Ejercicios de Modelos de Probabilidad
|
|
|
- Alicia Acuña Benítez
- hace 7 años
- Vistas:
Transcripción
1 Bernardo D Auria Departamento de Estadística Universidad Carlos III de Madrid GRUPO 66 GRADO EN INGENIERÍA DE SISTEMAS AUDIOVISUALES 16/03/2009
2 Las llamadas de teléfono recibidas en una casa siguen un proceso de Poisson con parámetro λ = 2 cada hora. a) Cual es la probabilidad de que el teléfono suene durante ese tiempo? b) Durante cuanto tiempo puede tomar una ducha si desea que la probabilidad de no recibir ninguna llamada sea como mucho 0.5? Bernardo D Auria (UC3M - G.I. de Sistemas Audiovisuales) 16/03/ / 6
3 Las llamadas de teléfono recibidas en una casa siguen un proceso de Poisson con parámetro λ = 2 cada hora. a) Cual es la probabilidad de que el teléfono suene durante ese tiempo? b) Durante cuanto tiempo puede tomar una ducha si desea que la probabilidad de no recibir ninguna llamada sea como mucho 0.5? SOLUCIÓN: a) 0.864; b) t 21 minutos. Bernardo D Auria (UC3M - G.I. de Sistemas Audiovisuales) 16/03/ / 6
4 Un aparcamiento tiene 2 entradas. Los coches llegan a la entrada I según una Poisson con 3 coches por hora y a la entrada II con 2 coches por media hora. Si el número de coches que llega a cada entrada son independientes, cuál es la probabilidad de que en una hora lleguen 3 coches al aparcamiento? Bernardo D Auria (UC3M - G.I. de Sistemas Audiovisuales) 16/03/ / 6
5 Un aparcamiento tiene 2 entradas. Los coches llegan a la entrada I según una Poisson con 3 coches por hora y a la entrada II con 2 coches por media hora. Si el número de coches que llega a cada entrada son independientes, cuál es la probabilidad de que en una hora lleguen 3 coches al aparcamiento? SOLUCIÓN: 7 3 3! e 3 = 0.05 Bernardo D Auria (UC3M - G.I. de Sistemas Audiovisuales) 16/03/ / 6
6 1/2 Un sistema está formado por 3 componentes conectados en serie. El sistema falla cuando falla uno de los componentes. Los componentes C 1 y C 2 tienen tiempo de vida T 1 y T 2 que se distribuyen como una exponencial de media horas. La distribución de probabilidad de la vida, T 3, del componente C 3 es N(3000, 200). Los tiempos de vida de los tres componentes son independientes. A C 1 C 2 C 3 B a) Calcular la probabilidad de que el componente C 1 dure más de 3000 horas. b) Calcular la probabilidad de que el componente C 1 dure más de 6000 horas, si ha durado ya 3000 horas. c) Calcular la probabilidad de que el sistema dure más de 3000 horas. Bernardo D Auria (UC3M - G.I. de Sistemas Audiovisuales) 16/03/ / 6
7 2/2 d) Para reforzar el componente C 3 se instala un componente gemelo en paralelo. Calcular la probabilidad de que el sistema dure más de 3000 horas. C 3 A C 1 C 2 B C 3 Bernardo D Auria (UC3M - G.I. de Sistemas Audiovisuales) 16/03/ / 6
8 2/2 d) Para reforzar el componente C 3 se instala un componente gemelo en paralelo. Calcular la probabilidad de que el sistema dure más de 3000 horas. C 3 A C 1 C 2 B C 3 SOLUCIÓN: a) Pr(T 1 > 3000) = e 3/28 = b) Pr(T 1 > 6000 T > 3000) = e 3/28 = c) Pr(T s > 3000) = 1 2 e 6/28 = d) Pr(T s > 3000) = 3 4 e 6/28 = Bernardo D Auria (UC3M - G.I. de Sistemas Audiovisuales) 16/03/ / 6
9 Ex. SEP 2007 Ing. Téc. Tel. (P2b). La duración en días de un tipo de sensores sigue un modelo Weibull con F(t) = 1 exp ` (t/α) 1/2 ; f(t) = 1/2 α 1/2 t 1/2 exp ` (t/α) 1/2, con α > 0. a) Se supone que se tiene una caja de 60 sensores sin usar cuya duracióon siguen el modelo Weibull con α = 1/4 que verifica que E[T] = 1/2 días y Var[T] = 5/4 días 2. Si se comienza con un sensor de dicha caja y se va reemplazando instantáneamente según se vaya fundiendo con un sensor de la misma caja, cuál es la probabilidad de que cuando haya fallado el último sensor de la caja hayan pasado menos de 47 días? Utilizar alguno de los siguientes valores de la función Q(x) = Pr(Z > x) con Z N(0, 1) x Q(x) b) Calcula la probabilidad del apartado anterior mediante simulación en MATLAB/Octave. Bernardo D Auria (UC3M - G.I. de Sistemas Audiovisuales) 16/03/ / 6
Ejercicios de Modelos de Probabilidad
Bernardo D Auria Departamento de Estadística Universidad Carlos III de Madrid GRUPO 67 GRADO EN INGENIERÍA DE SISTEMAS AUDIOVISUALES 10/03/2009 Se considera una v.a. Bernoulli que toma el valor 1 con probabilidad
Tema 4: Ejercicios de Modelos de Probabilidad
Tema 4: s de Modelos de Probabilidad Bernardo D Auria Departamento de Estadística Universidad Carlos III de Madrid GRUPO 12 - I.T.I.G. Otros Se considera una v.a. Bernoulli que toma el valor 1 con probabilidad
Tema 4: Ejercicios de Modelos de Probabilidad
Tema 4: Ejercicios de Modelos de Probabilidad Bernardo D Auria Departamento de Estadística Universidad Carlos III de Madrid GRUPO 83 - INGENIERÍA INFORMÁTICA Otros Ejercicio Un servidor que alberga una
Tema 4: MODELOS DE PROBABILIDAD
Tema 4: MODELOS DE PROBABILIDAD PROBLEMAS PROPUESTOS 1. A un puesto de servicio llegan de manera independiente y estable, una media de 10 clientes/hora. Calcular la probabilidad de que lleguen 8 clientes
Distribuciones de probabilidad más usuales
Tema 5 Distribuciones de probabilidad más usuales En este tema se estudiarán algunas de las distribuciones discretas y continuas más comunes, que se pueden aplicar a una gran diversidad de problemas y
INGENIERIA de TELECOMUNICACION
INGENIERIA de TELECOMUNICACION ESTADISTICA 2011-2012 PRACTICA 3. MODELOS DE PROBABILIDAD OBJETIVOS: Introducción a modelos de probabilidad discretos y contínuos más comunes. Caracterización, representación
Ejercicios de Vectores Aleatorios
Bernardo D Auria Departamento de Estadística Universidad Carlos III de Madrid GRUPO MAGISTRAL GRADO EN INGENIERÍA DE SISTEMAS AUDIOVISUALES Otros M2 Calcular la función de densidad conjunta y las marginales
Ejercicios de Modelos de Probabilidad
Ejercicios de Modelos de Probabilidad Elisa M. Molanes-López, Depto. Estadística, UC3M Binomial, Geométrica, Exponencial, Uniforme y Normal Ejercicio 1. En un canal de comunicación la probabilidad de error
PRUEBA DE BONDAD DE AJUSTE O PRUEBA CHI - CUADRADO
O PRUEBA CHI - CUADRADO Hasta ahora se han mencionado formas de probar lo que se puede llamar hipótesis paramétricas con relación a una variable aleatoria, o sea que se ha supuesto que se conoce la ley
Tema 6: Ejercicios de Inferencia con muestras grandes
Tema 6: s de Inferencia con muestras grandes Bernardo D Auria Departamento de Estadística Universidad Carlos III de Madrid GRUPO 83 - INGENIERÍA INFORMÁTICA 15 de Mayo 2008 I4 Y JUN1998 En una encuesta
UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 4
UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 4 DOCENTE: Ing. Patricio Puchaicela ALUMNA: Andrea C. Puchaicela G. CURSO: 4to. Ciclo de Electrónica y Telecomunicaciones AÑO
ETSI de Topografía, Geodesia y Cartografía
Distribuciones (discretas y continuas) EVALUACIÓN CONTINUA (Tipo I) 14-XII-11 1. Una prueba del examen de Estadística consiste en un cuestionario de 10 preguntas con tres posibles respuestas, solamente
Ejercicios de Procesos Estocásticos
Ejercicios de Procesos Estocásticos Bernardo D Auria Departamento de Estadística Universidad Carlos III de Madrid GRUPO MAGISTRAL GRADO EN INGENIERÍA DE SISTEMAS AUDIOVISUALES Otros Ejemplo Considerar
MANTENIMIENTO INDUSTRIAL.
REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD ALONSO DE OJEDA FACULTAD DE INGENIERÍA ESCUELA DE INDUSTRIAL MANTENIMIENTO INDUSTRIAL. Realizado por: Ing. Danmelys Perozo UNIDAD II: ESTADÍSTICAS DE FALLAS
PROBABILIDAD Y ESTADÍSTICA ININ4010 Prof. DAVID GONZÁLEZ BARRETO SOLUCIÓN ASIGNACIÓN 6
PROBABILIDAD Y ESTADÍSTICA ININ4 Prof. DAVID GONZÁLEZ BARRETO SOLUCIÓN ASIGNACIÓN 6. Con base en probabilidades de la distribución normal a, 2 y 3 desviaciones, determine para una variable con μ = 5 y
Ejercicios de Probabilidad
Bernardo D Auria Departamento de Estadística Universidad Carlos III de Madrid GRUPO MAGISTRAL GRADO EN INGENIERÍA DE SISTEMAS AUDIOVISUALES Otros Ejercicio Se tiran dos dados, uno detrás de otro y se recogen
Tema 3:Introducción a las variables aleatorias PROBLEMAS PROPUESTOS. 2. La función de densidad de la variable aleatoria X viene dada por la expresión
Tema :Introducción a las variables aleatorias PROBLEMAS PROPUESTOS. Puede ser la función de densidad de una variable aleatoria continua mayor que uno en algún punto? Sí. La función de densidad de la variable
TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18
TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18 2.1. Concepto de variable aleatoria. Tipos de variables aleatorias: discretas y continuas. 2.2. Variables aleatorias discretas. Diagrama de
b) Si decides elegir el trabajo que con más probabilidad te permita ganar más de 900 euros al mes, qué trabajo debes elegir?
Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Hoja 4, curso 2006 2007. Ejercicio 1. Suponer que los cuatro motores de una aeronave comercial se disponen para que
ESTADISTICA INFERENCIAL
ESTADISTICA INFERENCIAL EJERCICIOS DE DISTRIBUCION HIPERGEOMETRICA 1.-5 fabricantes producen en determinado dispositivo cuya calidad varía de un fabricante a otro. si usted elige 3 fabricantes al azar,
Ejercicio 4.1. Ejercicio 4.2
Investigación Operativa I Ejercicios de Teoría de Colas Ejercicio 4.1 En una fábrica existe una oficina de la Seguridad Social a la que los obreros tienen acceso durante las horas de trabajo. El jefe de
Selección de distribuciones de probabilidad
Selección de distribuciones de probabilidad Georgina Flesia FaMAF 3 de mayo, 2012 Análisis estadístico de datos simulados Los sistemas reales tienen fuentes de aleatoriedad: Tipo de sistema Fabricación
Relación de Problemas. Tema 4
Relación de Problemas. Tema 4 1. Un experimento consiste en lanzar cuatro monedas al aire. Calcular la función de probabilidad y la función de distribución de las siguientes variables aleatorias: 1) Número
PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3 P (X > 0) P ( 0,5 < X < 0,5) P ( X > 0,25) 1 si 2 x P (X 1) P (0,5 X 1) P (0,5 < X 1 X < 1)
PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3 1. Sea X una v.a. con función de densidad { 0,75 (1 x f X (x) = 2 ) 1 x 1 0 en otro caso. a) Verificar que f X es realmente una función de densidad. b) Calcular:
Ejercicios de Estimación
Bernardo D Auria Departamento de Estadística Universidad Carlos III de Madrid GRUPO MAGISTRAL GRADO EN INGENIERÍA DE SISTEMAS AUDIOVISUALES Otros Sep. 2001 Los siguientes datos corresponden a la longitud
Tema 6: Modelos de probabilidad.
Estadística 60 Tema 6: Modelos de probabilidad. 6.1 Modelos discretos. (a) Distribución uniforme discreta: La variable aleatoria X tiene una distribución uniforme discreta de parámetro n,que denoteramos
ESTADÍSTICA I. A continuación se presentan los Modelos Probabilísticos Continuos más importantes.
1 ESTADÍSTICA I Capítulo 6: MODELOS PROBABILÍSTICOS CONTINUOS. Contenido: Distribución Uniforme Continua. Distribución Triangular. Distribución Normal. Distribuciones Gamma, Exponencial, Erlang y Chi Cuadrado.
OBJETIVOS: Simular en MATLAB/Octave procesos estocásticos sencillos.
GRADO en INGENIERIA de TELECOMUNICACION (Sistemas de comunicaciones, audiovisuales y telemática) ESTADISTICA 8-9 PRACTICA 5. PROCESOS ESTOCÁSTICOS OBJETIVOS: Simular en MATLAB/Octave procesos estocásticos
Introducción al Tema 8. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones.
Introducción al Tema 8 1 Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones. V.A. de uso frecuente Tema 7. Modelos probabiĺısticos discretos
Tema 4: Variables aleatorias. Tema 4: Variables Aleatorias. Tema 4: Variables aleatorias. Objetivos del tema:
Tema 4: Variables aleatorias Tema 4: Variables Aleatorias Distribución de Bernouilli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno
Tema 6: Ejercicios de Inferencia con muestras grandes
Tema 6: s de Inferencia con muestras grandes Bernardo D Auria Departamento de Estadística Universidad Carlos III de Madrid GRUPO 12 - I.T.I.G. 19 de Mayo 2008 I3 Y SEPT1997 El ayuntamiento de León está
PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3
PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3 1. Sea X una v.a. con función de densidad ½ 0.75 (1 x f X (x) = 2 ) 1 x 1 0 en otro caso. a) Verificar que f X es realmente una función de densidad. b) Calcular:
Tema 7: Ejercicios de Inferencia en una población Normal
Tema 7: s de Inferencia en una población Normal Bernardo D Auria Departamento de Estadística Universidad Carlos III de Madrid GRUPO 83 - INGENIERÍA INFORMÁTICA Otros I3 En una explotación minera las rocas
ESTADÍSTICA Y ANÁLISIS DE DATOS. Práctica del Tema 5. Variable aleatoria (en R y R 2 )
ESTADÍSTICA Y ANÁLISIS DE DATOS Práctica del Tema 5. Variable aleatoria (en R y R ). Se considera un dado regular y se define la v.a. X: puntuación obtenida en un lanzamiento cualquiera de dicho dado.
CUADERNILLO DE TRABAJO 3 DE PROBABILIDAD Y ESTADÍSTICA
CUADERNILLO DE TRABAJO 3 DE PROBABILIDAD Y ESTADÍSTICA CAPÍTULO IV.- VARIABLES ALEATORIAS CONTINUAS Y DISTRIBUCIONES DE PROBABILIDAD SECCIÓN 4.1.- DISTRIBUCIONES DE PROBABILIDAD Y FUNCIONES DE DENSIDAD
Apuntes de Clases. Modelos de Probabilidad Discretos
2010 Índice 1. Distribución de Bernouilli 2 2. Distribución Binomial 3 3. Distribución Hipergeométrica 3.1. Aproximación Binomial de la distribución Hipergeométrica............. 7 4. Distribución Geométrica
ENUNCIADO y SOLUCIONES. Problema 1
Ingeniería Industrial Métodos estadísticos de la Ingeniería Examen Junio 007. ENUNCIADO y SOLUCIONES Problema La memoria RAM para un ordenador se puede recibir de dos fabricantes A y B con igual probabilidad.
Examen de Estadística
Examen de Estadística Grado en Ingeniería de Telecomunicación 4 de Junio de 03 Cuestiones solucion h 30m C. (p) Un sistema de comunicación está compuesto por los componentes A, B, C, D y E, donde cada
PROBABILIDADES Trabajo Práctico 5. 0 si x<0. x3 si 0 x<2 1 si x 2
PROBABILIDADES Trabajo Práctico 5 1. Sea X una variable aleatoria con función de distribución acumulada a) Calcular, usando F X, P (X 1) P (0.5 X 1) P (X >1.5) b) Hallar la mediana de esta distribución.
Universidad Nacional Abierta Estadística General (745) Vicerrectorado Académico Cód. Carrera: Área de Matemática Fecha:
Integral Lapso 2010-2 745 1/5 Universidad Nacional Abierta Estadística General (745) Vicerrectorado Académico Cód. Carrera: 610-612-613 Fecha: 26-02-2011 OBJ. 2 PTA 1 MODELO DE RESPUESTAS Objetivos 2,
GENERACION DE NUMEROS ALEATORIOS Y VARIABLES ALEATORIAS
GENERACION DE NUMEROS ALEATORIOS Y VARIABLES ALEATORIAS La simulación de eventos se basa en la ocurrencia aleatoria de los mismos, por ello los números aleatorios y las variables aleatorias son de especial
5 DISTRIBUCIONES BINOMIAL Y DE POISSON
5 DISTRIBUCIONES BINOMIAL Y DE POISSON La repetición sucesiva de n pruebas (ensayos) de BERNOUILLI de modo independiente y manteniendo constante la probabilidad de éxito p da lugar a la variable aleatoria
GRADO en INGENIERIA de TELECOMUNICACION (Sistemas de comunicaciones, audiovisuales y telemática)
GRADO en INGENIERIA de TELECOMUNICACION (Sistemas de comunicaciones, audiovisuales y telemática) ESTADISTICA 2008-2009 PRACTICA 2. VARIABLES ALEATORIAS OBJETIVOS: Introducción a las variables aleatorias:
PROBLEMAS TEMA 2: TEORÍA DE COLAS. Curso 2013/2014
PROBLEMAS TEMA 2: TEORÍA DE COLAS. Curso 2013/2014 1. Un nuevo restaurante de comida rápida tiene una sola caja. En media, los clientes llegan a la caja con una tasa de 20 a la hora. Las llegadas se suponen
0 en otro caso. P (X > 0) P ( 0.5 < X < 0.5) P ( X > 0.25) x 3 si 0 x < 2. 1 si 2 x P(X 1) P(0.5 X 1) P(0.5 < X 1 X < 1) f X (x) = (1+αx) 2
PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3 1. Sea X una v.a. con función de densidad { 0.75(1 x f X (x) = 2 ) 1 x 1 0 en otro caso. a) Verificar que f X es realmente una función de densidad. b) Calcular:
Probabilidad, Variables Aleatorias y Distribuciones
GRUPO A Prueba de Evaluación Continua 5-XII-.- Tres plantas de una fábrica de automóviles producen diariamente 00, 00 y 000 unidades respectivamente. El porcentaje de unidades del modelo A es 60%, 0% y
GENERACION DE NUMEROS ALEATORIOS Y VARIABLES ALEATORIAS
GENERACION DE NUMEROS ALEATORIOS Y VARIABLES ALEATORIAS La simulación de eventos se basa en la ocurrencia aleatoria de los mismos, por ello los números aleatorios y las variables aleatorias son de especial
Soluciones Examen de Estadística Ingeniería Superior de Telecomunicación
Soluciones Examen de Estadística Ingeniería Superior de Telecomunicación 7 de Septiembre, 25 Cuestiones 2 horas C. A partir de los procesos estocásticos X(t e Y (t incorrelados y de media cero, con funciones
Tema 3 - Introducción. Tema 2. Distribuciones en el muestreo Estadísticos y distribución muestral. Ejemplos: X y S 2.
Tema 3 - Introducción 1 Tema 2. Distribuciones en el muestreo Estadísticos y distribución muestral. Ejemplos: X y S 2. Tema 3. Estimación puntual Criterios de comparación de estimadores: Insesgadez. Estimadores
GRADO de TELECOMUNICACIONES
GRADO de TELECOMUNICACIONES ESTADISTICA 2009-2010 PRACTICA 2. PROBABILIDAD Y VARIABLES ALEATORIAS OBJETIVOS: Introducción a la probabilidad y a las variables aleatorias 1. Probabilidad 1. Simular 1000
Relación de Problemas. Tema 5
Relación de Problemas. Tema 5. Supongamos que tenemos una muestra aleatoria simple de tamaño n de una v.a. X que sigue una distribución geométrica con función de probabilidad P (X = k) = p( p) k Calcular
Hoja de Problemas Tema 3 (Variables aleatorias multidimensionales)
Depto. de Matemáticas Estadística (Ing. de Telecom.) Curso 2004-2005 Hoja de Problemas Tema 3 (Variables aleatorias multidimensionales) 1. Consideremos dos variables aleatorias independientes X 1 y X 2,
INGENIERÍA INDUSTRIAL EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ESTADÍSTICA APLICADA A LA INGENIERÍA
INGENIERÍA INDUSTRIAL EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ESTADÍSTICA APLICADA A LA INGENIERÍA UNIDADES DE APRENDIZAJE 1. Competencias Desarrollar e innovar sistemas de manufactura a través de
CURSO INTENSIVO #R03-40hrs CONFIABILIDAD Y MANTENIBILIDAD DE PLANTAS. NIVEL II -MODELOS ESTADISTICOS-MATEMATICOS CON APLICACIONES PRACTICAS-
OBJETIVO: Presentar la teoría matemática, modelos estadísticos y aplicaciones prácticas de Confiabilidad y Mantenibilidad en una forma fácil de comprender con el fin de utilizarlas para pronosticar el
Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid
Probabilidad II Algunas distribuciones notables Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid La distribución normal f (x; µ, σ) = 1 σ 2π e 1 2( x µ σ ) 2, x R, µ R, σ > 0 E(X
Tema 1: Ejercicios de Estadística Descriptiva
Bernardo D Auria Departamento de Estadística Universidad Carlos III de Madrid GRUPO 12 - I.T.I.G. 2008 Cada uno de los siguientes grupos de datos contienen dos muestras de observaciones. Grupo 1 Grupo
Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides
Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda
Apellido y Nombres: Fecha: Carrera: Calificación 1ª Parte: Legajo: Calificación 2ª Parte: DNI: Calificación Definitiva:
Cátedra: Probabilidad y Estadística Apellido y Nombres: Fecha: Carrera: Calificación 1ª Parte: Legajo: Calificación 2ª Parte: DNI: Calificación Definitiva: Atención! Para aprobar el examen se debe alcanzar
TEMA 3.- MODELOS DISCRETOS
TEMA 3.- MODELOS DISCRETOS 3.1. Introducción. 3.2. Distribución uniforme discreta de parámetro n. 3.3.Distribución Bernoulli de parámetro p. 3.4.Distribución Binomial de parámetros n y p. Notación: X Bn,
Tema 2: Ejercicios de Probabilidad
Bernardo D Auria Departamento de Estadística Universidad Carlos III de Madrid GRUPO 12 - I.T.I.G. Otros Un componente eléctrico se empaqueta en lotes de 10 unidades. Se rechaza el lote si al inspeccionar
SERVICIOS DE INGENIERÍA DE CONFIABILIDAD Colombia, Cali
Resumen: SERVICIOS DE INGENIERÍA DE CONFIABILIDAD CONFIABILIDAD DE PLANTAS DE GENERACION Ing. William M Murillo En este artículo, se presenta una metodología para calcular la confiabilidad de componentes,
Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:
Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz
Definición 4.1 Diremos que una variable aleatoria discreta X tiene una distribución Uniforme de parámetro N, N 1, si. rg(x) = {1, 2,...
Índice 4 MODELOS DE DISTRIBUCIONES 4.1 4.1 Introducción.......................................... 4.1 4.2 Modelos de distribuciones discretas............................. 4.1 4.2.1 Distribución Uniforme
UNIVERSIDAD DE ATACAMA
UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD PAUTA SEGUNDA PRUEBA PARCIAL Profesor: Hugo S. Salinas. Segundo Semestre 2008 1. El problema de Galileo.
UNIVERSIDAD DE ATACAMA
UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD GUIA 3 Profesor: Hugo S. Salinas. Segundo Semestre 2009 1. Una empresa dedicada al procesamiento de
MODELOS DE SIMULACIÓN ESTADÍSTICOS CLASE 4: DISTRIBUCIÓN t, CHI-CUADRADA y EXPONENCIAL PROFESOR: OSCAR SAAVEDRA ANDRÉS DURANGO.
DISTRIBUCIÓN t Con frecuencia intentamos estimar la media de una población cuando se desconoce la varianza, en estos casos utilizamos la distribución de t de Student. Si el tamaño de la muestra es suficientemente
Maestría en Bioinformática Probabilidad y Estadística: Clase 3
Maestría en Bioinformática Probabilidad y Estadística: Clase 3 Gustavo Guerberoff [email protected] Facultad de Ingeniería Universidad de la República Abril de 2010 Contenidos 1 Variables aleatorias
Variables aleatorias 1. Problema 1
Variables aleatorias 1 Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Estadística Variables aleatorias Problema 1 La dimensión de ciertas piezas sigue una distribución normal
Tema 6 Algunas distribuciones importantes Hugo S. Salinas
Algunas distribuciones importantes Hugo S. Salinas 1 Distribución binomial Se han estudiado numerosas distribuciones de probabilidad que modelan características asociadas a fenómenos que se presentan frecuentemente
Selección de distribuciones de probabilidad
Selección de distribuciones de probabilidad Patricia Kisbye FaMAF 6 de mayo, 2010 Análisis estadístico de datos simulados Los sistemas reales tienen fuentes de aleatoriedad: Tipo de sistema Fabricación
Objetivos: Construir un modelo de Simulación de un Sistema Embarque de Inventarios, con las herramientas de Promodel.
UNIVERSIDAD DE MANAGUA Al más alto nivel ASIGNATURA: SIMULACIÓN DE SISTEMAS SIMULACIÓN CON PROMODEL Guía #7: Modelo 4: Simulación de un Sistema Embarque de Inventario Prof.: MSc. Julio Rito Vargas A. Objetivos:
Distribución de Probabilidad
Distribución de Probabilidad Variables continuas Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Distribuciones de probabilidad continuas
Procesos estocásticos
Procesos estocásticos Enrique Miranda Universidad of Oviedo Máster Universitario en Análisis de Datos para la Inteligencia de Negocios Contenidos del curso 1. Introducción. 2. Procesos a tiempo discreto:
Gráficas de funciones de masa de probabilidad y de función de densidad de probabilidad de Distribuciones especiales. x n
Gráficas de funciones de masa de probabilidad y de función de densidad de probabilidad de Distribuciones especiales 1. Función de distribución binomial: Si X distribuye bin ( n, p), entonces f n x x n
Tema 6. Estimación puntual
1 Tema 6. Estimación puntual En este tema: Planteamiento del problema. Criterios de comparación de estimadores: Insesgadez. Estimadores de mínima varianza. Error cuadrático medio. Consistencia. Métodos
Estadística. 2 o examen parcial
Apellidos: Nombre: Computadores Software Estadística. 2 o examen parcial. 14-11-2013 Test (20 % de la nota del examen) Tiempo para esta parte del examen: 1 hora y 10 minutos. El test y la teoría se recogerán
Preparación de los datos de entrada
Preparación de los datos de entrada Clase nro. 6 CURSO 2010 Objetivo Modelado de las características estocásticas de los sistemas. Variables aleatorias con su distribución de probabilidad. Por ejemplo:
Tema 4: Probabilidad y Teoría de Muestras
Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009
PROBABILIDADES Y ESTADÍSTICA (C) PRÁCTICA 3. ..,, f 0,75(1 -x2) -l<x<l fy (X) < [O en otro caso. P(X > 0) P(-0,5 < X < 0,5) P( X > 0,25) ' 0
PROBABILIDADES Y ESTADÍSTICA (C) PRÁCTICA 3. Sea X una v.a. con función de densidad..,, f 0,75(1 -x2) -l
Distribuciones Probabilísticas. Curso de Estadística TAE,2005 J.J. Gómez Cadenas
Distribuciones Probabilísticas Curso de Estadística TAE,005 J.J. Gómez Cadenas Distribución Binomial Considerar N observaciones independientes tales que: El resultado de cada experimento es acierto o fallo
Probabilidad, Variables aleatorias y Distribuciones
Prueba de evaluación continua Grupo D 7-XII-.- Se sabe que el 90% de los fumadores llegaron a padecer cáncer de pulmón, mientras que entre los no fumadores la proporción de los que sufrieron de cáncer
EJERCICIOS. 1 Repaso de probabilidad
EJERCICIOS 1 Repaso de probabilidad 1. (El problema del cumpleaños) Supongamos que la distribución del día de cumpleaños es uniforme, es decir, que cada día del año tiene probabilidad 1/365 de ser el cumpleaños
Dimensionamiento y Planificación de Redes
Dimensionamiento y Planificación de Redes Ejercicios Tema 5. Sistemas con Fuentes Finitas Ramón Agüero Calvo Departamento de Ingeniería de Comunicaciones Este tema se publica bajo Licencia: Crea:ve Commons
UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA
UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES GUÍA 3: VARIABLES ALEATORIAS Y ESTIMACIÓN Profesor: Hugo S. Salinas Segundo Semestre 2010 1. Una
Tema 6: Ejercicios de Inferencia con muestras grandes
Tema 6: s de Inferencia con muestras grandes Bernardo D Auria Departamento de Estadística Universidad Carlos III de Madrid GRUPO 12 - I.T.I.G. 12 de Mayo 2008 Tema 6: s de Inferencia con muestras grandes
III Verano de Probabilidad y Estadística Curso de Procesos de Poisson (Víctor Pérez Abreu) Lista de Ejercicios
III Verano de Probabilidad y Estadística Curso de Procesos de Poisson (Víctor Pérez Abreu) Lista de Ejercicios Esta lista contiene ejercicios y problemas tanto teóricos como de modelación. El objetivo
