Análisis por el Método de los Elementos Finitos de las tensiones en la zona de contacto herramienta-viruta.

Documentos relacionados
Tema IV: Conformación por Desprendimiento de Material. Escuela Politécnica Superior: Tecnología Mecánica

SIMULACIÓN POR ELEMENTO FINITO DE CORTE ORTOGONAL DE METAL EN 3D.

INGENIERIA CIVIL EN MECANICA VESPERTINO GUÍA DE LABORATORIO ASIGNATURA PROCESOS DE FABRICACIÓN II NIVEL 03 EXPERIENCIA C911

Universidad de Matanzas Camilo Cienfuegos Facultad de Ingeniería Mecánica. Ponencia

UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA Departamento de Ingeniería Mecánica Área de Procesos Mecánicos

PROCESO DE CORTE. Algunos procesos de desbaste de material

Estudio tribológico comparativo de los Babbits Fórmula V y B-16

GUÍA: TEORÍA DE CORTE

Por métodos experimentales se determina el estado biaxial de tensiones en una pieza de aluminio en las direcciones de los ejes XY, siendo estas:

Influencia de los parámetros de corte en el espesor de la zona de deformación plástica secundaria

Modelo de elementos finitos para la determinación de la frecuencia natural de las vibraciones de un dinamómetro.

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo

Teoría del corte de los metales

Tecnología Mecánica. Fac. de Ingeniería Univ. Nac. de La Pampa. Procesos de remoción de Material: Corte

4. CRECIMIENTO DE GRIETA

Modelización y validación de las tensiones residuales inducidas por aleaciones de aeronáutica

El esfuerzo axil. Contenidos

PROPIEDADES Y CAPACIDADES DE LOS PERFILES TIPO Z LAMINADOS EN FRÍO Y PRODUCIDOS EN COSTA RICA

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES GRUPO 4 CURSO

Departamento de Ingeniería Mecánica Ingeniaritza Mekanikoa Saila. 1. Espesor de viruta antes y después del corte 2. Corte ortogonal y oblicuo

DISEÑO MECÁNICO INGENIERÍA EJECUCIÓN MECÁNICA TEORÍAS DE FALLAS ESTÁTICAS

Coeficiente de oscilación de la línea sumaria de contacto en los engranajes cilíndricos helicoidales

Influencia de parámetros de corte y vibraciones en la rugosidad superficial en procesos de torneado

ANÁLISIS Y OPTIMIZACIÓN DE LA GEOMETRÍA DE UN INYECTOR DE PLÁSTICO. Simulación. Conferencia. I Conferencia Nacional de Usuarios de ANSYS.

4 Métodos analíticos para el cálculo de tensiones y deformaciones plásticas

Criterios de Fractura

Métodos de Conformado Mecánico

8º CONGRESO IBEROAMERICANO DE INGENIERIA MECANICA Cusco, 23 al 25 de Octubre de 2007

Proceso de Taladrado.

3.8. Análisis elastoplástico

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo

MAQUINADO DE METALES

Consolidación de suelos. (84.07) Mecánica de Suelos y Geología Alejo O. Sfriso:

Departamento de Ingeniería Mecánica Ingeniaritza Mekanikoa Saila MECÁNICA DEL CORTE. predecir fuerzas, temperatura, desgaste de herramienta

Cálculo de Vida Útil de Engranajes Cilíndricos según Criterio de Resistencia a Fatiga del Material.

2 Principios de teoría de la plasticidad

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO

Ingeniería Mecánica E-ISSN: Instituto Superior Politécnico José Antonio Echeverría.

Tema 6: Transformación de esfuerzos y deformaciones unitarias

FO Elementos con dentados (dientes) Elementos circulares. Elementos con cuchillas. Cuchillas. Curso: Manufactura de productos forestales I

CAPITULO 2 DISEÑO DE MIEMBROS EN TRACCIÓN Y COMPRESIÓN SIMPLES

Algoritmo para el Análisis del Comportamiento de Fresas Periféricas en Condiciones Variables

DISEÑO MECÁNICO DEL NÚCLEO DEL REACTOR FBNR CON POSIBILIDAD DE ADICIONAR UN REFLECTOR

Capítulo 2 Imperfecciones en materiales cristalinos

ESTUDIO DE RUGOSIDAD EN MAQUINADO POR EL PROCESO DE TORNEADO EN CLIMET LTDA. BASADO EN LAS NORMAS ISO DE RUGOSIDAD

R. Márquez*, R. Chacón Facultad de Ingeniería, Escuela de Ingeniería Mecánica, ULA Mérida 5101, Venezuela

Diseño de un dinamómetro con frecuencia natural variable por medio de un programa de elementos finitos.

PROPIEDADES Y CAPACIDADES DE LOS ESTRUCTURALES LAMINADOS EN FRÍO Y PRODUCIDOS EN COSTA RICA

10. Proceso de corte. Contenido: 1. Geometría de corte 2. Rozamiento en el corte 3. Temperatura en el mecanizado

Evaluación de parámetros significativos en el comportamiento de cojinetes planos mediante diagnóstico por vibraciones.

Resumen. Abstract INTRODUCCIÓN.

Tema V: Procesos de Mecanizado. Escuela Politécnica Superior Tecnología Mecánica

Diseño Mecánico. Unidad 2. Teorías y Criterios de Fallas por Cargas Estáticas.

Determinación del límite de rotura de un cable por Método de los Elementos Finitos.

Tema 3.- Teoría de Mecanizado Convencional. Ingeniería de Sistemas y Automática Fabricación Asistida por Computador

Teoría de Adhesión. La teoría de adhesión trata de explicar los fenómenos macroscópicos que se aprecian en dos superficies en contacto:

TEMA 3 TEORÍAS DE CORTE

Introducción a Abaqus

RESISTENTE AL ESFUERZO CORTANTE DE LOS SUELOS. Ing. MSc. Luz Marina Torrado Gómez Ing. MSc. José Alberto Rondón

ÍNDICE 12. CONFORMADO POR DEFORMACIÓN PLÁSTICA MATERIALES 13/14

Mecánica de Sólidos. UDA 3: Torsión en Ejes de Sección Circular

Anejo Nacional AN/UNE-EN Eurocódigo 3: Proyecto de estructuras de acero Parte 1-5: Placas planas cargadas en su plano

CAPITULO 4 DEFINICIÓN. mayoría de así en LIGERO WOODRUFF, MEDIO AHUSADO. Página 1

INSTITUTO POLITÉCNICO NACIONAL UNIDAD PROFESIONAL INTERDISCIPLINARIA DE INGENIERÍA CAMPUS GUANAJUATO

UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA Departamento de Ingeniería Mecánica Área de Procesos Mecánicos

Tablas de Engranajes

CAPITULO 3 PLASTICIDAD

RESISTENCIA DE MATERIALES I INGENIERÍA CIVIL MECÁNICA ESFUERZOS COMBINADOS

Método de la deformación unitaria para diseño de vigas rectangulares doblemente reforzadas

PLAN DE ESTUDIOS 1996

DISEÑO Y PUESTA A PUNTO DE SIMULACIONES DE INYECCIÓN DE METALES (MIM) MEDIANTE EL USO DEL SOFTWARE MOLDFLOW. Daniel Díez Díaz-Calonge

CONTENIDO CAPÍTULO 1 INTRODUCCIÓN A LOS PROCESOS DE MANUFACTURA 1

2014 RESISTENCIA DE MATERIALES I ICM RESISTENCIA DE MATERIALES I INGENIERÍA CIVIL MECÁNICA ESFUERZOS COMBINADOS

ESTRUCTURAS II. Julio Flórez López

Transferencia de Momentum

CAPACIDAD DE CARGA EN SUELOS 1

MECANIZABILIDAD (O MAQUINABILIDAD)

CAPÍTULO 2. RESISTENCIAS PASIVAS

Análisis de estrategias de mallado para modelizar en 3D procesos de taladrado en Ti6Al4V

CIENCIA E INGENIERÍA DE MATERIALES. Grado en Ingeniería de Organización Industrial. Curso 2014/15 3ª RELACIÓN DE EJERCICIOS

Análisis numérico 3D de las magnitudes termomecánicas relacionadas con el desgaste de mella en procesos de mecanizado en seco de Inconel 718

Dimensionado y comprobación de secciones

PREGUNTAS DE REPASO. Tomadas del libro: Fundamentos de Manufactura Moderna de Mikell P. Groover

FORMULARIO PARA EL MAQUINADO POR DESCARGAS ELÉCTRICAS: FORMULARIO PARA EL CORTE CON SIERRAS: FORMULARIO PARA EL MAQUINADO POR TORNEADO:

Programa de la asignatura Curso: 2007 / 2008 MECÁNICA DE MEDIOS CONTINUOS Y CIENCIA DE MATERIALES (3168)

Materiales-G704/G742. Jesús Setién Marquínez Jose Antonio Casado del Prado Soraya Diego Cavia Carlos Thomas García. Lección 2.

TECNOLOGÍAS DE FABRICACIÓN Mayormente piezas mecánicas. No se descartan otras aplicaciones

COMISION DE INGENIERIA QUIMICA y EN MINAS

Segundo Seminario de Forja Conceptos innovadores para el sector de la Forja argentina. Miguelete, 29 de Abril de 2016

PARTE II FLUJO DE AGUAS

Mecánica de Sólidos 08-1 Sesión 01. Presentación del curso Mariano Cerca Ramón Zúñiga

Ingeniería Mecánica E-ISSN: Instituto Superior Politécnico José Antonio Echeverría.

Sesión 1: Introducción SALOME-MECA y CODE ASTER

Determinación vía MEF de la fuerza de inserción en el proceso de construcción de un ajuste a presión

Sensibilidad de posición de la plataforma móvil respecto de las longitudes de las bielas en un manipulador paralelo tipo 6-RUS

PROCESO DE EXTRUSIÓN PROCESOS II ING. CARLOS RODELO A

Sabiendo que las constantes del material son E = Kg/cm 2 y ν = 0.3, se pide:

Notación. Mayúsculas latinas. Minúsculas latinas

Establecimiento del cálculo del diámetro de cresta exterior de un engranaje cónico con técnicas de grafos.

Nombre de la asignatura: Resistencia de los materiales. Carrera : Ingeniería Mecánica. Clave de la asignatura: ACC

Transcripción:

Ingeniería Mecánica 1 (22) 9-15 9 Análisis por el Método de los Elementos Finitos de las tensiones en la zona de contacto herramienta-viruta M Rodríguez Madrigal*, J Batista de Aguiar**, M Jacas Cabrera* *Instituto Superior Politécnico José A Echeverría (ISPJAE) Departamento de Tecnología de Construcción de Maquinarias Facultad de Ingeniería Mecánica Calle 127 s/n, CUJAE, Marianao 15, Ciudad Habana, Cuba Teléfono: 53 7-26 2267, Fax: 53 7-267 7129 E-mail:, Error!Marcador no definido **Departamento Eng Mecatrônica e Sistemas Mecânicos USP Sao Pablo Brasil E-mail: Error!Marcador no definido (Recibido el 23 de septiembre del 21, aceptado el 14 de diciembre del 21) Resumen En este trabajo ha sido empleado el método de los elementos finitos para modelar las tensiones en la zona de contacto herramienta-viruta en un proceso de corte ortogonal Se ha empleado una formulación de Lagrange actualizada para solucionar la no linealidad del fenómeno El comportamiento elasto-plástico del material ha sido formulado mediante las ecuaciones de Prandtl-Reuss y la teoría de endurecimiento por deformación para resolver la ecuación constitutiva elastoplástica del proceso de corte ortogonal Se han obtenido la tensión normal y la tensión de cizallamiento en la zona de contacto herramienta-viruta, definiéndose las zonas de adherencia y deslizamiento Palabras claves: corte ortogonal, contacto herramienta-viruta, método de los elementos finitos, proceso de corte de metales 1 Introducción La naturaleza de la interface formada entre la superficie de ataque de la herramienta de corte y la viruta en la zona de contacto es de fundamental importancia en la eficiencia de los procesos de fabricación por arranque de viruta Es bien conocido [1 3] que las condiciones de fricción en la interface de la herramienta y la viruta tienen una influencia significativa en los fenómenos del desgaste de la herramienta y en el acabado de la superficie maquinada La acción del corte crea excepcionales condiciones tribológicas en la zona de contacto herramienta-viruta, tales como deformación plástica entre la herramienta y el material de la viruta, lo cual provoca ligas atómicas en la mayor parte del área de contacto Por tal motivo, ha sido de interés en el desarrollo de la Teoría de corte de metales el estudio de la distribución de las tensiones normales y de cizallamiento en esta zona Algunos de los principales modelos sobre la distribución de tensiones en la zona de contacto herramienta-viruta fueron propuestos por Zorev [4], Kato y Yamaguchi [5] Una importante contribución al estudio de la zona de contacto herramienta-viruta fue realizada por Trent [6, 7], quien definió las zonas de adherencia y deslizamiento durante la salida de la viruta a través de la superficie de ataque de la herramienta 2 Zona de contacto herramientaviruta En la interface herramienta-viruta existe un íntimo contacto entre la pieza y la herramienta, con altas presiones que provocan deformaciones plástica en una importante zona de este contacto y un alto coeficiente de fricción, lo cual origina una importante fuente de generación de calor que afecta las propiedades del material de la herramienta y de la pieza Cuando estas superficies entran en contacto durante el trabajo el área de contacto real A r es mucho menor que el área de contacto aparente A debido a las microirregularidades de las superficies, por esta razón el contacto se establece en apenas unos picos de las irregularidades Con el avance de la herramienta una gran presión se aplica sobre una parte de la superficie de contacto provocando un aplastamiento con deformación plástica 22 Ediciones MECANICA

1 en las superficies, sobre todo en la zona más próxima al filo de la herramienta, esta presión tiende a disminuir hasta un valor cero en el punto donde se rompe el contacto de la viruta con la superficie de ataque de la herramienta Shaw [2] identificó tres regímenes diferentes de fricción a lo largo de esta zona de contacto, los cuales se muestran en un gráfico de esfuerzos cortantes (τ) y normales (σ) M Rodríguez Madrigal, J Batista de Aguiar, M Jacas Cabrera La distribución de tensiones normal (σ) y de cizallamiento (τ) en la zona de contacto herramientaviruta fue establecida por Zorev [4], en la cual se definen las zonas de adherencia y de deslizamiento La Fig 2 muestra el modelo de Zorev de las tensiones en la zona de contacto herramienta-viruta τ Fig 1 Regímenes de fricción en la interface herramienta- D Zona de Deslizamiento A - Zona de adherencia Viruta Herramienta I II III D σ σ, τ Pieza A Regimen I Regimen II Regimen III A r <<A A r < A A r = A viruta En experimentos realizados con varias combinaciones de materiales de la pieza y la herramienta, Trent [3] determinó que en el contacto viruta-herramienta existen dos zonas: una próxima al filo de la herramienta donde existe un íntimo contacto (denominada zona de adherencia) y otra donde existe un movimiento relativo entre las dos superficies en contacto (denominada zona de deslizamiento) En la zona de adherencia existe un área de intenso cizallamiento prócima a la superficie de la herramienta, pero no necesariamente en la misma En esta zona la camada del material de la pieza que esta en contacto con la herramienta está estacionaria, pero a una distancia entre 1 8 mm la velocidad del material de la pieza es igual a la velocidad de la viruta Por lo tanto, en la zona de contacto herramienta-viruta se establece que cuando la tensión de cizallamiento τ > τ equivalente es mayor que la tensión límite f lim no ocurre ningún desplazamiento relativo entre el material de la pieza y la superficie de ataque de la herramienta, siendo esta la característica de la zona de adherencia Cuando la tensión de cizallamiento equivalente es menor o al menos que la límite τf τlim, entonces existe movimiento relativo entre las superficies, siendo esta la característica de la zona de deslizamiento Fig 2 Modelo de tensiones de la zona de contacto de Zorev Según Zorev [4], las tensiones normales son máximas cerca del filo de la herramienta y decrecen exponencialmente hasta el valor cero en el punto donde se rompe el contacto de la viruta con la superficie de ataque de la herramienta Por su parte las tensiones de cizallamiento son máximas y constantes en la zona de adherencia, disminuyendo linealmente hasta cero en el punto final del contacto herramienta-viruta 3 Modelo Físico del Corte Ortogonal El modelo físico del proceso de corte está basado en el corte ortogonal, este modelo es mostrado en la Fig 3, donde aparecen la pieza que será elaborada y la herramienta de corte La pieza tiene una longitud de 16 mm, una altura de 4mm y un ancho de 4mm, el ángulo de incidencia de la herramienta será α = 8, el ángulo de ataque será de γ = y γ = 1 con el objetivo de determinar su influencia en las tensiones en la zona de contacto La profundidad de corte t c =2mm La velocidad de corte es de 6m/min

Análisis por el Método de los Elementos Finitos de las Tensiones en la Zona de Contacto herramienta-viruta 11 t c h A L Fig 3 Modelo físico del proceso de corte ortogonal El material de la pieza será un acero de bajo carbono AISI 12 La tensión de fluencia del material fue obtenida por [3] en ensayos de compresión, a temperaturas de 7 C, y a una velocidad de deformación de 2x1 3 s -1 La ecuación empírica de la tensión de fluencia obtenida por Shirakashi y Maekawa, incluye el efecto de la temperatura, del endurecimiento por deformación y de la razón de deformación El material de la herramienta es de acero rápido M 35 4 Modelo de elementos finitos B γ Vc α Cuchilla Pieza U x = U y = E D u x = u y = F G u x =V x u y =V y deslizamiento adherencia Fig 4 Condiciones de frontera 5 Malla de elementos finitos A u x = u y = A partir de las condiciones de fronteras impuestas, tanto la pieza como la herramienta de corte son convertidas en una malla de elementos finitos En las Fig 5 y 6 se muestran las mallas de elementos finitos para ángulos de ataque γ = y γ = 1 H B C u x = u y = u x =V c u y = El modelo de elementos finitos se realiza sobre la base de idealizar el fenómeno físico, para esto se establecen las restricciones necesarias al sistema, así como las condiciones de fronteras y el sistema de carga Por lo tanto basado en el esquema del modelo físico, fueron establecidas las condiciones de fronteras para el modelo, según la Fig 4 En las superficies externas de la pieza, definidas por BCDE fue impuesta una restricción al desplazamiento en los ejes xy La viruta que sale por la superficie de ataque de la herramienta, representada por las líneas FGHA, tiene desplazamientos en los ejes xy La herramienta de corte tiene posibilidades de movimiento sólo en el eje x Para la determinación de las tensiones en la superficie de contacto herramienta-viruta será tenido en cuenta el fenómeno de adherencia y deslizamiento Fig 5 Malla de EF t c =4 mm, = γ

12 M Rodríguez Madrigal, J Batista de Aguiar, M Jacas Cabrera contacto con la superficie 7 (superficie de ataque de la herramienta) SUPERFICIE 7 SUPERFICIE 3 SUPERFICIE 2 Fig 6 Malla de EF t c =4 mm 6 Modelación del contacto γ = 1 En el proceso de corte, la parte del material de la pieza que es convertida en viruta, se desliza sobre la superficie de ataque de la herramienta, provocando una zona de contacto con alta fricción entre ambas superficies El contacto entre estas superficies, provoca una zona de altas tensiones y de gran generación de calor Los problemas de contacto son modelados por elementos finitos, usando superficies básicas de contacto En el proceso de corte, la modelación del contacto es extremadamente complicada, por el hecho de que una de las superficies, la de la viruta, no existe inicialmente en el modelo, sino que se forma en la medida que transcurre el proceso Para la modelación del contacto entre la viruta y la herramienta, se empleó la teoría de contacto entre dos cuerpos deformables, del programa de elementos finitos ABAQUS, [8] Según esta teoría se definen dos superficies de contacto, siendo una principal o maestra (master surface), y la otra esclava (slave surface) En la Fig 7, se muestra un esquema del proceso de corte, las superficies 2 y 3 inicialmente no existen como entidades independientes, sus elementos forman parte del cuerpo sólido de la pieza Con el desplazamiento de la herramienta hacia la pieza, ocurre gradualmente la formación de la viruta y de estas dos superficies, como entidades independientes en el modelo Con la formación de la viruta, la superficie 2 pasa a ser la superficie maquinada y la superficie 3, entra en Fig 7 Modelo de contacto En la medida en que se forma la superficie 3, los elementos de contacto de la misma se activan como una superficie de contacto, que se desplazará sobre una línea de deslizamiento (slide line), definida por los elementos de la superficie 7 Estos elementos conforman una superficie de contacto entre dos cuerpos deformables 7 Resultados del modelo de elementos finitos Como antes fue declarado, el modelo de Zorev [4] se ha establecido como el más aceptado, para describir las tensiones en la superficie de contacto herramientaviruta Este modelo tiene en cuenta el fenómeno de adherencia y deslizamiento entre las superficies de la viruta y la pieza Según este modelo, las tensiones normales toman su valor máximo en el filo de corte y decrecen exponencialmente hasta el punto donde se pierde el contacto entre la viruta y la herramienta, mientras que la tensión de cizallamiento, asumida en este modelo, como tensión de fricción, permanece constante en la zona de adherencia, disminuyendo linealmente en la zona de deslizamiento hasta el valor cero, en el punto donde la viruta deja de hacer contacto con la herramienta Aunque este modelo es válido conceptualmente, estudios posteriores realizados por Kato y Yamaguchi [5], así como por Chandrasekaran y Kapoor [6], demostraron que el comportamiento de la distribución de tensiones en la superficie de contacto herramientaviruta depende del tipo de material de la pieza y de la herramienta, y la distribución de tensiones propuesta por Zorev sufre variaciones significativas

Análisis por el Método de los Elementos Finitos de las Tensiones en la Zona de Contacto herramienta-viruta 13 En el modelo de elementos finitos del proceso de corte ortogonal, para el maquinado de un acero de bajo carbono AISI 12, con una herramienta de acero rápido M35, realizado por el autor [7] fueron calculadas las tensiones de contacto, para una profundidad de corte t c =4 mm y ángulos de ataque de la herramienta γ = y γ = 1 La Fig 8 muestra los resultados de las tensiones normales y de las tensiones de cizallamiento en la superficie de contacto herramientaviruta, para el caso de t c =4 mm y γ = En la Fig 9 se brindan los resultados para la variante evaluada con ángulo de ataque Error!Marcador no definido S11-Tensión normal- S12- cortante 7 6 5 4 3 2 1-1,1,2,3,4,5 d-distancia del filo en la superficie de ataque S11 S12 Fig 8 Tensiones normales y de cizallamiento (MPa) en la superficie de contacto herramienta-viruta t c =4, γ =

14 M Rodríguez Madrigal, J Batista de Aguiar, M Jacas Cabrera 6 S11- Tensión Normal S12- Cortante 5 4 3 2 1-1,2,4,6 d-distancia del filo en la superficie de ataque S11 S12 Fig 9 Tensiones normales y de cizallamiento (MPa) en la superficie de contacto herramienta-viruta t c =4, γ = 1 Comparando las figuras 8 y 9, se observa que el aumento del ángulo de ataque de la herramienta disminuye el valor de la tensión normal y de la tensión tangencial La longitud de contacto herramienta-viruta, también decrece en una magnitud de 25 mm, según se puede ver en estas figuras El comportamiento de las tensiones normal y de cizallamiento no varía con el aumento del ángulo de ataque, ya que esta variación depende en lo fundamental de las propiedades del material de la pieza y la herramienta La profundidad de corte no tiene una marcada influencia en las tensiones de la superficie de contacto, según fue demostrado por Kato y Yamaguchi [5] 8 Conclusiones El modelo de elementos finitos ha permitido determinar las tensiones en la zona de contacto herramienta-viruta Como pudo observarse los resultados obtenidos concuerdan con los principales modelos establecidos en la literatura Se demostró la influencia del ángulo de ataque de la herramienta en el valor de las tensiones en dicha zona, así como en la longitud del contacto herramienta-viruta y en las zonas de adherencia y de deslizamiento Este trabajo ratifica una vez mas la validez del método de los elementos finitos para el estudio del complicado fenómeno del corte de los metales 9 Bibliografía 1) Boothroyd, G,; Knight, W A Fundamentals of machining and machine tools New York: Marcel Dekker, 1989 2) Shaw, M C; Ber, A; Mamin, PA Friction Characteristics of Sliding Surfaces Undergoing Subsurface Plastic Flow Trans ASME J Basic Eng V 82 Pp342-346 June196 3) Trent, E M Cutting Steel and Iron with Cemented Carbide tools Part II: Conditions of Seizure at the Tool/Work Interface Journal of the Iron and Steel Institute Pp 923-932 Nov 1963

Análisis por el Método de los Elementos Finitos de las Tensiones en la Zona de Contacto herramienta-viruta 15 4) Zorev, N M Interrelationship Between Shear Processes Occurring Along Tool Face and on Shear Plane in Metal Cutting Proc Int Prod Eng Res Conf Pittsburgh, Pennsylvania, USA Pp 42-49 Sept1963 5) Kato, S; Yamaguchi, K; Yamada, M Stress Distribution at the Interface Between Tool and Chip in Machining Journal of Engineering for Industry Pp 683-689 May 1972 6) Chandrasekaran, H; Kapoor, D V Photoelastic Analysis of the Tool-Chip Interface Stresses Journal of Engineering for Industry Trans, ASME Series B V 87 N 4 Nov 1965 Pp 495-52 7) Melchor, R M Modelación por elementos finitos de un proceso de corte ortogonal Tesis de Doctorado 21 ISPJAE Habana Cuba ABAQUS Theory Manual Version54 Ed Hibbitt Karlsson and Sorensen USA 1994 Stress anallisys by Finite element Method in tool-cutting zone Abstract: The finite element method has been used to obtain the stress model in the tool-cutting contact zone in an orthogonal cutting process An updated Lagrange formulation has been used to solve the nonlinearity of the elasto-plastic phenomenon behavior of the materialthis behavior has been formulated by means of the Prandtl-Reuss equations and the theory of deformation by hardening, in order to solve the elasto-plastic equation of orthogonal cutting process The normal and shear stresses in tool-cutting zone has been obtained, defining the adherence and sliding zones Key words: Orthogonal cut, tool-cutting contact, finite element method, steel cutting process