducción. Conceptos básicos sobre límites. Qué vamos a estudiar en este tema?
TEMA DE AMPLIACIÓN PROBABILIDAD 1. Introducción. Conceptos básicos sobre límites Qué vamos a estudiar en este tema? 1. Espacio muestral y sucesos 2. Operaciones con sucesos 3. Probabilidad. Regla de Laplace
PROBLEMAS RESUELTOS DE PROBABILIDAD
PROBLEMAS RESUELTOS DE PROBABILIDAD D A B y B 1. Sean A y B subconjuntos del conjunto U y sea C A B E A. a) Dibuje diagramas de Venn separados para representar los conjuntos C, D y E. b) Utilizando las
EJERCICIOS DE PROBABILIDAD
EJERCICIOS DE ROBABILIDAD Ejercicio nº 1.- Lanzamos dos dados sobre la mesa y anotamos los dos números obtenidos. a) Cuántos elementos tiene el espacio muestral? b) Describe los sucesos: A "Obtener al
I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROBABILIDAD
I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROBABILIDAD Sean A y B dos sucesos con P(A0,, P(0, y P(A 0,. Calcular las probabilidades: a P(A/ b P(A/A c P(A B/A d P(A/A. Tenemos: ( ( ( ( P A
PROBABILIDAD MATEMÁTICAS 3º ESO académicas Alfonso González IES Fernando de Mena Dpto. de Matemáticas
PROBABILIDAD MATEMÁTICAS 3º ESO académicas Alfonso González IES Fernando de Mena Dpto. de Matemáticas I) DEFINICIONES Experimentos Deterministas: al repetirlos en análogas condiciones podemos predecir
Factorial de un número Se define como la multiplicación sucesiva de los primeros números naturales.
Combinatoria Principio multiplicativo Un elemento se puede elegir de formas diferentes, un elemento se puede elegir de formas diferentes hasta un elemento enésimo que puede ser elegido de formas diferentes.
TEMA 1: PROBABILIDAD
TEMA 1: PROBABILIDAD Ejercicios 1- alcular el espacio muestral asociado a los siguientes experimentos: a) Lanzar una moneda b) Tirar un dado c) Lanzar un dado de quinielas d) Extraer una bola de una caja
GUIA Nº1: EJERCICIOS DE CÁLCULO DE PROBABILIDADES
GUIA Nº: EJERCICIOS DE CÁLCULO DE PROBABILIDADES. Hallar la probabilidad de sacar una suma de puntos al lanzar dos dados.. Hallar la probabilidad de sacar por suma o bien, o bien al lanzar dos dados..
Probabilidad - 2ºBCS. De dos sucesos A y B, asociados a un mismo experimento aleatorio, se conocen las probabilidades C. = 0.
Probabilidad - ºS EJERIIO De dos sucesos A y, asociados a un mismo experimento aleatorio, se conocen las probabilidades P ( 0., P ( A / 0. y A ) 0.. a) alcule. Halle P (. c) Determine si A y son independientes.
Tema 7: Introducción a la probabilidad
Tema 7: Introducción a la probabilidad A veces, la probabilidad es poco intuitiva. (1) El problema de Monty Hall (El problema de las tres puertas) (2) El problema del cumpleaños. Hay n personas en una
Probabilidad. Si lanzamos una moneda no sabemos de antemano si saldrá cara o cruz. Teoría de probabilidades
Experimentos deterministas Probabilidad Son los experimentos de los que podemos predecir el resultado antes de que se realicen. Si dejamos caer una piedra desde una ventana sabemos, sin lugar a dudas,
el blog de mate de aida PROBABILIDAD 4º ESO PROBABILIDAD
Pág.1 PROBABILIDAD EXPERIMENTOS ALEATORIOS. SUCESOS. Experimento determinista es aquel en que se puede predecir el resultado, siempre que se realice en las mismas condiciones. (Ejemplo: medir el tiempo
DISTINGUIR ENTRE EXPERIMENTO ALEATORIO Y DETERMINISTA
OBJETIVO 1 DISTINGUIR ENTRE EXPERIMENTO ALEATORIO Y DETERMINISTA EXPERIMENTOS ALEATORIOS Y DETERMINISTAS Experimento determinista es aquel que, una vez estudiado, podemos predecir, es decir, que sabemos
TEMA 11: AZAR Y PROBABILIDAD
1 TEMA 11: AZAR Y PROBABILIDAD SUCESOS ALEATORIOS Un experimento es aleatorio cuando no se puede predecir el resultado que se va a obtener por muchas veces que lo repitamos. El conjunto formado por todos
PROBABILIDAD 3º E.S.O. { } EXPERIMENTOS ALEATORIOS EXPERIMENTOS ALEATORIOS OPERACIONES CON SUCESOS
EXPERIMENTOS ALEATORIOS PROBABILIDAD 3º E.S.O. Un experimento aleatorio es aquel cuyo resultado depende del azar y no se puede predecir con anterioridad. Lanzar un dado y mirar la cara superior Se llama
2. Encuentra el espacio muestral del experimento lanzar dos monedas. Si se define el suceso A = al menos una sea cara, de cuántos sucesos elementales
2. Encuentra el espacio muestral del experimento lanzar dos monedas. Si se define el suceso A = al menos una sea cara, de cuántos sucesos elementales consta A? Cuál es el suceso contrario de A? 3. Si consideramos
6 resultados posibles en total. Llamaremos suceso elemental de un experimento aleatorio a cada uno de los resultados posibles
TEMA Probabilidad * Experimento aleatorio: Es aquel cuyo resultado es impredecible. Ej. Lanzar un dado, lanzar una moneda. Una reacción química, realizada siempre en las mismas condiciones, no sería un
1 (Técnicas de recuento) Consta de cuatro subapartados relacionados con los
EXAMEN DE PROBABILIDAD 4/06/2014 4º ESO A I.E.S.O. VILLA DEL MONCAYO Orientaciones para su estudio Estructura del examen: El examen constará de 5 apartados. Cada apartado vale dos puntos. Cuenta un 15%
Nombre: Curso 2º Cálculo de Probabilidades Mates Aplicadas II. Ejercicio 1: Sean A y B dos sucesos del mismo espacio muestral tales que
Nombre: Curso 2º Mates plicadas II Ejercicio 1: Sean y B dos sucesos del mismo espacio muestral tales que a) [1'25] Justifique si y B son independientes. b) [1'25] Calcule p / B y p B/ p =0' 7, p B =0
Tipos de Probabilidades
Pre-universitario Manuel Guerrero Ceballos Clase N 03 MODULO COMPLEMENTARIO Tipos de Probabilidades Resumen de la clase anterior Probabilidad Combinatoria Probabilidades Con y sin repetición Regla de Laplace
Espacio Muestral, se denota con la letra S, y representa el conjunto de todos los sucesos aleatorios. Por ejemplo: Si tiramos una moneda el espacio se sucesos está formado por: S= {Ø, {C}, {X}, {C,X}}.
26. En una urna hay nueve bolas numeradas del 1 al 9.
. En una urna hay nueve bolas numeradas del al 9. a) Escribe los sucesos elementales. b) Describe dos sucesos compuestos. c) Describe dos sucesos incompatibles. a) Cada uno de los resultados posibles del
PROBLEMAS DE PROBABILIDAD. 3. Calcula la probabilidad de que al lanzar dos dados la suma de sus puntos sea: a) igual a 5 b) mayor que 10
1. Se lanza un dado. Halla la probabilidad: a) de salir el 3 b) de salir un número par c) de salir un número mayor que 2 PROBLEMAS DE PROBABILIDAD 2. Calcula la probabilidad de que al lanzar dos monedas:
Tema 4. Probabilidad Condicionada
Tema 4. Probabilidad Condicionada Presentación y Objetivos. En este tema se dan reglas para actualizar una probabilidad determinada en situaciones en las que se dispone de información adicional. Para ello
Pág. 1. Relaciones entre sucesos
Pág. Relaciones entre sucesos En un sorteo de lotería observamos la cifra en que termina el gordo. a) Cuál es el espacio muestral? b)escribe los sucesos: A = MENOR QUE 5; B = PAR. c) Halla los sucesos
Son los experimentos de los que podemos predecir el resultado antes de que se realicen.
Probabilidad Experimentos deterministas Son los experimentos de los que podemos predecir el resultado antes de que se realicen. Ejemplo Si dejamos caer una piedra desde una ventana sabemos, sin lugar a
PROBABILIDAD. 4º E.S.O. Académicas { } { } EXPERIMENTOS ALEATORIOS OPERACIONES CON SUCESOS EXPERIMENTOS ALEATORIOS
EXPEIMENTOS ALEATOIOS POAILIDAD 4º E.S.O. Académicas Un experimento aleatorio es aquel cuyo resultado depende del azar y no se puede predecir con anterioridad. Lanzar un dado y mirar la cara superior Se
TEMA 1.- PROBABILIDAD.- CURSO
TEMA 1.- PROBABILIDAD.- CURSO 2016-2017 1.1.- Introducción. Definición axiomática de probabilidad. Consecuencias de los axiomas. 1.2.- Probabilidad condicionada. 1.3.- Independencia de sucesos. 1.4.- Teoremas
Unidad 12 Probabilidad
Unidad robabilidad ÁGIN 8 SOLUCIONES. Ninguno de los dos resultados tiene mayor probabilidad de salir, ya que el azar no tiene memoria.. La probabilidad es: 8. El resultado más probable es caras y cruces
Son los experimentos de los que podemos predecir el resultado antes de que se realicen.
PROBABILIDAD Definición de probabilidad La probabilidad de un suceso es un número, comprendido entre 0 y 1, que indica las posibilidades que tiene de verificarse cuando se realiza un experimento aleatorio.
70 EJERCICIOS de PROBABILIDAD 2º BACH. CC. SS.
70 EJERCICIOS de PROBABILIDAD 2º BACH. CC. SS. En los siguientes ejercicios se recomienda: Considerar previamente, cuando proceda, el espacio muestral. Utilizar siempre el lenguaje de sucesos convenientemente.
el blog de mate de aida PROBABILIDAD 4º ESO PROBABILIDAD
Pág.1 PROBABILIDAD EXPERIMENTOS ALEATORIOS. SUCESOS. Experimento determinista es aquel en que se puede predecir el resultado, siempre que se realice en las mismas condiciones. (Ejemplo: medir el tiempo
CÁLCULO DE PROBABILIDADES
TEMA 7 CÁLCULO DE PROBABILIDADES Ejercicios para Selectividad de Detalladamente resueltos Curso 1998 / 1999 José Álvarez Fajardo bajo una licencia Reconocimiento NoComercial CompartirIgual 2.5 Spain de
10 9 Sacamos una bola y anotamos el número. a) Es una experiencia aleatoria? b) Escribe el espacio muestral y seis sucesos.
13 Soluciones a las actividades de cada epígrafe PÁGINA 132 1 En una urna hay 10 bolas de cuatro colores. Sacamos una bola y anotamos su color. a) Es una experiencia aleatoria? b) Escribe el espacio muestral
3.Si A y B son incompatibles, es decir A B = entonces:
Axiomas de la probabilidad 1.La probabilidad es positiva y menor o igual que 1. 0 p(a) 1 2. La probabilidad del suceso seguro es 1. p(e) = 1 3.Si A y B son incompatibles, es decir A B = entonces: p(a B)
Unidad 13 Probabilidad condicionada
Unidad Probabilidad condicionada PÁGINA 05 SOLUCIONES. La composición de la bolsa queda con canicas rojas, azules y verdes. Por tanto, el color más probable de las que quedan dentro es azul.. La probabilidad
SOLUCIONES EJERCICIOS PROBABILIDAD
SOLUCIONES EJERCICIOS ROBABILIDAD Ejercicio nº 1. En una urna hay 15 bolas numeradas de 2 al 16. Extraemos una bola al azar y observamos el número que tiene. a) Describe los sucesos: A "Obtener par" B
3. Este es un problema de combinaciones. El total de maneras como se pueden elegir los 12 dos grupos es 6
1. La probabilidad de que llueva el fin de semana es lo mismo que la probabilidad de que llueva el sabado o el domingo o ambos dias. Usando una tabla de doble entrada o diagramas de Venn se obtiene P(S
Plan de Recuperación 4º ESO Académicas 2017/2018 3º evaluación
Plan de Recuperación 4º ESO Académicas 2017/2018 3º evaluación IES Mata Jove Unidad 7: Trigonometría. 1. Para hallar la altura a la que se encuentra un globo, procedemos del siguiente modo: Rosa se coloca
EJERCICIOS PROBABILIDAD
EJERCICIOS ROBABILIDAD Ejercicio nº 1.- En una urna hay 15 bolas numeradas de 2 al 16. Extraemos una bola al azar y observamos el número que tiene. a) Describe los sucesos: A "Obtener par" B "Obtener impar"
Son los experimentos de los que podemos predecir el resultado antes de que se realicen.
PROBABILIDAD La probabilidad de un suceso es un número, comprendido entre 0 y 1, que indica las posibilidades que tiene de verificarse cuando se realiza un experimento aleatorio. Experimentos deterministas
3.Si A y B son incompatibles, es decir A B = entonces:
Axiomas de la probabilidad 1.La probabilidad es positiva y menor o igual que 1. 0 p(a) 1 2. La probabilidad del suceso seguro es 1. p(e) = 1 3.Si A y B son incompatibles, es decir A B = entonces: p(a B)
Ejemplo: Si lanzamos un dado 7 veces y 3 de ellas nos sale par, la frecuencia
Probabilidad La probabilidad mide la frecuencia con la que se obtiene un resultado (o conjunto de resultados) al llevar a cabo un experimento aleatorio, del que se conocen todos los resultados posibles,
TEMA 15: AZAR Y PROBABILIDAD SOLUCIONES
TEMA : AZAR Y ROBABILIDAD SOLUCIONES ÁGINA 287. a. Si b. E bola negra, bola roja, bola azul, bola verde 2. 3. 4. c. i. A " sacar una bola roja" ii. B " sacar una bola negra" iii. C " sacar una bola verde"
Bloque 4. Estadística y Probabilidad
Bloque 4. Estadística y Probabilidad 2. Probabilidad 1. Definición de probabilidad La probabilidad de un suceso es un número, comprendido entre 0 y 1, que indica las posibilidades que tiene de verificarse
TEMA 1.- PROBABILIDAD.- CURSO
TEMA 1.- PROBABILIDAD.- CURSO 2017-2018 1.1.- Introducción. Definición axiomática de probabilidad. Consecuencias de los axiomas. 1.2.- Combinatoria. Regla del producto 1.2.- Probabilidad condicionada.
Tema 6 Probabilidad. 0.-Introducción La probabilidad de un suceso es un número, comprendido entre 0 y
Tema 6 Probabilidad 0.-Introducción La probabilidad de un suceso es un número, comprendido entre 0 y 1, que indica las posibilidades que tiene de verificarse cuando se realiza un experimento aleatorio.
Luego es más probable obtener una vez un seis doble en 24 tiradas que obtenerlo al menos una vez. En cambio para 25 tiradas cambian las cosas pues:
PROBABILIDAD 0. Introducción Cierto día del año 654, Blaise Pascal (623-662) matemático francés, hacía un viaje en compañía de un jugador más o menos profesional conocido como el caballero de Meré, quien
BOLETÍN DE EJERCICIOS PROBABILIDAD
BOLETÍN DE EJERCICIOS PROBABILIDAD 1. Un estudiante cuenta, para un examen con la ayuda de un despertador, el cual consigue despertarlo en un 80 % de los casos. Si oye el despertador, la probabilidad de
Probabilidad. 2. Hallar la probabilidad de obtener 12 al multiplicar los resultados de dos dados correctos.
Probabilidad 1. Lanzamos un dado chapucero 1000 veces. Obtenemos f(1) = 117, f(2) = 302, f(3) = 38, f(4) = 234, f(5) 196, f(6) = 113. a. Hallar la probabilidad de las distintas caras. b. Probabilidad de
Capítulo. Técnicas de conteo Pearson Prentice Hall. All rights reserved
Capítulo 35 Técnicas de conteo La regla de multiplicación y conteo Si una tarea consiste de una secuencia de opciones en las cuales hay p posibilidades para la primera opción, q posibilidades para la segunda
PROBLEMAS DE PROBABILIDAD 2º DE BACHILLERATO COLEGIO MARAVILLAS
PROBLEMAS DE PROBABILIDAD 2º DE BACHILLERATO COLEGIO MARAVILLAS DEPARTAMENTO DE MATEMÁTICAS TERESA GONZÁLEZ 1) El 60% de los habitantes de una ciudad lee el periódico A, el 45% leen el B y el 20% de los
Tema 11 Cálculo de Probabilidades.
Tema 11 Cálculo de Probabilidades. 11.1 Experimentos aleatorios. Espacio muestral PÁGINA 248 EJERCICIOS 1. Decide si los siguientes experimentos son aleatorios o deteministas. a) Medir apotemas de un pentágono
Lanzamos 1 dado y comprobamos cuál es el resultado que aparece en la cara superior.
Curso ON LINE Tema 01 SÓLO ENUNCIADOS. PROBABILIDADES I Lanzamos 1 dado y comprobamos cuál es el resultado que aparece en la cara superior. 001 002 003 004 005 Lanzamos 1 dado y comprobamos cuál es el
Departamento de Matemática Aplicada Estadística Aplicada y Cálculo Numérico Grado en Química (Curso ) Combinatoria y Probabilidad.
Departamento de Matemática Aplicada Estadística Aplicada y Cálculo Numérico Grado en Química (Curso 2016-17) Combinatoria y Probabilidad. Hoja 3 Notación Ejercicios P k = k! número de permutaciones. Vr
Ejercicios de Cálculo de Probabilidades
Ejercicios de Cálculo de Probabilidades Ejercicio nº 1.- De una bolsa que tiene 10 bolas numeradas del 0 al 9, se extrae una bola al azar. a Cuál es el espacio muestral? b Describe los sucesos: A "Mayor
También son experimentos aleatorios: lanzar una moneda, sacar una bola de una bolsa, sacar una carta de la baraja, etc.
3º ESO E UNIDAD 16.- SUCESOS ALEATORIOS. PROBABILIDAD PROFESOR: RAFAEL NÚÑEZ -------------------------------------------------------------------------------------------------------------------------------------
MATEMÁTICAS 4º ESO. TEMA 3: PROBABILIDAD
MTEMÁTICS 4º ESO. TEM 3: PROBBILIDD 3.1 Sucesos 3.2 Definición de probabilidad 3.3 Probabilidad condicionada 3.4 Probabilidad de la intersección de sucesos 3.5 Probabilidad de la unión de sucesos 3.6 Probabilidad
Probabilidad E x p e r i m e n t o s d e t e r m i n i s t a s E j e m p l o E x p e r i m e n t o s a l e a t o r i o s a z a r E j e m p l o s
Probabilidad Experimentos deterministas Son los experimentos de los que podemos predecir el resultado antes de que se realicen. Ejemplo Si dejamos caer una piedra desde una ventana sabemos, sin lugar a
EJERCICIOS DE PROBABILIDAD.
EJERCICIOS DE PROBABILIDAD. 1. a) Se escoge al azar una letra de la palabra PROBABILIDAD. Indica la probabilidad del suceso A = sea la letra A y del suceso B = sea una consonante. b) Halla la probabilidad
