Funciones Trigonométricas



Documentos relacionados
rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:

Un ángulo es una porción de plano limitada por dos semirrectas, los lados, que parten de un mismo punto llamado vértice.

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:

RAZONES TRIGONOMÉTRICAS

- Ángulos positivos. Los que tienen el sentido de giro en contra de la agujas del reloj.

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 3. Trigonometría

MATEMATICAS GRADO DECIMO

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 25

7.1 RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO

RESUMEN DE TRIGONOMETRÍA

Apuntes Trigonometría. 4º ESO.

Para que un punto P(x, y) pertenezca a la circunferencia unitaria debe cumplir con la ecuación x 2 + y 2 = 1.

RAZONES TRIGONOMÉTRICAS

RAZONES TRIGONOMÉTRICAS. Razones trigonométricas en un triángulo rectángulo

Clasificación de triángulos: Un triángulo es un polígono de tres lados. Un triángulo está determinado por:

180º 36º 5. rad. rad 7. rad

Trigonometría y problemas métricos

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García

94' = 1º 34' 66.14'' = 1' 6.14'' +

4.- Un triángulo de hipotenusa unidad. Teorema fundamental de la trigonometría.

GUIA DE TRIGONOMETRÍA

EJERCICIOS RESUELTOS DE TRIGONOMETRÍA

El seno del ángulo agudo es la razón entre las longitudes del cateto opuesto al mismo y la

Conceptos básicos de Geometría

1 ÁNGULO 2 FUNCIÓN SENO Y FUNCIÓN COSENO 3 FUNCIÓN TANGENTE 4 VALORES DE FUNCIONES TRIGONOMÉTRICAS PARA ÁNGULOS

A.1 Razones trigonométricas de un triángulo rectángulo: Las razones trigonométricas de un triángulo rectángulo son las siguientes funciones:

Unidad 2: Resolución de triángulos

RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS Y OBLICUÁNGULOS

1.4. Proporcionalidad de perímetros, áreas y volúmenes en objetos semejantes Si dos figuras son semejantes, entonces se verifica que: V = 3

Trigonometría. 1. Ángulos

TRIGONOMETRÍA. 1. Ángulos. 2. Razones trigonométricas de ángulos agudos

Trigonometría, figuras planas

Proyecciones. Producto escalar de vectores. Aplicaciones

FECHA OBJETIVO CONTENIDO 12 DE MARZO. Introducir el tema de funciones

3. Un triángulo rectángulo es semejante a otro cuyos catetos miden 3 cm y 4 cm. Su hipotenusa vale 2,5 cm. Halla las medidas de sus catetos.

Para medir ángulos pueden adoptarse distintas unidades. Uno de los sistemas más usados es el:

FECHA OBJETIVO CONTENIDO Semana. Introducir el tema de funciones ( tentativo)

José A. Jiménez Nieto

circulares y trigonométricas Unidad 2:Funciones ÁNGULO DE REFERENCIA: Triángulo de referencia y ángulo de referencia

Ejercicios de Trigonometría

Coordenadas polares en el plano. Coordenadas ciĺındricas y esféricas en el espacio. Coordenadas... Coordenadas... Coordenadas...

Unidad 5 ELEMENTOS DE TRIGONOMETRIA

El radián se define como el ángulo que limita un arco cuya longitud es igual al radio del arco.

EJERCICIOS Nº 10: GEOMETRIA ANALITICA. se extiende hacia cada extremo en una longitud igual a su longitud original. Halle las coordenadas de

AREA Y PERIMETRO DE LAS FIGURAS GEOMETRICAS

3.3 Funciones crecientes y decrecientes y el criterio de la primera derivada

5. Al simplificar. expresión se obtiene:

OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT. Geometría. III Nivel I Eliminatoria

MÓDULO DE MATEMÁTICA 3º MEDIO P.G. UNIDAD N 5: RELACIONES MÉTRICAS DEL TRIÁNGULO RECTÁNGULO. Nombre:... Curso: 3º Fecha:..

a) A la mitad del número le sumo 3 y el resultado es 8 ( ) 9 b) En la ecuación 3x = 54 Qué valor puede tomar x? ( ) Rombo

TRIGONOMETRÍA. CONVERSIÓN DE UN SISTEMA A OTRO Tomando como base la equivalencia de un sistema a otro, podemos establecer la siguiente fórmula:

TEMA 4: TRIGONOMETRÍA

1. NUMEROS COMPLEJOS.

b 11 cm y la hipotenusa

TALLER NIVELATORIO DE TRIGONOMETRIA

TEMA 3. TRIGONOMETRÍA

ÁNGULO TRIGONOMÉTRICO

N = {1, 2, 3, 4, 5,...}

UNI DAD 1 GEOMETRÍA ANALÍTICA BIDIMENSIONAL

= y. Así pues, el domino lo forman los números x para los cuales existe el valor de f (x)

Nota: Como norma general se usan tantos decimales como los que lleven los datos

Triángulos Rectángulos y Ángulos Agudos

Clase 9 Sistemas de ecuaciones no lineales

1. Ángulos en la circunferencia

ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA (0250)

Guía de Reforzamiento N o 2

Curvas en paramétricas y polares

INTRODUCCIÓN 1. CLASIFICACIÓN DE LOS TRIÁNGULOS 2. DEFINICIÓN DE ÁNGULO 3. MEDIDAS DE ÁNGULOS 4. RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO

TRIGONOMETRIA DEL TRIANGULO RECTO. Copyright 2009 Pearson Education, Inc.

LEE CORRECTAMENTE LO QUE SE PIDE Y CONTESTA EN HOJAS PARA ENTREGAR A MANO CON LETRA LEGIBLE Y BUENA PRESENTACIÓN.

Según la figura los rayos OA y OB determinan un ángulo simbolizado AOB

GEOMETRÍA ANALÍTICA EN EL PLANO

Perímetro de un polígono regular: Si la longitud de un lado es y hay cantidad de lados en un polígono regular entonces el perímetro es.

Contenidos mínimos 4B ESO. 1. Contenidos. Bloque I: Aritmética y álgebra.

1º Bachillerato Matemáticas I Tema 3: Trigonometría Ana Pascua García

TEMA2: TRIGONOMETRÍA I

Guía Psu Matemáticas Aplicación de definiciones y propiedades básicas de Ángulos

sen sen sen a 2 a cos cos 2 a

VECTORES EN EL ESPACIO

Matemáticas Febrero 2013 Modelo A

Medida de ángulos. Para medir ángulos se utilizan las siguientes unidades:

B) dado un lado y dos ángulos,el triángulo queda determinado.

Guía Psu Matemáticas Aplicación de definiciones y propiedades básicas de Ángulos

21. Círculo y recta Matemáticas II, 2012-II. Por qué el círculo y la recta son tan importantes?

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA

Funciones. Definiciones. Dominio, rango e imagen

MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA. 3. Determinar analíticamente cuando dos rectas son paralelas o perpendiculares.

1.- Efectúa las siguientes operaciones con cantidades expresadas en notación científica. Expresa el resultado también en notación científica:

MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS GRADO 10


Matemáticas. Grado 10º. Unidad 1. Circulo unitario y funciones trigonométricas

1.- Punto: Intersección de dos rectas. No tiene dimensiones (ni largo, ni ancho, ni alto).

3. 2. Pendiente de una recta. Definición 3. 3.

BLOQUE II Trigonometría y números complejos

Unidad VI Funciones. Universidad Técnica Nacional ( UTN ) Precálculo. 1 P á g i n a. Relación:

Colegio Universitario Boston Trigonometría Trigonometría 262

π = π rad º? 3 α.180

TRIGONOMETRÍA. π radianes. 1.- ÁNGULOS Y SUS MEDIDAS. 1.1 Los ángulos orientados

Conceptos Básicos. Las líneas rectas podemos encontrarlas en el doblez de una hoja de papel, en un hilo estirado, en la arista de una puerta, etc.

TEMA 1: NÚMEROS REALES

Transcripción:

Capítulo 6 Funciones Trigonométricas Otros ejemplos de funciones numéricas muy importantes son las funciones trigonométricas. Frecuentemente en la escuela secundaria se definen las razones trigonométricas en un triángulo rectángulo: sen = cateto opuesto hipotenusa cateto adyacente ; cos = ; tan = hipotenusa cateto opuesto cateto adyacente donde es uno de los ángulos agudos del triángulo. 6.1 Las funciones trigonométricas en los reales Como la razón entre un par de lados de un triángulo no varía si cambiamos el triángulo por otro semejante (por el teorema de Tales), siempre podremos suponer que la hipotenusa tiene longitud 1, lo que permite una representación geométrica muy conveniente: En el cuarto de circunferencia de radio 1 (figura 6.1) tenemos sen = y; y cos = ; donde (; y) son las coordenadas del punto P de la circunferencia determinado por el ángulo agudo, medido desde el semieje >0. Y P(,y) C O B A Las coordenadas del punto P en la circunferencia determinado por el ángulo agudo, medido desde el semieje >0 Figura 6.1 Por la semejanza de los triángulos OP B y OCA vemos que el segmento «tangente a la circunferencia» AC tiene longitud y es decir AC = tan y por esto la razón sen se llama tangente. cos Obtenemos tres funciones definidas así:

8 Funciones Trigonométricas al ángulo le corresponde el punto P en la circunferencia unitaria donde la corta el lado del ángulo central (medido como antes en el sentido antihorario desde el semieje >0). a P le corresponde su abscisa si queremos definir cos, su ordenada y si hablamos de sen la razón y si queremos definir tan En resumen las tres funciones se construyen así: 7! P 7! y = sen; 7! P 7! = cos ; 7! P 7! y = tan Hasta ahora esto vale sólo para ángulos agudos medidos en la forma indicada arriba pero, si tenemos una manera de medir el ángulo en una forma general, podremos etender esta función a otros números reales. La manera más natural de hacer esto es considerando la longitud de la circunferencia de radio 1, esta es un número real llamado. Dicho de otro modo, es la longitud de una semicircunferencia de radio 1. A un ángulo cualquiera, le corresponde un único punto P sobre la circunferencia y a este punto una única longitud medida del arco que une el punto A con P girando en sentido antihorario (contrario al movimiento de las agujas del reloj). Este número r, con 0 r < se llama la medida en radianes del ángulo. También se dice que es la medida en radianes del arco AP, (recorrido en sentido antihorario, figura 6.). Entonces, establecemos: Figura 6. Arcos y ángulos Definición: un radián es la medida del ángulo que se forma cuando se lleva sobre la circunferencia una longitud igual al radio. En el caso del círculo radio 1 (figura 6.3), llamado también círculo trigonométrico, Obtenemos dos Figura 6.3 Un radián funciones reales: sen = y, ordenada de P. cos =, abscisa de P.

6. Inversas de las funciones trigonométricas 83 para medido en radianes, con 0 <, tenemos, sen : [0; )! R y cos:[0;)!r. La función tangente está definida en todos los puntos menos aquellos donde se anula, es decir: tan : [0; ) [ ( ; 3 ) [ ( 3 ; )! R: Ahora si R es un número real positivo podemos definir sen y cos de la manera siguiente: Considerando = como una longitud que se enrolla en la circunferencia unitaria en sentido antihorario, después de dar cierto número de vueltas, se llega a algún punto P. Entonces, sen y cos son respectivamente la ordenada y la abscisa de este punto P. De manera precisa, si hacemos la división entera de por obtenemos =n+r donde n N y 0 r<, entonces definimos sen = senr y cos = cos r. Si es negativo, se repite el procedimiento anterior, pero damos vueltas en el otro sentido, es decir en sentido horario. Ahora tenemos las dos funciones sen y cos definidas en todo R y observamos que: Img( sen) = Img(cos ) =[ 1;1] es decir, que sus valores son los números en [ 1; 1]. Además son periódicas de período, esto quiere decir que: sen = sen( +k) cos = cos( +k) para todo k Z Por otro lado, si vemos sus gráficas, (figuras 6.4 en la página 84 y 6.5) entonces es muy fácil ver dónde éstas funciones crecen, dónde decrecen y dónde alcanzan sus máimos y mínimos (los detalles de graficación se verán más adelante en el curso). La tercera función, la tangente, no está definida en todo R puesto que hay que ecluir los puntos donde se anula el coseno. El dominio de tan es R f +k j k Zg. Analizando el signo de la función sen cos cuando da una vuelta a la circunferencia, y analizando el crecimiento y decrecimiento de la función, se puede construir su gráfico como en la figura 6.6 (los detalles de graficación se verán más adelante en el curso). También, si vemos el comportamiento del segmento AT, notamos que es una función periódica de período tan( +k) = tan siempre que esté definida en. Pero también, si analizamos más detalladamente, vemos que tiene un período menor pues tan( + k) = tan para cualquiera que sea k Z si tan está definida. Vemos también que tan es siempre creciente (en cualquier intervalo contenido en su dominio) y no tiene máimos ni mínimos. 6. Inversas de las funciones trigonométricas Consideremos la función sen. Si tenemos un punto cualquiera r [ 1; 1], vemos que la preimagen de r consta de infinitos puntos. La preimagen se llama el arcoseno de r, es decir el arco cuyo seno es r. Si es tal que sen = r entonces: arcsenr f+k j k Zg Pero también vemos en la figura 6.7, que sen = sen( ) y como ( )+k = +(k+1) obtenemos finalmente que la preimagen de es: arcsenr = f +k j k Zg[f +(k+1)jkzg Dicho en palabras, todos los ángulos cuyo seno es r, con 1 r 1, se obtienen de cualquier con sen() =r, sumándole a todos los múltiplos enteros pares de y restándole a todos los múltiplos enteros impares de. Igualmente si r [ 1; 1] ysicos = r entonces todos los ángulos cuyo coseno es r se obtienen a partir de así, (figura 6.8): arccos r = f +k j k Zg[f +k j k Zg

84 Funciones Trigonométricas La función seno Figura 6.4 La función coseno Figura 6.5 La razón entre seno y el coseno, la tangente Figura 6.6

6. Inversas de las funciones trigonométricas 85 y π Ordenada= sen = sen( ) Figura 6.7 y cos = cos( Figura 6.8 ), coseno es una función par

86 Funciones Trigonométricas porque cos = cos( ) = cos( ). Entonces puede escribirse así: arccos r = fk j k Zg Finalmente si r R y tan = r entonces arctan r = f + k j k Zg. Ninguna de estas funciones trigonométricas es inyectiva, pero restringidas a intervalos adecuados se obtiene, por ejemplo: sen : [ ; ]! [ 1; 1] es biyectiva, cos:[0;]![ 1;1] es biyectiva ; tan : ( Se pueden definir funciones inversas restringidas a esos intervalos. Estas funciones inversas se llaman, por abuso de lenguaje, arcsen, arccos y arctan y sus gráficas, (figuras 6.9, 6.10 y 6.11) se pueden obtener por refleión de las gráficas anteriores respecto a la diagonal principal (la recta y = ). )! R es biyectiva Gráficos de sen y arcsen Figura 6.9 3 π y=arccos() 1 Gráficos de cos y arccos Figura 6.10-1 1 3-1 y=cos() π Es costumbre evitar la notación sen 1, cos 1 o tan 1, para designar las funciones arcsen, arccos y arctan, para evitar confusión con las funciones cosecante, secante y contangente. Ejemplo: Cuál tiene más puntos: Un segmento o la recta entera? Esta pregunta tiene una bella respuesta utilizando la función tangente: tan : ( ; )! R que es una biyección. Entonces el segmento obtenido ( ; ) tiene el mismo número de puntos que la recta R. Cualquier otro segmento tiene el mismo número de puntos que el segmento ( ; ), como se ve con una proyección. Esto es sólo posible porque la recta y un segmento cualquiera son continuos.

6. Inversas de las funciones trigonométricas 87 Figura 6.11 Gráficas de tan y arctan Ejercicios 1. Para qué valores de es j cos j < 1? Resp: f + k j 3 << 3 ;kzg, (figura 6.1). Ejemplo en el círculo trigonométrico Figura 6.1. Para qué valores de es cos 1 <. Resp: f +k j 3 << 5 ;kzg, (figura 6.13). 3 3. Recordando las definiciones: csc = 1 ; sec = 1 ; cot = 1 : sen cos tan (a) Pruebe que estas funciones están representadas por la longitud de los siguientes segmentos en la circunferencia unitaria de la figura 6.14. OQ = csc ; OC = sec ; TQ = cot (b) Analice cómo varían estos tres segmentos cuando el punto P recorre la circunferencia. (c) Encuentre el dominio de cada una de las tres funciones csc, sec, tan y dibuje sus gráficas.

88 Funciones Trigonométricas Otro ejemplo en el círculo trigonométrico Figura 6.13 T Q P C O 1 A Otras funciones trigonométricas OQ = csc, OC = sec, TQ = cot Figura 6.14

La Trigonometría (lectura requerida) 6.3 Las identidades trigonométricas Las funciones trigonométricas están conectadas por una serie de relaciones que se estudian bajo el nombre de trigonometría. Todas estas relaciones se derivan de las definiciones de seno, coseno, tangente y del teorema de Pitágoras: sen + cos =1 De manera que toda la trigonometría no es más que una serie de variaciones sobre el Teorema de Pitágoras. Es muy importante que repase toda la trigonometría, porque será utilizada constatemente. Para comenzar ese repaso demuestre las siguientes fórmulas: tan + 1 = sec cot + 1 = csc 6.3.1 Fórmulas para la suma de dos ángulos y C D P B 0 β T E A Hallar fórmulas para las funciones trigonométricas aplicadas a sumas de ángulos en términos de las funciones trigonométricas en los sumandos. Figura 6.15 A partir del dibujo en la figura 6.15: Pruebe las igualdades siguientes: CD = sen cos ; PE = DT = sen cos OE = cos cos ; DP = TE = sen sen Luego, pruebe las siguientes fórmulas, sen( + ) = sen cos + sen cos sen( ) = sen cos sen cos cos( + ) = cos cos sen sen cos( ) = cos cos + sen sen

90 Funciones Trigonométricas tan + tan tan( + ) = 1 tan tan tan tan tan( ) = 1 + tan tan 6.3. Fórmulas para el ángulo doble Tomando = en las fórmulas anteriores, obtenga: sen = sen cos ; cos = cos sen ; tan = tan 6.3.3 Fórmulas para el ángulo medio A partir de las fórmulas anteriores demuestre que para 0 =: 1 tan r r r sen = 1 cos ; cos = 1 + cos ; tan = 1 cos 1 + cos 6.3.4 Conversión de productos en sumas y viceversa Pruebe que: sena + senb = sen( A + B sena senb = sen( A B cos A + cos B = cos( A + B ) cos( A B ) ) cos( A + B ) ) cos( A B ) cos A cos B = sen( A + B ) sen( A B ) sen cos y = 1 ( sen( + y) + sen( y)) sen seny = 1 (cos( y) cos( + y)) cos cos y = 1 (cos( + y) + cos( y)) 6.4 Teoremas de Euclides y Pitágoras En la figura 6.4, notamos el triángulo rectángulo ABO y tres cuadrados, con lados iguales a los del triángulo, evocando el planteamiento de un teorema conocido, El Teorema de Pitágoras: jaoj + jboj = jabj o bien, el área del cuadrado mayor es igual a la suma de las áreas de los dos cuadrados menores. Hay varias pruebas directas de este teorema que el estudiante puede encontrar. Mostraremos sin embargo una prueba que ilustra otros hechos, Primer Teorema de Euclides: el área del rectángulo AELC es igual al área del cuadrado AOH G. 1 Queda para los lectores el encargo de probar el Teorema de Euclides. Esto puede hacerse por ejemplo, observando la misma figura 6.4 y comparando las áreas mencionadas en el teorema con el área del paralelogramo AOMF, la cual puede calcularse (usando la fórmula base por altura) en dos formas distintas (notar que el triángulo rectángulo ABO es congruente con triángulo AF G). El Teorema de Pitágoras es una consecuencia del Teorema de Euclides; el área del cuadrado más grande, visualmente igual a la suma de las áreas de los dos rectángulos, es la suma de las áreas de los dos cuadrados menores, y eso da la prueba. 1 También el área del rectágulo BCLK es igual al área del cuadrado OBIJ

6.5 Ejercicios 91 G H F M A J O E Z ZZ Z ZZ C Z ZZ Figura 6.16 Teoremas de Pitágoras y de Euclides Z B I L Z ZZ Z K 6.5 Ejercicios 1. Demuestre el teorema del coseno: a = c + b bc cos. Demuestre el teorema del seno: a sen = b = b sen sen 3. Demuestre la fórmula de Herón de Alejandría: p Area ABC = p(p a)(p b)(p c) donde p es el semiperímetro del triángulo, p = 1 (a + b + c) 4. Sea f() = cos( arcsen). Demuestre que f :[ 1;1]! R puede también definirse con la fórmula f() = p 1 p Por qué no vale f() = 1? 5. Encuentre una fórmula para sen(arccos ). 6. Encuentre una fórmula para sen(arctan ). 7. Calcule (a) arcsen( 1) (b) arcsen( 1 ) (c) tan( arcsen( 1 5 )) 8. Dibuje el gráfico de sen( arcsen). ( Cuidado!) 9. Escribir las siguientes epresiones sin usar signos de valor absoluto:

9 Funciones Trigonométricas (a) (b) j1 + sen j j sen 53j (c) (d) j cos j j1 + sen cos j 10. Resolver la ecuación: j sen j = cos 11. Resolver las siguientes inecuaciones y representar graficamente el conjunto de sus soluciones: 1 (a) j sen j 1 4 1 (b) j cos p j 1 < 3 100 1. Bosquejar la gráfica de: (a) f() = sen( + 4 ) (c) f() = tan( + 4 ) (b) f() = 1 cos( ) (d) f() = 1 3 cos(3) 13. Demuestre que: (a) cos 4 = cos + sen p (b) sen 4 cos sen = p : 14. (*) Usando inducción (y algo de números complejos) demuestre la fórmula (de Moivre) : [r(cos + i sen)] n = r n (cos n + i senn)