Tema 4: Ejercicios de Modelos de Probabilidad
|
|
|
- Juan Francisco Miranda Aguilar
- hace 7 años
- Vistas:
Transcripción
1 Tema 4: Ejercicios de Modelos de Probabilidad Bernardo D Auria Departamento de Estadística Universidad Carlos III de Madrid GRUPO 83 - INGENIERÍA INFORMÁTICA Otros
2 Ejercicio Un servidor que alberga una página web recibe por término medio 10 accesos por minuto, pudiéndose considerar que los accesos son sucesos independientes. Se quiere saber: a) Cuál es la probabilidad de que no acceda nadie durante 2 minutos? b) Cuál es la probabilidad de que haya exactamente 10 accesos en 1 minuto? c) Cuál es al probabilidad de que haya más de 20 accesos en 1 minuto? d) Cuánto tiempo transcurrirá, por término medio, entre 2 accesos consecutivos? e) Cuál es la probabilidad de que entre 2 accesos consecutivos transcurra menos de 1 segundo? Bernardo D Auria (UC3M - Ingeniería Informática) Otros 2 / 1
3 SOLUCIÓN: a) e 20 = b) ! e 10 = c) 1 20 i=1 10i i! e 10 = = d) 6 segundos/acceso e) 1 e 10/60 = Bernardo D Auria (UC3M - Ingeniería Informática) Otros 3 / 1
4 Ejercicio Examen Feb 05-1/2 Los circuitos integrados (chips) se obtienen a partir de obleas de silicio y son muy susceptibles a cualquier fallo en la superficie de la oblea. Se define como defecto fatal aquel defecto que pueda echar a perder un chip. El numero de defectos fatales por 100 mm 2 de oblea de silicio viene caracterizado por una variable aleatoria de media 0.1. a) Cual es la probabilidad de que en un chip de mm 2 haya más de un defecto fatal? b) Si se toman 25 chips diferentes de mm 2, cuál es la probabilidad de que más de 22 de esos chips no tengan defectos? Bernardo D Auria (UC3M - Ingeniería Informática) Otros 4 / 1
5 Ejercicio Examen Feb 05-2/2 Figure: 58 chips de mm 2 c) Si se pretenden obtener chips de mm 2 de las obleas de 100 mm de diámetro, cuál es la probabilidad de encontrar más de 12 defectos fatales en la superficie útil total de 4 obleas? Bernardo D Auria (UC3M - Ingeniería Informática) Otros 5 / 1
6 Ejercicio Examen Feb 05-2/2 c) Si se pretenden obtener chips de mm 2 de las obleas de 100 mm de diámetro, cuál es la probabilidad de encontrar más de 12 defectos fatales en la superficie útil total de 4 obleas? Figure: 58 chips de mm 2 SOLUCIÓN: a) b) c) Bernardo D Auria (UC3M - Ingeniería Informática) Otros 5 / 1
7 Ejercicio Fiabilidad Se tiene un sistema formado por 2 componentes en paralelo como el de la figura donde los dos componentes tienen características similares La avería de un componente es independiente del estado del otro componente. El sistema funciona si entre A y B es posible encontrar un camino de componentes que C 1 funcionen. A C 2 B (a) Supongamos que la duración de un componente (tiempo transcurrido desde que se conecta hasta que se avería) se puede modelizar con una distribución Weibull de parámetros α = 1200 y β = 1.7. Calcula la probabilidad de que el componente 1 este mas de 1000 horas funcionando ininterrumpidamente. (b) Supongamos que el componente 1 lleva ya 500 horas funcionando sin averiarse. Calcula la probabilidad de que funcione durante 1000 horas adicionales. (c) Comenta la diferencia entre la probabilidad del apartado (a) y (b), explicando dicha diferencia en función de los parámetros del modelo Weibull. (d) Calcula la probabilidad de que el sistema formado por ambos componentes en paralelo esté más de 1000 horas funcionando ininterrumpidamente. (e) Cuántos componentes en serie como los de la figura se deberían usar para que la probabilidad de que el sistema dure más de 1000 horas sea mayor que 0.98? Bernardo D Auria (UC3M - Ingeniería Informática) Otros 6 / 1
8 SOLUCIÓN: (a) Pr(T 1 > 1000) = 0.48; (b) Pr(T 1 > 1500 T 1 > 500) = 0.29; (c) β > 1 Pr(T 1 > 1500 T 1 > 500) < Pr(T 1 > 1000) por el envejecimiento del componente; (d) Pr(Funcione más de 1000 horas) = 0.73; (e) 6 componentes. Bernardo D Auria (UC3M - Ingeniería Informática) Otros 7 / 1
Tema 4: Ejercicios de Modelos de Probabilidad
Tema 4: s de Modelos de Probabilidad Bernardo D Auria Departamento de Estadística Universidad Carlos III de Madrid GRUPO 12 - I.T.I.G. Otros Se considera una v.a. Bernoulli que toma el valor 1 con probabilidad
Tema 4: MODELOS DE PROBABILIDAD
Tema 4: MODELOS DE PROBABILIDAD PROBLEMAS PROPUESTOS 1. A un puesto de servicio llegan de manera independiente y estable, una media de 10 clientes/hora. Calcular la probabilidad de que lleguen 8 clientes
Ejercicios de Modelos de Probabilidad
Bernardo D Auria Departamento de Estadística Universidad Carlos III de Madrid GRUPO 66 GRADO EN INGENIERÍA DE SISTEMAS AUDIOVISUALES 16/03/2009 Las llamadas de teléfono recibidas en una casa siguen un
Ejercicios de Modelos de Probabilidad
Bernardo D Auria Departamento de Estadística Universidad Carlos III de Madrid GRUPO 67 GRADO EN INGENIERÍA DE SISTEMAS AUDIOVISUALES 10/03/2009 Se considera una v.a. Bernoulli que toma el valor 1 con probabilidad
Tema 2: Ejercicios de Probabilidad
Bernardo D Auria Departamento de Estadística Universidad Carlos III de Madrid GRUPO 12 - I.T.I.G. Otros Un componente eléctrico se empaqueta en lotes de 10 unidades. Se rechaza el lote si al inspeccionar
Relación de Problemas. Tema 4
Relación de Problemas. Tema 4 1. Un experimento consiste en lanzar cuatro monedas al aire. Calcular la función de probabilidad y la función de distribución de las siguientes variables aleatorias: 1) Número
Unidad Didáctica 4. Distribuciones de Probabilidad II. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad
Unidad Didáctica 4 Distribuciones de Probabilidad II Departamento de Estadística e Investigación Operativa Aplicadas y Calidad UD 4 Distribuciones de Probabilidad Esta presentación corresponde a la Parte
Soluciones Examen de Estadística
Soluciones Examen de Estadística Ingeniería Superior de Telecomunicación 15 de Febrero, 5 Cuestiones horas C1. Un programa se ejecuta desde uno cualquiera de cuatro periféricos A, B, C y D con arreglo
Tema 4: Variables aleatorias. Tema 4: Variables Aleatorias. Tema 4: Variables aleatorias. Objetivos del tema:
Tema 4: Variables aleatorias Tema 4: Variables Aleatorias Distribución de Bernouilli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno
Tema 7: Ejercicios de Inferencia en una población Normal
Tema 7: s de Inferencia en una población Normal Bernardo D Auria Departamento de Estadística Universidad Carlos III de Madrid GRUPO 83 - INGENIERÍA INFORMÁTICA Otros I3 En una explotación minera las rocas
Tema 6: Ejercicios de Inferencia con muestras grandes
Tema 6: s de Inferencia con muestras grandes Bernardo D Auria Departamento de Estadística Universidad Carlos III de Madrid GRUPO 83 - INGENIERÍA INFORMÁTICA 15 de Mayo 2008 I4 Y JUN1998 En una encuesta
Tema 4. Probabilidad Condicionada
Tema 4. Probabilidad Condicionada Presentación y Objetivos. En este tema se dan reglas para actualizar una probabilidad determinada en situaciones en las que se dispone de información adicional. Para ello
Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:
Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz
UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA
UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA PROBABILIDAD Y ESTADÍSTICA GUÍA 2: PROBABILIDADES Profesores: Jaime Arrué A. - Hugo S. Salinas. Primer Semestre 2008 1. Un sistema
Tema 8: Ejercicios de Comparación de poblaciones
Tema 8: s de Comparación de poblaciones Bernardo D Auria Departamento de Estadística Universidad Carlos III de Madrid GRUPO 83 - INGENIERÍA INFORMÁTICA Otros I4 Se quiere comparar rodamientos de agujas
Distribuciones de probabilidad más usuales
Tema 5 Distribuciones de probabilidad más usuales En este tema se estudiarán algunas de las distribuciones discretas y continuas más comunes, que se pueden aplicar a una gran diversidad de problemas y
Relación de Problemas. Modelos de Probabilidad
Relación de Problemas. Modelos de Probabilidad 1. Sabemos que en una ciudad, de cada 50000 personas, 1500 están viendo un cierto programa de TV. Cuál es la probabilidad de que de 100 personas elegidas
Tema 6: Ejercicios de Inferencia con muestras grandes
Tema 6: s de Inferencia con muestras grandes Bernardo D Auria Departamento de Estadística Universidad Carlos III de Madrid GRUPO 12 - I.T.I.G. 19 de Mayo 2008 I3 Y SEPT1997 El ayuntamiento de León está
PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3 P (X > 0) P ( 0,5 < X < 0,5) P ( X > 0,25) 1 si 2 x P (X 1) P (0,5 X 1) P (0,5 < X 1 X < 1)
PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3 1. Sea X una v.a. con función de densidad { 0,75 (1 x f X (x) = 2 ) 1 x 1 0 en otro caso. a) Verificar que f X es realmente una función de densidad. b) Calcular:
Variable Aleatoria. Relación de problemas 6
Relación de problemas 6 Variable Aleatoria. Consideremos el experimento aleatorio consistente en lanzar dos dados equilibrados y observar el número máximo de los dos números obtenidos en ellos. Si X es
UNIVERSIDAD DE ATACAMA
UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES PAUTA DE CORRECCIÓN PRUEBA N 3 Profesor: Hugo S. Salinas. Segundo Semestre 200. Se investiga el diámetro
Variables aleatorias continuas
Variables aleatorias continuas VARIABLE ALEATORIA UNIFORME Definición Se dice que una variable X tiene una distribución uniforme en el intervalo [a;b] si la fdp de X es: 1 si a x b f(x)= b-a 0 en otro
Relación 4. Modelos discretos de distribuciones.
Relación 4. Modelos discretos de distribuciones. 1. Si se lanzan dos dados diez veces al aire, cuál es la probabilidad de que en más de la mitad de las ocasiones se obtenga una suma par de puntos? 2. Una
MANTENIMIENTO INDUSTRIAL.
REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD ALONSO DE OJEDA FACULTAD DE INGENIERÍA ESCUELA DE INDUSTRIAL MANTENIMIENTO INDUSTRIAL. Realizado por: Ing. Danmelys Perozo UNIDAD II: ESTADÍSTICAS DE FALLAS
Distribuciones de probabilidad
Distribuciones de probabilidad Distribución Binomial La distribución binomial es una de las distribuciones utilizadas más ampliamente en estadística aplicada. La distribución se deriva del procedimiento
Estadística. Convocatoria ordinaria. 23 de mayo de Nombre Grupo.. Titulación.Número de Examen..
Estadística Convocatoria ordinaria. 23 de mayo de 2017 Nombre Grupo.. Titulación.Número de Examen.. Ejercicio 1 Se dispone de un test para detectar la presencia de contaminantes en una materia prima. Hay
JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas
JUEGO DE BASKETBALL Repaso de Distribuciones de Probabilidad Discretas y Continuas PREGUNTA #1 Qué es una variable aleatoria uniforme discreta? Cómo es su distribución? Qué es una variable aleatoria uniforme
Objetivos. Epígrafes 3-1. Francisco José García Álvarez
Objetivos Entender el concepto de variabilidad natural de un procesos Comprender la necesidad de los gráficos de control Aprender a diferenciar los tipos de gráficos de control y conocer sus limitaciones.
Definición 4.1 Diremos que una variable aleatoria discreta X tiene una distribución Uniforme de parámetro N, N 1, si. rg(x) = {1, 2,...
Índice 4 MODELOS DE DISTRIBUCIONES 4.1 4.1 Introducción.......................................... 4.1 4.2 Modelos de distribuciones discretas............................. 4.1 4.2.1 Distribución Uniforme
Tema 4. Distribución Binomial y Poisson
Universidad de Los Andes Facultad de Ciencias Económicas y Sociales Escuela de Administración y Contaduría Estadística I Sección 06 - I2016 Prof. Douglas Rivas Tema 4. Distribución Binomial y Poisson Conceptos
Tema 6: Modelos de probabilidad.
Estadística 60 Tema 6: Modelos de probabilidad. 6.1 Modelos discretos. (a) Distribución uniforme discreta: La variable aleatoria X tiene una distribución uniforme discreta de parámetro n,que denoteramos
Tema 1: Ejercicios de Estadística Descriptiva
Bernardo D Auria Departamento de Estadística Universidad Carlos III de Madrid GRUPO 12 - I.T.I.G. 2008 Cada uno de los siguientes grupos de datos contienen dos muestras de observaciones. Grupo 1 Grupo
Soluciones Examen de Estadística Ingeniería Superior de Telecomunicación
Soluciones Examen de Estadística Ingeniería Superior de Telecomunicación 7 de Septiembre, 25 Cuestiones 2 horas C. A partir de los procesos estocásticos X(t e Y (t incorrelados y de media cero, con funciones
EJERCICIOS DE DISTRIBUCION NORMAL, BINOMIAL Y POISSON
EJERCICIOS DE DISTRIBUCION NORMAL, BINOMIAL Y POISSON 1. Si 15 de 50 proyectos de viviendas violan el código de construcción, Cuál es la probabilidad de que un inspector de viviendas, que selecciona aleatoriamente
Estadística Aplicada
Estadística Aplicada Distribuciones de Probabilidad Variables aleatorias Toman un valor numérico para cada resultado de un espacio muestral Discretas. Sus valores posibles constituyen un conjunto discreto.
Examen de Matemáticas Aplicadas a las CC. Sociales II-Coincidente (Junio 2017) Selectividad-Opción A Tiempo: 90 minutos 2 3 A = , y B = 3 5 1
Examen de Matemáticas Aplicadas a las CC. Sociales II-Coincidente (Junio 217) Selectividad-Opción A Tiempo: 9 minutos Problema 1 (2 puntos) Considérense las matrices ( ) ( ) 1 2 2 A =, y B = 5 1 1 4 a)
Tema 2, 3 y 4 GRUPO 82 - INGENIERÍA INFORMÁTICA. Bernardo D Auria. 3 Diciembre Departamento de Estadística. Universidad Carlos III de Madrid
Bernardo D Auria Departamento de Estadística Universidad Carlos III de Madrid GRUPO 82 - INGENIERÍA INFORMÁTICA Diciembre 2008 Ejercicio T2-JN12 Comprueba que el problema lineal min x x 1 + x 2 2x x +
CUADERNILLO DE TRABAJO 3 DE PROBABILIDAD Y ESTADÍSTICA
CUADERNILLO DE TRABAJO 3 DE PROBABILIDAD Y ESTADÍSTICA CAPÍTULO IV.- VARIABLES ALEATORIAS CONTINUAS Y DISTRIBUCIONES DE PROBABILIDAD SECCIÓN 4.1.- DISTRIBUCIONES DE PROBABILIDAD Y FUNCIONES DE DENSIDAD
MODELOS DE SIMULACIÓN ESTADÍSTICOS CLASE 4: DISTRIBUCIÓN t, CHI-CUADRADA y EXPONENCIAL PROFESOR: OSCAR SAAVEDRA ANDRÉS DURANGO.
DISTRIBUCIÓN t Con frecuencia intentamos estimar la media de una población cuando se desconoce la varianza, en estos casos utilizamos la distribución de t de Student. Si el tamaño de la muestra es suficientemente
UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 4
UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 4 DOCENTE: Ing. Patricio Puchaicela ALUMNA: Andrea C. Puchaicela G. CURSO: 4to. Ciclo de Electrónica y Telecomunicaciones AÑO
Teoría de colas. Las colas (líneas de espera) son parte de la vida diaria
Teoría de colas Las colas (líneas de espera) son parte de la vida diaria Supermercado - Servicios de reparaciones - Telecom. Banco - Comedor universitario - Producción El tiempo que la población pierde
DISTRIBUCIÓN GAMMA. Guillermo Mir Piorno NIUB Ciencias Actuariales y Financieras ESTADÍSTICA ACTUARIAL NO VIDA
DISTRIBUCIÓN GAMMA Guillermo Mir Piorno NIUB 11130641 Ciencias Actuariales y Financieras ESTADÍSTICA ACTUARIAL NO VIDA La distribución Gamma Es una distribución adecuada para modelizar el comportamiento
Hln 1 = 160 In 1 = horas. R (1600)(0 223) 2(1600)(0.223) = [ ]. Il
17-1 Un dado de extrusión se emplea para producir ficaciones en las barras son 0.5035 ± 0.0010 barras de aluminio. El diámetro de las barras pulgadas. Los valores dados son los últimos es una característica
Examen de Estadística Grado en Ingeniería de Telecomunicación
Cuestiones Examen de Estadística Grado en Ingeniería de Telecomunicación 3 de Junio de 5 solución h 45m C (.5 puntos). Una multinacional realiza operaciones comerciales en 3 mercados (A, B y C). El % de
Hoja de Problemas Tema 3 (Variables aleatorias multidimensionales)
Depto. de Matemáticas Estadística (Ing. de Telecom.) Curso 2004-2005 Hoja de Problemas Tema 3 (Variables aleatorias multidimensionales) 1. Consideremos dos variables aleatorias independientes X 1 y X 2,
Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste
1 Contraste de hipótesis Tema 3 1. Pasos del contraste de hipótesis 1.1 Hipótesis estadísticas: nula y alternativa 1.2 Supuestos 1.3 Estadístico de contraste 1.4 Regla de decisión: zona de aceptación y
INGENIERÍA INFORMÁTICA DE GESTIÓN Junio 2005
INGENIERÍA INFORMÁTICA DE GESTIÓN Junio 2005 1. En una pequeña empresa con 60 empleados, 25 son personal de fábrica y están cobrando unos sueldos semanales (en euros) en función a su antigüedad de: 300
Probabilidad Condicional- Probabilidad Total- Teorema de Bayes
Probabilidad Condicional- Probabilidad Total- Teorema de ayes De un grupo de 50 empleados, 30 tiene una antigüedad de más de 10 años. Se eligen dos empleados al azar. Calcular la probabilidad de que los
INGENIERO EN COMPUTACIÓN DISTRIBUCIONES DE PROBABILIDAD CONTINUA ELABORÓ: M. EN C. LUIS ENRIQUE KU MOO FECHA: AGOSTO DE 2017
UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO CENTRO UNIVERSITARIO UAEM ZUMPANGO INGENIERO EN COMPUTACIÓN DISTRIBUCIONES DE PROBABILIDAD CONTINUA ELABORÓ: M. EN C. LUIS ENRIQUE KU MOO FECHA: AGOSTO DE 2017
Independencia de Sucesos
Independencia de Sucesos 2do C. 2018 Clase Nº 2 Mg. Stella Figueroa Independencia de Sucesos Dos sucesos A y B son independientes cuando la ocurrencia de A no tiene influencia en la ocurrencia de B. Dos
Tema 6: Ejercicios de Inferencia con muestras grandes
Tema 6: s de Inferencia con muestras grandes Bernardo D Auria Departamento de Estadística Universidad Carlos III de Madrid GRUPO 12 - I.T.I.G. 12 de Mayo 2008 Tema 6: s de Inferencia con muestras grandes
Maestría en Bioinformática Probabilidad y Estadística: Clase 3
Maestría en Bioinformática Probabilidad y Estadística: Clase 3 Gustavo Guerberoff [email protected] Facultad de Ingeniería Universidad de la República Abril de 2010 Contenidos 1 Variables aleatorias
PROBABILIDADES Y ESTADÍSTICA (C) PRÁCTICA 3. ..,, f 0,75(1 -x2) -l<x<l fy (X) < [O en otro caso. P(X > 0) P(-0,5 < X < 0,5) P( X > 0,25) ' 0
PROBABILIDADES Y ESTADÍSTICA (C) PRÁCTICA 3. Sea X una v.a. con función de densidad..,, f 0,75(1 -x2) -l
Grado en Ingeniería Informática Estadística Tema 5: Teoría Elemental del Muestreo e Inferencia Paramétrica Ángel Serrano Sánchez de León
Grado en Ingeniería Informática Estadística Tema 5: Teoría Elemental del Muestreo e Inferencia Paramétrica Ángel Serrano Sánchez de León Distribuciones Muestrales 1. Sea una población de 5 números: 2,
Estadística Modelos probabilísticos discretos
Estadística Modelos probabilísticos discretos MODELOS ALEATORIOS Al considerar variables aleatorias distintas caemos en la cuenta de que sus comportamientos respecto a la distribución de probabilidad,
2008/ MANTENIMIENTO DE INSTALACIONES TÉRMICAS. Tipo: OPT Curso: 3 Semestre: B CREDITOS Totales TA TS AT AP PA OBJETIVOS PROGRAMA RESUMIDO
2008/2009 Tipo: OPT Curso: 3 Semestre: B CREDITOS Totales TA TS AT AP PA OBJETIVOS 6 3 0 0 0 1,5 PI 0,9 PL 0,6 PC 0 El objetivo de la asignatura es dar a conocer los fundamentos de un servicio como es
Ejercicios de probabilidad
1. Dos personas juegan con una moneda, a cara (C) o escudo (E). La que apuesta por la cara gana cuando consiga dos caras seguidas o, en su defecto, tres caras; análogamente con el escudo. El juego acaba
INECUACIONES Y SISTEMAS DE INECUACIONES LINEALES.
Nombre y apellidos : Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I 2ª entrega Fecha: Curso: 1º BACHILLERATO INSTRUCCIONES: Para la realización del primer examen deberás entregar en un cuaderno
aceptar o rechazar evidencia hipótesis nula y la hipótesis alternativa enunciado que se probará "no hay efecto" o "no hay diferencia"
PRUEBA DE HIPOTESIS PRUEBA DE HIPOTESIS Es una regla que especifica si se puede aceptar o rechazar una afirmación acerca de una población dependiendo de la evidencia proporcionada por una muestra de datos.
PROBLEMAS DE LA ASIGNATURA MA2139 ESTADISTICA APLICADA CORRESPONDIENTES AL CAPITULO 1 : MODELOS DE DISTRIBUCION DE PROBABILIDAD
PROBLEMAS DE LA ASIGNATURA MA139 ESTADISTICA APLICADA CORRESPONDIENTES AL CAPITULO 1 : MODELOS DE DISTRIBUCION DE PROBABILIDAD Distribuciones de probabilidad 1/4 PROBLEMAS DE DISTRIBUCIONES DE PROBABILIDAD
INGENIERÍA EN INFORMÁTICA DE GESTIÓN ESTADÍSTICA junio, 98
INGENIERÍA EN INFORMÁTICA DE GESTIÓN ESTADÍSTICA junio, 98 TEORÍA (1.5 puntos) Cuestión 1. Sean A y B dos sucesos tales que P (A) = 1/3, P (B) = 1/5 y P (A B) + P (B A) = 2/3. Calcular P (A B). Cuestión
b) Si decides elegir el trabajo que con más probabilidad te permita ganar más de 900 euros al mes, qué trabajo debes elegir?
Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Hoja 4, curso 2006 2007. Ejercicio 1. Suponer que los cuatro motores de una aeronave comercial se disponen para que
PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3
PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3 1. Sea X una v.a. con función de densidad ½ 0.75 (1 x f X (x) = 2 ) 1 x 1 0 en otro caso. a) Verificar que f X es realmente una función de densidad. b) Calcular:
Estadística Grupo V. Tema 10: Modelos de Probabilidad
Estadística Grupo V Tema 10: Modelos de Probabilidad Algunos modelos de distribuciones de v.a. Hay variables aleatorias que aparecen con frecuencia en las Ciencias Sociales y Económicas. Experimentos dicotómicos
Intervalos de Confianza
Intervalos de Confianza Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Intervalo de Confianza Se puede hacer una estimación puntual de
OPCIÓN DE EXAMEN N.º 1. b1) (0,75 puntos) Para qué valores de a tenemos un sistema compatible determinado?
OPCIÓN DE EXAMEN N.º 1 Ejercicio 1 a) (1,5 puntos) Dada la matriz A= ( ), analizar su rango según los valores del parámetro a. b) Sea el sistema de ecuaciones lineales: 2 x 3y a 2y a 3x y 2 Basándose en
Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid
Probabilidad II Algunas distribuciones notables Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid La distribución normal f (x; µ, σ) = 1 σ 2π e 1 2( x µ σ ) 2, x R, µ R, σ > 0 E(X
UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa
UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 8 de Septiembre de 23 25 puntos Dado el problema lineal máx x + x 2 x 3 sa x + x 2 + x 3 2 2x x 2 x 3 2 x, se pide
Redes de Petri Estocásticas
Redes de Petri Estocásticas Carlos Aguirre Universidad Autonoma de Madrid, Dpto Ingenieria Informatica Redes Estocásticas Definición: Una red de Petri Estocástica es una red de Petri con transiciones con
ESTADÍSTICA I. A continuación se presentan los Modelos Probabilísticos Continuos más importantes.
1 ESTADÍSTICA I Capítulo 6: MODELOS PROBABILÍSTICOS CONTINUOS. Contenido: Distribución Uniforme Continua. Distribución Triangular. Distribución Normal. Distribuciones Gamma, Exponencial, Erlang y Chi Cuadrado.
Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides
Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda
DISTRIBUCIÓN N BINOMIAL
DISTRIBUCIÓN N BINOMIAL COMBINACIONES En muchos problemas de probabilidad es necesario conocer el número de maneras en que r objetos pueden seleccionarse de un conjunto de n objetos. A esto se le denomina
Práctica 5 ANÁLISIS DE UNA MUESTRA INTERVALOS DE CONFIANZA CONTRASTE DE HIPÓTESIS
Práctica. Intervalos de confianza 1 Práctica ANÁLISIS DE UNA MUESTRA INTERVALOS DE CONFIANZA CONTRASTE DE HIPÓTESIS Objetivos: Ilustrar el grado de fiabilidad de un intervalo de confianza cuando se utiliza
Tema 1. Introducción a la arquitectura de computadores: diseño, coste y rendimiento
Enunciados de problemas Tema 1. Introducción a la arquitectura de computadores: diseño, coste y rendimiento Arquitectura de Computadores I Curso 2009-2010 Tema 1: Hoja: 2 / 12 Tema 1: Hoja: 3 / 12 Base
Juan Carlos Colonia P. PROBABILIDADES
Juan Carlos Colonia P. PROBABILIDADES EXPERIMENTO ALEATORIO Se conocen todos los resultados posibles antes de realizar el experimento. Antes de realizar el experimento no se puede conocer el resultado
Cálculo y EstadísTICa. Primer Semestre.
Cálculo y EstadísTICa. Primer Semestre. EstadísTICa Curso Primero Graduado en Geomática y Topografía Escuela Técnica Superior de Ingenieros en Topografía, Geodesia y Cartografía. Universidad Politécnica
0 en otro caso. P (X > 0) P ( 0.5 < X < 0.5) P ( X > 0.25) x 3 si 0 x < 2. 1 si 2 x P(X 1) P(0.5 X 1) P(0.5 < X 1 X < 1) f X (x) = (1+αx) 2
PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3 1. Sea X una v.a. con función de densidad { 0.75(1 x f X (x) = 2 ) 1 x 1 0 en otro caso. a) Verificar que f X es realmente una función de densidad. b) Calcular:
