POSICIONES RELATIVAS de RECTAS y PLANOS MATEMÁTICAS II 2º Bachilleato Alfono González IES Fenando de Mena Dpto. de Matemática
Supongamo, po ejemplo, que queemo etudia la poición elativa de una ecta que venga dada en implícita (e deci, 2 ecuacione) y un plano (1 ecuación). En pincipio, podíamo eolve el itema 3x3 paa ve lo punto comune a ambo. Ahoa bien, eto podemo hacelo má fácilmente mediante el teoema de Rouché-Föbeniu, que no pemite abe el númeo de olucione -e deci, el númeo de punto en común ente la ecta y el plano- in neceidad de eolve dicho itema. Y eto e peciamente lo que haemo en ete tema. I) POSICIÓN RELATIVA DE DOS PLANOS 1 : : ax + by + cz + d = 0 a x + b y + c z + d = 0 a b c d 1) POR RANGOS: etudiamo g (1) a b c d Hay 3 cao: i) g M=g M * =2<3 S.C.I. unipaamético e cotan en una ecta SECANTES: ' ii) g M=1 g M * =2 S.I. oluc. no tienen punto comune PARALELOS: ' iii) g M=g M * =1<3 S.C.I. bipaamético tienen en común un plano COINCIDENTES: = ' n 2) POR : i) i n = (a,b, c) y n = (a',b',c' ) no on popocionale SECANTES ii) " " " " " " on popocionale i d y d' on popocionale COINCIDENTES " " " " no on popocionale PARALELOS 2 Ejecicio final tema: 1 Ejecicio PAEG: 4A jun 2009 (con paámeto) Ejecicio libo ed. Anaya: pág. 177 y.: 22, 44 y 47 1 Ve pág. 166 del libo de ed. Anaya. 2 Nótee que en ealidad todo eto coincide con el etudio po ango, i obevamo la matiz (1)
II) POSICIÓN RELATIVA DE TRES PLANOS 3 : ax + by + cz + d = 0 : a x + b y + c z + d = 0 : a x + b y + c z + d = 0 a Etudiemo g a a b b b c c c d d d i) g M=g M * =3 S.C.D. oluc. única, e deci, e cotan en un punto: ii) g M=2 g M * =3 S.I. oluc. e deci, no tienen punto comune: o bien: (pima) iii) g M=g M * =2<3 S.C.I. unipaamético e cotan en una ecta: cao paticula: = ' HAZ DE PLANOS SECANTES 4 '' 3 Ete cao no viene explicado en el libo ed. Anaya, peo puede conultae el ejecicio euelto 10 de la pág. 173 4 Supongamo do plano y ' ecante (e deci, e cotan en una ecta); i queemo que un 3 e plano cualquiea '' también contenga a ea ecta, entonce debido a iii) habá de e combinación lineal de y ': : ax+ by+ cz+ d= 0 : ax + by + cz + d = 0 '' =λ +µ'=0 λ (ax+by+cz+d)+ µ(a'x+b'y+c'z+d')=0 Ejemplo: ejecicio 4 (ve también el ejecicio 96 de la pág. 211 del libo de ed. Anaya) (ECUACIÓN DEL HAZ DE PLANOS DEFINIDO POR y ' )
iv) g M=1 g M * =2 S.I. oluc. e deci, no tienen punto comune En qué e difeencia del cao ii)? Hay que tene en cuenta que: g M=1 n, n y n on popocionale lo te plano on paalelo: ' '' cao paticula: = ' '' v) g M=g M * =1<3 S.C.I. bipaamético tienen en común un plano COINCIDENTES NOTA: po n no compena etudialo pue e complicado. Ejecicio final tema: 2, 3, 10, 11 y 12 Ejecicio PAEG: 4A jun 99, 4B ept 2000 (con paámeto) Ejecicio libo ed. Anaya: pág. 167: 2; pág. 177 y.: 28 (in paámeto) y 48 (con paámeto) III) POSICIÓN RELATIVA RECTA-PLANO 5 1) POR RANGOS: eta opción inteea cuando la ecta viene dada en implícita, e deci, como inteección de do plano: : ax + by + cz + d = 0 a x + b y + c z + d = 0 : a x + b y + c z + d = 0 a Etudiemo g a a b b b c c c d d d Hay 3 poibilidade: i) g M=g M * =3 S.C.D. oluc. única, e deci, SE CORTAN: ii) g M=2 g M * =3 S.I. ningún punto en común // iii) g M=g M * =2<3 S.C.I. unipaamético NOTA: no hay má cao, pue e impoible que g M=1 (téngae en cuenta que el hecho de que venga dada como inteección de do plano gaantiza que g M al meno e 2) 5 Ete cao no viene explicado en el libo ed. Anaya, peo pueden conultae lo ejecicio euelto 2 y 3 de la pág. 167 y 11 de la pág. 174
2) POR VECTORES: eta opción inteea cuando la ecta viene dada en paamética o continua: : : a' x x = a + λu y = b + λv z = c + λw + b' y + c' z + d' = 0 i) i n 0 SE CORTAN u ii) i u n = 0 y ademá (a,b,c) (a,b,c) // Ejecicio final tema: 4, 5, 7, 8 y 9 Ejecicio PAEG: 3B ept 2003, 4A jun 2010 (in paámeto); 4B ept 2001, 3B ept 2002, 4A ept 2008, 4B ept 2010, 4B jun 2012, 4A jun 2011 (con paámeto) Ejecicio libo ed. Anaya: pág. 167: 1; pág. 177 y.: 24, 39, 40 (in paámeto) y 50 (con paámeto) IV) POSICIÓN RELATIVA DE DOS RECTAS 6 Razónee peviamente que ólo caben cuato poibilidade. 1) POR RANGOS: eta opción inteea cuando amba ecta vienen dada en implícita: : ax + by + cz + d = 0 a x + b y + c z + d = 0 : a x + b y + c z + d = 0 a x + b y + c z + d = 0 Etudiemo a a g a a b b b b c c c c d d d d y teniendo en cuenta que g M al meno e 2 (dado que amba ecta vienen dada en implícita), caben la iguiente poibilidade: i) g M=3 g M * =4 S.I. oluc. e deci, no tienen punto comune SE CRUZAN [debido a (*)] ii) g M=g M * =3 S.C.D. oluc. única, e deci, un punto en común SE CORTAN (*) En el cao i) no pueden e amba ecta paalela, ya que // g M=2 DEM: Supongamo // : ' n y n '' lo 4 vectoe n etán en un mimo plano (el a amba ecta) ólo puede habe do de ello l.i. g M=2 (C.Q.D.) n y n ''' (Po la mima azón, en el cao iii) amba ecta on paalela) 6 Ve pág. 162 y 163 del libo de ed. Anaya.
iii) g M=2 g M * =3 S.I. oluc. no hay punto comune PARALELAS [debido también a (*)] iv) g M=g M * =2<3 S.C.I. unipaamético tienen en común una ecta COINCIDENTES 2) POR VECTORES 7 : eta opción inteea cuando la do ecta vienen dada en paamética o continua: : x : x = A = A + λu + λu i) [g( u, u )=2 y] g( u, DEM: g( u, u, A A u, A A )=3 SE CRUZAN )=3 g( u, u )=2 y no on paalela, e deci e cotan o e cuzan; no pueden cotae pue entonce u, u y A A eían coplanaio, e deci eía g( u, u, A )=2 A ii) g( u, u )=2 y g( u, u, A A )=2 SE CORTAN DEM: g( u, u )=2 y no on paalela, e deci e cotan o e cuzan; en ete cao e cotan pue g( u, u, A )=2 u, u y A A A on coplanaio: A u A u iii) g( u, u )=1 y g( u, u, A A )=2 PARALELAS DEM: g( u, u )=1 y on paalela o coinciden; en ete cao on paalela pue g( u, u, A A )=2 u, u y A A on coplanaio: A u A u iv) g( u, u )=1 y g( u, u, A A )=1 COINCIDENTES DEM: g( u, u, A )=1 u, u y A AA tienen la mima diección: = A u A u Ejecicio final tema: 6 Ejecicio PAEG: 2A jun 98, 1B ept 98, 4A ept 2006, 4A jun 2007 (in paámeto); 4B ept 2009, 2B ept 2001 (con paámeto) Ejecicio libo ed. Anaya: pág. 163: 1 y 2; pág. 176 y.: 12, 13, 14, 17, 30, 31, 33 (in paámeto) y 53 (con paámeto) 7 Ve pág. 160 y 161 del libo ed. Anaya y ejecicio euelto 6 de la pág. 171 y 9 de la pág. 173
I.E.S. FERNANDO DE MENA DPTO. DE MATEMÁTICAS POSICIONES RELATIVAS de RECTAS y PLANOS 2 PLANOS: : ax + by + cz + d = 0 : a x + b y + c z + d = 0 g M g M * POSICIÓN RELATIVA 2 Eo! Macado no definido. 2 SECANTES (e cotan en una ecta) 1 2 PARALELOS 1 1 COINCIDENTES 3 PLANOS: : ax + by + cz + d = 0 : a x + b y + c z + d = 0 :a x + b y + c z + d = 0 g M g M * POSICIÓN RELATIVA 3 3 SE CORTAN EN UN PUNTO 2 3 o pima tiangula SE CORTAN DOS A DOS 2 2 o HAZ DE PLANOS SECANTES (e cotan en una ecta) 1 2 o PARALELOS 1 1 COINCIDENTES
I.E.S. FERNANDO DE MENA DPTO. DE MATEMÁTICAS RECTA-PLANO: : ax + by + cz + d = 0 a x + b y + c z + d = 0 : a x + b y + c z + d = 0 g M g M * POSICIÓN RELATIVA 3 3 SECANTES (e cotan en un punto) 2 3 PARALELOS 2 2 RECTA CONTENIDA EN EL PLANO : ax + by + cz + d = 0 a x + b y + c z + d = 0 : a x + b y + c z + d = 0 a x + b y + c z + d = 0 2 RECTAS: : x : x = A = A + λu + λu g M g M * POSICIÓN RELATIVA g(u,u ) g(u,u,a A ) 3 4 SE CRUZAN 2 3 3 3 SE CORTAN 2 2 2 3 PARALELAS 1 2 2 2 COINCIDENTES 1 1
POSICIÓN RELATIVA de RECTAS y PLANOS 2º BACH. 1. Etudia la poición elativa de lo iguiente plano; cao de e ecante, halla la ecuacione paamética de la ecta que definen: a) 3x-y+2z-1=0 b) x+y-5z=-4 c) x+y-5z=-4 x+y-5z+4=0-3x-3y+15z=1-3x-3y+15z=12 (Soluc: ecante; paalelo; coincidente) 2. Etudia la poición de lo iguiente plano: x+3y+2z=0 2x-y+z=0 4x-5y-3z=0 (Soluc: e cotan en el oigen) 3. (S) Detemina el valo de k paa que lo iguiente plano e coten a lo lago de una ecta: x+y+z=2 2x+3y+z=3 kx+10y+4z=11 (Soluc: k=7) 4. (S) Halla la ecuación del plano que paa po el oigen de coodenada y contiene la ecta deteminada po lo plano x+y+z-1=0 x-y-2=0 (Soluc: x+3y+2z=0) 5. Detemina la poición elativa de y en lo iguiente cao; i e cotan, halla el punto de inteección: a) : 2x+y+z=4 b) : x= 2t c) : x= 5+λ x+y-2z=2 y=1+3t y=-3 : x-y+8z=1 z= t z= -λ : 3x+2y-11z-5=0 : x=1-2α+β y=3+3α+3β z=8+4α+β (Soluc: paalelo; e cotan en (6,10,3); ) 6. Detemina la poición elativa de lo iguiente pae de ecta. Cao de e ecante, enconta el punto de inteección: a) : x=1+3λ b) : x=-4+6λ c) : 2x-y=0 d) : 2x-z=5 y=2+4λ y=-5+8λ 3x-z+1=0 x+5y-2z=7 z=-1-2λ z=8-4λ : 3x-z=0 : x+2y-z=4 : x=7-3µ : x=3+µ 3y-2z=0 7x+4y+5z=6 y=10-4µ y=5+2µ z=-5+2µ z=3-µ (Soluc: coincidente; e cotan en (2,3,4); e cuzan; e cuzan)
7. (S) Calcula la ecuación del plano que paa po (3,7,-5) y e paalelo al plano : 2x+3y+z+5=0. Ademá, halla la poición elativa ente el plano que e acaba de calcula y la ecta : 3x+2y+1=0 8x-2y-2z+2=0 (Soluc: 2x+3y+z-22=0; e cotan) 8. (S) Se conidea la ecta : x-2y-2z=0 y el plano : 2x+y+mz=n. Se pide: x+5y-z=0 a) Paa qué valoe de m y n, y on ecante? b) Paa qué valoe de m y n, y on paalelo? c) Paa qué valoe de m y n, contiene a la ecta?. (Soluc: m -23/7 y n; m=-23/7 y n 0; m=-23/7 y n=0) 9. (S) Dado el plano : x+y+mz=n y la ecta : x/1=(y-2)/-1=z/2 a) Calcula m y n paa que y ean ecante b) Calcula m y n paa que y ean paalelo c) Calcula m y n paa que contenga a. (Soluc: m 0 y n; m=0 y n 2; m=0 y n=2) 10. (S) Detemina la poición elativa de lo plano: : 2x+3y+z-1=0 ': x-y+z+2=0 '': 2x-2y+2z+3=0 (Soluc: ' // '' y cota a ambo) 11. (S) Etudia, paa lo difeente valoe de a, la poición elativa de lo iguiente plano: : ax+y+z=1 ': x+ay+z=1 '': x+y+az=1 (Soluc: a 1 y a -2 e cotan en un punto; a=1 coincidente; a=-2 e cotan do a do fomando un pima) 12. (S) Detemina paa qué valoe de λ y µ lo plano: a) Tienen un único punto común b) Paan po una mima ecta. : 2x-y+3z-1=0 ': x+2y-z+µ=0 '': x+λy-6z+10=0 (Soluc: λ 7 y µ; λ=7 y µ=3)