Método de los Mínimos Cuadrados Recursivos

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Método de los Mínimos Cuadrados Recursivos"

Transcripción

1 Método de los Mínimos Cuadrados Recursivos Teodoro Alamo a Ingeniería de Control Tercer Curso GITI Escuela Superior de Ingenieros Sevilla Formulación del problema Supongamos que los escalares y i, i = 0,, representan la salida muestreada de un sistema dinámico Asumamos asimismo que el valor de la salida y i puede ser aproximado por una expresión del tipo y i m i θ, i = 0,,, donde m i IR n m es un vector fila denominado regresor que está constituido por valores pasados de las entradas y salidas del sistema Por otro lado, θ es un vector columna donde se concentran los distintos parámetros que determinan la relación entre las entradas y salidas del sistema Dentro de las entrada podemos asumir las acciones de control y las perturbaciones medibles Como ejemplo, supóngase un sistema con salida y y una entrada u y una relación entre la salida y entrada dada por la siguiente ecuación en diferencias: y i = a y i + b u i + b 2 u i 2 + v i El escalar v i aglutina los errores en la medida, errores de modelado, etc En este caso, el regresor para un determinado instante de muestreo i es m i = [ y i u i u i 2 El término v i no se introduce en el regresor puesto que es un término de error que no es conocido a priori Por otro lado, el vector paramétrico θ sería θ = a b b 2 a Departamento de Ingeniería de Sistemas y Automática, Universidad de Sevilla, Escuela Superior de Ingenieros, Camino de los Descubrimientos s/n, 4092 Sevilla Spain talamo@uses

2 El problema de identificación paramétrica consiste en estimar el vector paramétrico θ de la observación de las salidas y i y sus respectivos regresores m i Nótese que no siempre es posible construir el regresor Por ejemplo, si se disponen sólo de datos a partir de i = 0 en adelante, no se podría construir el regresor m 0 puesto que éste depende de los valores pasados y, u y u 2 El primer regresor que podría ser construido es m 2, que vendría dado por [ y u u 0 Por este motivo, es usual que se asuma que el primer par salida regresor disponible es el y n, m n, donde n suele ser mayor cero El problema de identificación es especialmente interesante en el contexto de sistemas variantes con el tiempo En este caso los parámetros que definen la relación entrada-salida cambian de una forma más o menos suave con el tiempo En este contexto se denota como θ la estimación del vector paramétrico en el instante de muestreo En los mínimos cuadrados se obtiene θ de forma que se minimize de forma ponderada el error cuadrático Es decir, se minimiza el funcional J θ = i y i m i θ 2 El escalar 0, se denomina factor de olvido Si se hace igual a la unidad entonces todos los errores cometidos afectan de igual forma En caso de que sea estrictamente menor que uno, los errores recientes muestras próximas a tienen más relevancia que los lejanos en el tiempo De esta forma se permite que la estimación de los parámetros pueda capturar las variaciones temporales de los mismos La adecuada elección del valor de es crítica para la obtención de resultados satisfactorios Si definimos Y = y n y n+ y, M = m n m n+ m, W = n Se obtiene que el índice a minimizar viene dado por J θ = Y M θ W Y M θ n Denotemos θ el valor que minimiza el funcional J θ Para obtener el valor óptimo de θ analizamos el funcional para una perturbación θ + θ respecto del óptimo:, J θ + θ = Y M θ + θ W Y M θ + θ = Y M θ W Y M θ + θm W M θ Y M θ W M θ θ M W Y M θ = J θ + θ M W M θ 2 θ M W Y M θ

3 Supongamos ahora que elegimos θ tal que se eliminen los términos lineales respecto de θ esto es equivalente a hacer cero el gradiente respecto de θ : M W Y M θ = 0 De aquí inferimos que M W Y = M W M θ o equivalentemente: Con esta elección resulta que θ = M W M M W Y J θ + θ = J θ + θm W M θ J θ, θ Esta última ecuación garantiza que la elección θ = M W M M W Y es óptima en el sentido de los mínimos cuadrados ponderados 2 Formulación Recursiva En esta sección se mostrará cómo obtener el valor de θ en el instante de muestreo del valor del vector paramétrico θ obtenido en el periodo de muestreo anterior Definamos, dado, la matriz P = i m i m i 2 Esta matriz juega un papel muy relevante no sólo en la obtención de θ sino también en la caracterización probabilística de las estimaciones paramétricas obtenidas Nótese que P es una matriz simétrica puesto que está definida como la inversa de una matriz simétrica Como se muestra a continuación, es posible obtener P de forma recursiva utilizando para ello P La siguiente expresión proporciona el valor de P en la muestra : Por tanto, P = P = i m i m i i m i m i = m m + i m i m i i= = m m + i m i m i i= = m m + P

4 De esta forma hemos inferido la relación que relaciona P con P : P = m m + P 3 El siguiente lema permite obtener una relación algebraica entre P y P que evita realizar la inversa de una matriz El lema que se presenta aquí es un caso particular de un resultado más genérico denominado en la literatura especializada lema de inversión Lema Supongamos que la matriz simétrica P es invertible Entonces, dado el escalar > 0 y el vector fila m se tiene que: m m + P = P mp mp + mp m Demostración: De la definición de inversa de una matriz inferimos que para demostrar el lema basta con probar la siguiente igualdad: En efecto, m m + P P mp mp + mp m = I Γ = m m + P P mp mp + mp m = m mp + I m mp m mp + mp m m mp + mp m = I + mp m m mp + mp m + mp m = I + + mp m m mp + mp m = I De la aplicación directa del lema anterior a la ecuación 3 obtenemos que P = P m P m P + m P m 4 Esta igualdad tiene muchas implicaciones prácticas Entre ellas destacamos que la matriz P se obtiene del regresor m y del valor de P sin la necesidad de realizar la inversa de ninguna matriz Nótese que esto es algo significativo puesto que P se definió en la ecuación 2 como la inversa de una matriz

5 A continuación demostramos que P es igual a la matriz M W M, la cual juega un papel central en el cómputo de θ M W M = [ m n m m = [ m n m m n n m n m m m n m m = i m i m i = P Por lo tanto, de la ecuación obtenemos θ = M W M M W Y = P M W Y [ = P m n m m = P i m i y i n y ṇ y y De la misma manera, el valor de θ viene dado por: θ = P i m i y i 5 La formulación recursiva consiste en obtener una expresión que nos permita obtener θ del valor de θ Esto es lo que conseguimos con el siguiente desarrollo θ = P i m i y i = P m y + i m i y i

6 = P m y + i m i y i = P m P m P + m P m m y + i m i y i Teniendo en cuenta la ecuación 5 obtenemos θ = P m P m P + m P m m y +θ m P m θ = + m P m P m P m m P m + m P m +θ m P m θ = P m + m P m m P m + m P m y y +θ m P m θ + m P m P m = y + m P m + θ P m m θ + m P m = θ + P m y m θ + m P m Teniendo en cuenta que y m θ es el error cometido en la estimación de y con θ, resulta que el valor actualizado de θ es igual al valor anterior θ más un término correctivo consistente en el producto del error de estimación y m θ por una ganancia de estimación K que adopta la forma: Es decir, P m K = + m P m θ = θ + K y m θ Por otra parte, de la expresión de P dada por la ecuación 4 tenemos que P se puede expresar en términos de K y P : P = I K m P Como resumen de todo lo anterior tenemos que las expresiones que permiten obtener de forma recursiva el valor de θ son

7 K = P m + m P m θ = θ + K y m θ P = I K m P

Identificación mediante el método de los mínimos cuadrados

Identificación mediante el método de los mínimos cuadrados Ingeniería de Control Identificación mediante el método de los mínimos cuadrados Daniel Rodríguez Ramírez Teodoro Alamo Cantarero Contextualización del tema Conocimientos relevantes aprendidos previamente:

Más detalles

MODELOS DE SERIES DE TIEMPO 1. Modelos capaces de predecir, interpretar y evaluar hipótesis con datos económicos y financieros.

MODELOS DE SERIES DE TIEMPO 1. Modelos capaces de predecir, interpretar y evaluar hipótesis con datos económicos y financieros. MODELOS DE SERIES DE TIEMPO 1 Introducción Modelos capaces de predecir, interpretar y evaluar hipótesis con datos económicos y financieros. Originalmente tuvieron como objetivo hacer predicciones. Descomposición

Más detalles

Identificación n de SIStemas

Identificación n de SIStemas Identificación n de SIStemas Métodos de Estimación n Recursivos ISIS J. C. Gómez Métodos de Identificación n Recursivos Mínimos Cuadrados Recursivos ara una estructura de modelo de regresión lineal y n

Más detalles

IDENTIFICACIÓN DE SISTEMAS ESTIMACIÓN ESTOCÁSTICA

IDENTIFICACIÓN DE SISTEMAS ESTIMACIÓN ESTOCÁSTICA IDENTIFICACIÓN DE SISTEMAS ESTIMACIÓN ESTOCÁSTICA Ing. Fredy Ruiz Ph.D. ruizf@javeriana.edu.co Maestría en Ingeniería Electrónica Pontificia Universidad Javeriana 2013 Problema de la estima θ(t): magnitud

Más detalles

Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes.

Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes. Una forma fácil de recordar esta suma (regla de Sarrus): Ejemplos: Tarea: realizar al menos tres ejercicios de cálculo de determinantes de matrices de 2x2 y otros tres de 3x3. PARA DETERMINANTES DE MATRICES

Más detalles

4 IDENTIFICACIÓN DE MODELOS LINEALES DE LA PLANTA SOLAR

4 IDENTIFICACIÓN DE MODELOS LINEALES DE LA PLANTA SOLAR 4 IDENTIFICACIÓN DE MODELOS LINEALES DE LA PLANTA SOLAR Los sistemas de E/S quedan determinados por su función de transferencia, que puede expresarse como una función temporal (respuesta impulsional) o

Más detalles

Espacios vectoriales reales

Espacios vectoriales reales 140 Fundamentos de Matemáticas : Álgebra Lineal 9.1 Espacios vectoriales Capítulo 9 Espacios vectoriales reales Los conjuntos de vectores del plano, R 2, y del espacio, R 3, son conocidos y estamos acostumbrados

Más detalles

A cada matriz n-cuadrada A = (ai j ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o

A cada matriz n-cuadrada A = (ai j ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o DETERMINANTES A cada matriz n-cuadrada A = (ai j ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o Una tabla ordenada n ð n de escalares situada entre dos líneas

Más detalles

Una matriz es un arreglo rectangular de elementos. Por ejemplo:

Una matriz es un arreglo rectangular de elementos. Por ejemplo: 1 MATRICES CONCEPTOS BÁSICOS Definición: Matriz Una matriz es un arreglo rectangular de elementos. Por ejemplo: es una matriz de 3 x 2 (que se lee 3 por 2 ) pues es un arreglo rectangular de números con

Más detalles

Álgebra Lineal. Tema 12. Mínimos cuadrados II. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas

Álgebra Lineal. Tema 12. Mínimos cuadrados II. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas Álgebra Lineal Tema 2 Mínimos cuadrados II Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J S ALAS, A T ORRENTE Y EJS V ILLASEÑOR Índice general

Más detalles

Matrices Inversas. Rango Matrices Elementales

Matrices Inversas. Rango Matrices Elementales Matrices Inversas. Rango Matrices Elementales Araceli Guzmán y Guillermo Garro Facultad de Ciencias UNAM Semestre 2018-1 doyouwantmektalwar.wordpress.com Matrices Matrices identidad La matriz identidad

Más detalles

Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados

Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados Capítulo 5 Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados En este tema iniciamos el estudio de los conceptos geométricos de distancia y perpendicularidad en K n. Empezaremos con las definiciones

Más detalles

Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. ) ( + ( ) ( )

Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. ) ( + ( ) ( ) MATRICES Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. Ejemplo 1. Algunos ejemplos de matrices ( + ( ) ( + ( ) El tamaño o el orden de una

Más detalles

Identificación Paramétrica

Identificación Paramétrica Identificación Paramétrica Métodos para la Obtención de un Modelo Discreto Un modelo, incluyendo el ruido o perturbación, a tiempo discreto puede ser representado por la siguiente i ecuación Donde: ( )

Más detalles

ÁLGEBRA II (LSI PI) UNIDAD Nº 2 GEOMETRÍA ANALÍTICA. Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO

ÁLGEBRA II (LSI PI) UNIDAD Nº 2 GEOMETRÍA ANALÍTICA. Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO 17 ÁLGEBRA II (LSI PI) UNIDAD Nº GEOMETRÍA ANALÍTICA Facultad de Ciencias Exactas y Tecnologías aa Error! No hay texto con el estilo especificado en el documento. 1 UNIVERSIDAD NACIONAL DE SANTIAGO DEL

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre

Más detalles

ÁLGEBRA LINEAL I NOTAS DE CLASE UNIDAD 2

ÁLGEBRA LINEAL I NOTAS DE CLASE UNIDAD 2 ÁLGEBRA LINEAL I NOTAS DE CLASE UNIDAD 2 Abstract Estas notas conciernen al álgebra de matrices y serán actualizadas conforme el material se cubre Las notas no son substituto de la clase pues solo contienen

Más detalles

Capítulo V. Valores y vectores propios. Diagonalización de operadores lineales.

Capítulo V. Valores y vectores propios. Diagonalización de operadores lineales. Capítulo V Valores y vectores propios. Diagonalización de operadores lineales. Hemos visto que la aplicaciones lineales de en están definidas a través de una expresión de la forma ; pero esta fórmula puede

Más detalles

1. Mínimos Cuadrados. 05-Mínimos Cuadrados.doc 1

1. Mínimos Cuadrados. 05-Mínimos Cuadrados.doc 1 . Mínimos Cuadrados. Mínimos Cuadrados.. Introducción 2.2. Método de Mínimos Cuadrados 2... Forma Recursiva: 4..2. Inclusión del Factor de Olvido. 5.3. Características Estadísticas de la Estimación 8..3.

Más detalles

IDENTIFICACION DE SISTEMAS IDENTIFICACIÓN PARAMÉTRICA

IDENTIFICACION DE SISTEMAS IDENTIFICACIÓN PARAMÉTRICA IDENTIFICACION DE SISTEMAS IDENTIFICACIÓN PARAMÉTRICA Ing. Fredy Ruiz Ph.D. ruizf@javeriana.edu.co Maestría en Ingeniería Electrónica Pontificia Universidad Javeriana 2013 Identificación paramétrica En

Más detalles

Espacios vectoriales con producto escalar

Espacios vectoriales con producto escalar 147 Fundamentos de Matemáticas : Álgebra Lineal Capítulo 10 Espacios vectoriales con producto escalar 10.1 Producto escalar. Norma. Distancia Definición 71.- Un producto escalar o producto interior en

Más detalles

ACTIVIDADES SELECTIVIDAD MATRICES

ACTIVIDADES SELECTIVIDAD MATRICES ACTIVIDADES SELECTIVIDAD MATRICES Ejercicio 1 Para qué valores de m tiene solución la ecuación matricial? (b) Resuelve la ecuación matricial dada para. Ejercicio 2 Siendo I la matriz identidad de orden

Más detalles

Resumen 3: Espacios vectoriales

Resumen 3: Espacios vectoriales Resumen 3: Espacios vectoriales 1. Definición y ejemplos Un espacio vectorial sobre un cuerpo, está formado por elementos denominados vectores, los cuales pueden sumarse internamente y también multiplicarse

Más detalles

Menor, cofactor y comatriz

Menor, cofactor y comatriz Menor, cofactor y comatriz Sea A una matriz cuadrada de orden n. Al quitarle la línea i y la columna j se obtiene una submatriz de orden n-1, que se denota habitualmente A i,j. Por ejemplo, con n = 4,

Más detalles

4.5 Algoritmo RLS (Recursive Least Squares)

4.5 Algoritmo RLS (Recursive Least Squares) 4.5 Algoritmo RLS (Recursive Least Squares) Método de mínimos cuadrados (LS) Ecuaciones normales Pseudoinversa Variantes del LS Algoritmo RLS (Recursive Least Squares) Introducción Cálculo recursivo de

Más detalles

Métodos de Subespacios. Una aproximación intuitiva

Métodos de Subespacios. Una aproximación intuitiva IX Congreso de Ingeniería de Organización Gijón, 8 y 9 de septiembre de 2005 Métodos de Subespacios. Una aproximación intuitiva Segismundo S. Izquierdo Millán 1, Javier Pajares Gutiérrez 1, Cesáreo Hernández

Más detalles

Unidad IV: Modelo Discreto

Unidad IV: Modelo Discreto Unidad IV: Métodos para la Obtención de un Modelo Discreto Métodos para la Obtención de un Modelo Discreto Un modelo, incluyendo el ruido o perturbación, a tiempo discreto puede ser representado por la

Más detalles

Conjuntos y matrices. Sistemas de ecuaciones lineales

Conjuntos y matrices. Sistemas de ecuaciones lineales 1 Conjuntos y matrices Sistemas de ecuaciones lineales 11 Matrices Nuestro objetivo consiste en estudiar sistemas de ecuaciones del tipo: a 11 x 1 ++ a 1m x m = b 1 a n1 x 1 ++ a nm x m = b n Una solución

Más detalles

Contenido. 2 Operatoria con matrices. 3 Determinantes. 4 Matrices elementales. 1 Definición y tipos de matrices

Contenido. 2 Operatoria con matrices. 3 Determinantes. 4 Matrices elementales. 1 Definición y tipos de matrices elementales Diciembre 2010 Contenido Definición y tipos de matrices elementales 1 Definición y tipos de matrices 2 3 4 elementales 5 elementales Definición 1.1 (Matriz) Una matriz de m filas y n columnas

Más detalles

Capítulo VI. Diferenciabilidad de funciones de varias variables

Capítulo VI. Diferenciabilidad de funciones de varias variables Capítulo VI Diferenciabilidad de funciones de varias variables La definición de diferenciabilidad para funciones el cociente no tiene sentido, puesto que no está definido, porque el cociente entre el vector

Más detalles

UNIVERSIDAD TECNICA LUIS VARGAS TORRES Esmeraldas - Ecuador MATRICES Y VECTORES

UNIVERSIDAD TECNICA LUIS VARGAS TORRES Esmeraldas - Ecuador MATRICES Y VECTORES UNIVERSIDAD TECNICA LUIS VARGAS TORRES Esmeraldas - Ecuador MATRICES Y VECTORES Facultad de Ingenierías y Tecnologías Ing. Paúl Viscaino Valencia DOCENTE OBJETIVO Interpretar y resolver los problemas básicos

Más detalles

IDENTIFICACION DE SISTEMAS IDENTIFICACION NO PARAMETRICA

IDENTIFICACION DE SISTEMAS IDENTIFICACION NO PARAMETRICA IDENTIFICACION DE SISTEMAS IDENTIFICACION NO PARAMETRICA Ing. Fredy Ruiz Ph.D. ruizf@javeriana.edu.co Maestría en Ingeniería Electrónica Pontificia Universidad Javeriana 2013 SISTEMAS LTI En general un

Más detalles

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades:

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades: CAPÍTULO 2: ESPACIOS VECTORIALES 2.1- Definición y propiedades. 2.1.1-Definición: espacio vectorial. Sea un cuerpo conmutativo a cuyos elementos denominaremos escalares o números. No es necesario preocuparse

Más detalles

MODELACION EN VARIABLES DE ESTADO

MODELACION EN VARIABLES DE ESTADO CAPÍTULO VIII INGENIERÍA DE SISTEMAS I MODELACION EN VARIABLES DE ESTADO 8.1. DEFINICIONES Estado: El estado de un sistema dinámico es el conjunto más pequeño de variables de modo que el conocimiento de

Más detalles

Diagonalización. Tema Valores y vectores propios Planteamiento del problema Valores y vectores propios

Diagonalización. Tema Valores y vectores propios Planteamiento del problema Valores y vectores propios 61 Matemáticas I : Álgebra Lineal Tema 6 Diagonalización 61 Valores y vectores propios 611 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial

Más detalles

Matrices y determinantes

Matrices y determinantes Matrices y determinantes 1 Ejemplo Cuál es el tamaño de las siguientes matrices? Cuál es el elemento a 21, b 23, c 42? 2 Tipos de matrices Matriz renglón o vector renglón Matriz columna o vector columna

Más detalles

ECUACIONES DE RECTAS Y PLANOS

ECUACIONES DE RECTAS Y PLANOS ECUACIONES DE RECTAS Y PLANOS Una recta en el plano está determinada cuando se dan dos puntos cualesquiera de la recta, o un punto de la recta y su dirección (su pendiente o ángulo de inclinación). La

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Capítulo 4 Espacios vectoriales reales. 4.1 Espacios vectoriales. Definición 86.- Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe

Más detalles

Álgebra Lineal. Tema 6. Transformaciones lineales y matrices

Álgebra Lineal. Tema 6. Transformaciones lineales y matrices Álgebra Lineal Tema 6. Transformaciones lineales y matrices Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J. S ALAS, A. T ORRENTE Y E.J.S.

Más detalles

Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico.

Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. Tema 1: Matrices El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. 1. Terminología Comenzamos con la definición de matriz

Más detalles

AUTOVALORES Y AUTOVECTORES

AUTOVALORES Y AUTOVECTORES 12 de Julio de 2011 AUTOVALORES Y AUTOVECTORES (Clase 01) Departamento de Matemática Aplicada Facultad de Ingeniería Universidad Central de Venezuela 1 Puntos a tratar 1. Valores y vectores propios 2.

Más detalles

CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 MATRICES

CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 MATRICES CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 Unidades: - Matrices (Bloque Álgebra) - Determinantes (Bloque Álgebra) - Sistemas de ecuaciones lineales (Bloque Álgebra) - Vectores (Bloque

Más detalles

Estimación MC2E, MVIL en Modelos de Ecuaciones Simultáneas

Estimación MC2E, MVIL en Modelos de Ecuaciones Simultáneas Estimación MC2E, MVIL en Modelos de Ecuaciones Simultáneas Economía Aplicada III (UPV/EHU) OCW 2013 Contents 1 Mínimos Cuadrados en 2 Etapas 2 Mínimos Cuadrados en 2 Etapas El método de Mínimos Cuadrados

Más detalles

Sistemas Lineales y Matrices

Sistemas Lineales y Matrices Profesores Hernán Giraldo y Omar Saldarriaga Instituto de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Ejemplo Solución de sistemas de ecuaciones lineales, usaremos este

Más detalles

Minimización de una forma cuadrática sobre una recta (ejercicios)

Minimización de una forma cuadrática sobre una recta (ejercicios) Minimización de una forma cuadrática sobre una recta (ejercicios) Objetivos. Dada una forma cuadrática positiva definida, encontrar su mínimo sobre una recta dada. Mostrar que en el punto mínimo el gradiente

Más detalles

!MATRICES INVERTIBLES

!MATRICES INVERTIBLES Tema 4.- MATRICES INVERTIBLES!MATRICES INVERTIBLES!TÉCNICAS PARA CALCULAR LA INVERSA DE UNA MATRIZ REGULAR 1 Hemos hablado anteriormente de la matriz cuadrada unidad de orden n (I n ).. Es posible encontrar

Más detalles

Algebra lineal Matrices

Algebra lineal Matrices Algebra lineal Matrices Una matriz A un arreglo rectangular de números dispuestos en m renglones (filas) y n columnas. Fila 1 La componente o elemento ij de A, denotado por es el número que aparece en

Más detalles

Método de Gradientes Conjugados.

Método de Gradientes Conjugados. Método de Gradientes Conjugados. Lourdes Fabiola Uribe Richaud & Juan Esaú Trejo Espino. Instituto Politécnico Nacional Escuela Superior de Física y Matemáticas February 17, 2015 1 Método de Direcciones

Más detalles

IN Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0

IN Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0 IN3701 - Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0 Acá va una pequeña guía con problemas resueltos de Geometría en Programación Lineal con problemas básicamente extraídos del

Más detalles

Descomposición en valores singulares de una matriz

Descomposición en valores singulares de una matriz Descomposición en valores singulares de una matriz Estas notas están dedicadas a demostrar una extensión del teorema espectral conocida como descomposición en valores singulares (SVD en inglés) de gran

Más detalles

Definición de la matriz inversa

Definición de la matriz inversa Definición de la matriz inversa Objetivos Aprender la definición de la matriz inversa Requisitos Multiplicación de matrices, habilidades básicas de resolver sistemas de ecuaciones Ejemplo El número real

Más detalles

Diferenciciación en R n

Diferenciciación en R n Diferenciciación en R n R. Álvarez-Nodarse Universidad de Sevilla Cómo definir la derivada? Definición Sea A un abierto de R n, a A y f : A R n R m. La derivada parcial i-ésima (1 i n) de f en a se define

Más detalles

Conceptos Preliminares

Conceptos Preliminares Conceptos Preliminares Igualdad de matrices Definición: Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan la misma posición en ambas son iguales. Estas matrices cumplen

Más detalles

OCW-V.Muto El problema de mínimos cuadrados. Cap. XIX CAPITULO XIX. EL PROBLEMA DE LOS MINIMOS CUADRADOS: PRELIMINARES

OCW-V.Muto El problema de mínimos cuadrados. Cap. XIX CAPITULO XIX. EL PROBLEMA DE LOS MINIMOS CUADRADOS: PRELIMINARES CAPITULO XIX. EL PROBLEMA DE LOS MINIMOS CUADRADOS: PRELIMINARES. SISTEMAS LINEALES DE ECUACIONES SOBREDETERMINADOS La discusión de los problemas algebráicos de la parte anterior se había centrado exclusivamente

Más detalles

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 1 Resumen Unidad n 3

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 1 Resumen Unidad n 3 Universidad Nacional de Colombia Departamento de Matemáticas 1000003-5 Álgebra Lineal - Grupo 1 Resumen Unidad n 3 Vectores en R n Definición. El conjunto de las n-tuplas ordenadas de números reales se

Más detalles

Matrices triangulares y descomposición LU

Matrices triangulares y descomposición LU Matrices triangulares y descomposición LU Problemas para examen Si en algún problema se pide calcular el número de flops (operaciones aritméticas con punto flotante), entonces en el examen será suficiente

Más detalles

Tema 2.- Formas Cuadráticas.

Tema 2.- Formas Cuadráticas. Álgebra. 004 005. Ingenieros Industriales. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema.- Formas Cuadráticas. Definición y representación matricial. Clasificación de las formas

Más detalles

Proyección ortogonal y mínimos cuadrados

Proyección ortogonal y mínimos cuadrados Proyección ortogonal y mínimos cuadrados Profesores Omar Darío Saldarriaga Ortíz Iván Dario Gómez Hernán Giraldo 2009 Definición (Proyección ortogonal sobre un vector) Sean a y b vectores en R n, definimos

Más detalles

Se trata de: Explicar el comportamiento de una variable dependiente ( Y ) en función de otras variables ( i ) 2 Investigar si las variables están asoc

Se trata de: Explicar el comportamiento de una variable dependiente ( Y ) en función de otras variables ( i ) 2 Investigar si las variables están asoc 4 ASOCIACION ENTRE VARIABLES En la investigación estadística- y en lo fundamental aquella relacionada a variables socioeconómicas-, es común encontrar variables relacionadas o asociadas Estadísticamente

Más detalles

Capítulo 6 Multicolinealidad Luis Quintana Romero. Econometría Aplicada Utilizando R

Capítulo 6 Multicolinealidad Luis Quintana Romero. Econometría Aplicada Utilizando R Capítulo 6 Multicolinealidad Luis Quintana Romero Objetivo Identificar la multicolinealidad en un modelo econométrico, así como las pruebas de detección de la multicolinealidad y correcciones. Introducción

Más detalles

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ).

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ). INTRODUCCIÓN. MATRICES Y DETERMINANTES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales.

Más detalles

Universidad Nacional Autónoma de México Facultad de Ciencias Geometría Analítica II Tarea 1

Universidad Nacional Autónoma de México Facultad de Ciencias Geometría Analítica II Tarea 1 Universidad Nacional Autónoma de México Facultad de Ciencias Geometría Analítica II Tarea. Completa las igualdades usando el dibujo. γ β = α β = β + θ = θ + ε + ω = θ + ε = β + θ + ω = α + ε = β + δ =.

Más detalles

4.1 Introducción al filtrado adaptativo

4.1 Introducción al filtrado adaptativo 41 Introducción al filtrado adaptativo El problema del filtrado Clases básicas de estimación Filtrado adaptativo Estructuras de filtrado lineal Algoritmos Criterios para la elección del filtro adaptativo

Más detalles

DOCENTE: JESÚS E. BARRIOS P.

DOCENTE: JESÚS E. BARRIOS P. DOCENTE: JESÚS E. BARRIOS P. DEFINICIONES Es larga la historia del uso de las matrices para resolver ecuaciones lineales. Un texto matemático chino que proviene del año 300 A. C. a 200 A. C., Nueve capítulos

Más detalles

Regresión Lineal Múltiple

Regresión Lineal Múltiple Unidad 4 Regresión Lineal Múltiple Javier Santibáñez (IIMAS, UNAM) Regresión Semestre 2017-2 1 / 35 Introducción La idea de la regresión lineal múltiple es modelar el valor esperado de la variable respuesta

Más detalles

Guía de Matrices 2i, para i = j

Guía de Matrices 2i, para i = j Wilson Herrera Guía de Matrices { i, para i = j. Escribir la matriz [a ij ] x si a ij = j, para i j. 0, para i < j. Escribir la matriz [a ij ] x si a ij =, para i = j, para i > j.. Escribir la matriz [i

Más detalles

Splines (funciones polinomiales por trozos)

Splines (funciones polinomiales por trozos) Splines (funciones polinomiales por trozos) Problemas para examen Interpolación lineal y cúbica 1. Fórmulas para la interpolación lineal. Dados t 1,..., t n, x 1,..., x n R tales que t 1

Más detalles

a) Producto interno: Si y son vectores de, definimos su producto punto, producto interno o producto escalar como

a) Producto interno: Si y son vectores de, definimos su producto punto, producto interno o producto escalar como Similitudes entre el espacio y las series de Fourier Funciones Ortogonales En esta sección mostraremos la forma en que los conceptos vectoriales de producto interno, o producto escalar, y el de ortogonalidad

Más detalles

Planos y Rectas. 19 de Marzo de 2012

Planos y Rectas. 19 de Marzo de 2012 el Geometría en el Planos y Rectas Universidad Autónoma Metropolitana Unidad Iztapalapa 19 de Marzo de 2012 el Anteriormente vimos que es posible encontrar un número infinito de vectores, no paralelos

Más detalles

Fundamentos de Programación Entera. A. Revisión. Carlos Testuri Germán Ferrari

Fundamentos de Programación Entera. A. Revisión. Carlos Testuri Germán Ferrari Fundamentos de Programación Entera A. Revisión Carlos Testuri Germán Ferrari Departamento de Investigación Operativa Instituto de Computación Facultad de Ingeniería Universidad de la República 2012-2018

Más detalles

Inversión de Matrices

Inversión de Matrices Inversión de Matrices Daniel Vaughan Es bien conocido que en diversas aplicaciones de contabilidad nacional, así como en otras áreas de la economía, es usual encontrarse con la inversión de matrices. Ejemplos

Más detalles

Figura 1: Esquema de las tablas simplex de inicio y general.

Figura 1: Esquema de las tablas simplex de inicio y general. RELACIONES PRIMAL-DUAL Los cambios que se hacen en el modelo original de programación lineal afectan a los elementos de la tabla óptima actual el que se tenga en el momento, que a su vez puede afectar

Más detalles

Representación en el espacio de estado. Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT

Representación en el espacio de estado. Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT Representación en el espacio de estado Representación en espacio de estado Control clásico El modelado y control de sistemas basado en la transformada de Laplace, es un enfoque muy sencillo y de fácil

Más detalles

Operaciones elementales

Operaciones elementales Operaciones elementales Objetivos Conocer y justificar operaciones elementales con ecuaciones de un sistema de ecuaciones lineales, conocer su forma matricial (operaciones elementales con renglones de

Más detalles

Algebra Lineal: Espacios Generados. Introducción

Algebra Lineal: Espacios Generados. Introducción 2 ducción En esta presentación veremos cómo comparar entre sí dos espacios generados. Esto es relevante porque recordamos que los espacios generados finen los conjuntos solución a SEL. De manera que comparar

Más detalles

Matrices de Proyección

Matrices de Proyección Matrices de Proyección Departamento de Matemáticas, CSI/ITESM 4 de abril de 8 Índice.. Proyección ortogonal............................................ Proyección de un vector en R m....................................

Más detalles

UNIDAD DIDÁCTICA I Teoría de Filtrado Óptimo 1

UNIDAD DIDÁCTICA I Teoría de Filtrado Óptimo 1 Índice PRÓLOGO IX UNIDAD DIDÁCTICA I Teoría de Filtrado Óptimo 1 1 Representación de Estado de Sistemas Lineales 5 11 Representación de Estado en Tiempo Continuo 5 12 Matriz de Transición 1 121 Definición

Más detalles

Aplicaciones de la Optimización Convexa al análisis de redes Bibliografía optimización convexa:

Aplicaciones de la Optimización Convexa al análisis de redes Bibliografía optimización convexa: Aplicaciones de la Optimización Convea al análisis de redes Bibliograía optimización convea: Nonlinear Programming: nd Edition. by Dimitri P. Bertseas. ISBN: - 88659--. Publication: 999 Conve Optimization,

Más detalles

1.3.1 Fundamentos de cálculo vectorial

1.3.1 Fundamentos de cálculo vectorial 131 Fundamentos de cálculo vectorial 1 Función escalar Una función se define como una representación escalar que está dada en términos de un vector Un ejemplo analítico puede darse por la función f(x)

Más detalles

TEMA 7: MATRICES. OPERACIONES.

TEMA 7: MATRICES. OPERACIONES. TEMA 7: MATRICES. OPERACIONES. 1. MATRICES. TIPOS DE MATRICES. Se llama matriz de orden m x n (m filas y n columnas) a un conjunto de m n elementos, distribuidos en m filas y n columnas y encerrados entre

Más detalles

2.1. ESTIMACIÓN DE PARÁMETROS BASADO EN LA SENSIBILIDAD.

2.1. ESTIMACIÓN DE PARÁMETROS BASADO EN LA SENSIBILIDAD. ACTUALIZACIÓN DE UN MODELO NUMÉRICO DE LA PASARELA DE LA CARTUJA A PARTIR DE DATOS EXPERIMENTALES. MODAL UPDATING. RESEÑA TEÓRICA El objetivo del modal updating es ajustar los valores de los parámetros

Más detalles

Rango de una matriz. Objetivos. Definir el rango de renglones y el rango de columnas de una matriz. Mostrar que estos rangos coinciden.

Rango de una matriz. Objetivos. Definir el rango de renglones y el rango de columnas de una matriz. Mostrar que estos rangos coinciden. Rango de una matriz Objetivos. Definir el rango de renglones y el rango de columnas de una matriz. Mostrar que estos rangos coinciden. Requisitos. Rango de una lista de vectores, operaciones elementales

Más detalles

AP = A p 1 p 2 p n = Ap 1 Ap 2. λ 1 p 21 λ 2 p 22 λ n p 2n. .. = λ 1 p 1 λ 2 p 2

AP = A p 1 p 2 p n = Ap 1 Ap 2. λ 1 p 21 λ 2 p 22 λ n p 2n. .. = λ 1 p 1 λ 2 p 2 Capítulo 6 Diagonalización 6 Valores y vectores propios 6 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial V, nos planteamos el problema

Más detalles

Optimización. Matrices de Proyección ITESM. Matrices de Proyección Profr. E. Uresti - p. 1/21. Dr. E Uresti

Optimización. Matrices de Proyección ITESM. Matrices de Proyección Profr. E. Uresti - p. 1/21. Dr. E Uresti Optimización Matrices de Dr. E Uresti ITESM Matrices de Profr. E. Uresti - p. 1/21 ortogonal Teorema Sea Y una matriz m n y un espacio lineal V de dimensión r, ambos dentro de un espacio lineal U. de un

Más detalles

58 7. ESPACIOS COCIENTE

58 7. ESPACIOS COCIENTE CAPíULO 7 Espacios cociente En esta sección estudiamos el cociente de un espacio vectorial por un subespacio W. Este cociente se define como el conjunto cociente de por una relación de equivalencia conveniente.

Más detalles

Formulación del problema de la ruta más corta en programación lineal

Formulación del problema de la ruta más corta en programación lineal Formulación del problema de la ruta más corta en programación lineal En esta sección se describen dos formulaciones de programación lineal para el problema de la ruta más corta. Las formulaciones son generales,

Más detalles

Sistemas Lineales y Matrices

Sistemas Lineales y Matrices Profesores Hernán Giraldo y Omar Saldarriaga Instituto de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia 2014 Ejemplo Solución de sistemas de ecuaciones lineales, usaremos

Más detalles

Sea V un conjunto no vacío (cuyos elementos se llamarán vectores) y sea K un cuerpo (cuyos elementos se llamarán escalares).

Sea V un conjunto no vacío (cuyos elementos se llamarán vectores) y sea K un cuerpo (cuyos elementos se llamarán escalares). Capítulo 6 Espacios Vectoriales 6.1 Definiciones Sea V un conjunto no vacío (cuyos elementos se llamarán vectores) y sea K un cuerpo (cuyos elementos se llamarán escalares). Definición 6.1.1 Se dice que

Más detalles

Práctica 1: Sistemas de Ecuaciones Lineales - Matrices

Práctica 1: Sistemas de Ecuaciones Lineales - Matrices ALGEBRA LINEAL Primer Cuatrimestre 2017 Práctica 1: Sistemas de Ecuaciones Lineales - Matrices En todas las prácticas, K es un cuerpo; en general K = Q (los números racionales, R (los números reales o

Más detalles

Relación de problemas. Álgebra lineal.

Relación de problemas. Álgebra lineal. Relación de problemas Álgebra lineal Tema 1 Sección 1 Matrices Determinantes Sistemas lineales Matrices Ejercicio 11 Consideremos las siguientes matrices: ( 1 2 A = 1 1 ) ( 1 1 B = 0 1 ) C = 1 0 0 0 1

Más detalles

Análisis de Datos. Métodos de mínimos cuadrados. Profesor: Dr. Wilfrido Gómez Flores

Análisis de Datos. Métodos de mínimos cuadrados. Profesor: Dr. Wilfrido Gómez Flores Análisis de Datos Métodos de mínimos cuadrados Profesor: Dr. Wilfrido Gómez Flores 1 Introducción Recordemos que los clasificadores lineales se utilizan ampliamente debido a que son computacionalmente

Más detalles

Matrices y sistemas de ecuaciones

Matrices y sistemas de ecuaciones Matrices y sistemas de ecuaciones María Muñoz Guillermo maria.mg@upct.es U.P.C.T. Matemáticas I M. Muñoz (U.P.C.T.) Matrices y sistemas de ecuaciones Matemáticas I 1 / 59 Definición de Matriz Matrices

Más detalles

CONTENIDO Prefacio CAPITULO 1: Qué es la investigación de operaciones? CAPITULO 2: Introducción a la programación lineal...

CONTENIDO Prefacio CAPITULO 1: Qué es la investigación de operaciones? CAPITULO 2: Introducción a la programación lineal... CONTENIDO Prefacio XV CAPITULO 1: Qué es la investigación de operaciones? 1 1.1 Modelos de investigación de operaciones 1 1.2 Solución del modelo de investigación de operaciones.. 4 1.3 Modelos de colas

Más detalles

Matriz sobre K = R o C de dimensión m n

Matriz sobre K = R o C de dimensión m n 2 Matrices y Determinantes 21 Matrices Matriz sobre K = R o C de dimensión m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Tipos de matrices: Cuadrada: n n = (a ij) i=1,,m j=1,,n Nula: (0) i,j 1 0

Más detalles

2. Problemas. Espacios Vectoriales. Álgebra Lineal- Propedéutico Mayo de 2012

2. Problemas. Espacios Vectoriales. Álgebra Lineal- Propedéutico Mayo de 2012 2. Problemas. Espacios Vectoriales. Álgebra Lineal- Propedéutico Mayo de 2012 1. En R 2 se define la suma: (a 1, b 1 ) + (a 2, b 2 ) = (a 1 + a 2, b 1 + b 2 ) y el producto por un escalar: λ(a, b) = (0,

Más detalles

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices 1.1. Conceptos básicos y ejemplos Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. NOTA:

Más detalles