Con los dos conectivos y en las formulas que tienen una sola variable proposicional distinta, no hay forma de construir una contradicción.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Con los dos conectivos y en las formulas que tienen una sola variable proposicional distinta, no hay forma de construir una contradicción."

Transcripción

1 1) No se puede formar una contradicción usando solamente los dos conectivos, {*,->}, en las formulas que tienen una sola variable proposicional distinta. Con los dos conectivos y en las formulas que tienen una sola variable proposicional distinta, no hay forma de construir una contradicción. Las formulas con 1 solo conectivo, primero tienen que tener una variable proposicional, luego uno de los conectivos y por ultimo una variable proposicional. Todas las formulas con 1 solo conectivo y una sola variable proposicional distinta son: p*p, p->p Haciendo la tabla de verdad vemos que ninguna de estas formulas es una contradicción y estas son todas las formulas que se pueden formar con uno solo de los dos conectivos y una sola variable proposicional distinta. Las formulas con 2 conectivos y una sola variable proposicional distinta, primero tienen una variable proposicional (o una formula formada con dos variables proposicionales y un conectivo) luego un conectivo y luego una formula formada por un conectivo y dos variables proposicionales (o una variable proposicional). Todas las formulas con 2 conectivos y una sola variable proposicional distinta son: p*(p*p), (p*p)*p, p->(p->p), (p->p)->p, p*(p->p), (p*p)->p, p->(p*p), (p->p)*p Haciendo la tabla de verdad vemos que ninguna de estas formulas es una contradicción y estas son todas las formulas que se pueden formar con 2 conectivos y una sola variable proposicional distinta. Todas las formulas con 3 conectivos y una sola variable proposicional distinta son muchas, y las formulas con 4 conectivos son un montón. Supongamos que no se pudo encontrar ninguna contradicción con formulas con n conectivos y una sola variable proposicional distinta, veremos que no se va a poder encontrar una contradicción en una formula de n+1 conectivos. Sea f(n) una fórmula que tiene n conectivos y una sola variable proposición distinta. Todas las formulas con n+1 conectivos primer tienen una variable proposición (o una formula con n conectivos) luego uno de los conectivos y por ultimo una formula con n conectivos (o una variable proposicional)

2 Todas las formulas con n+1 conectivos y una sola variable proposicional distinta son: p * f(n), p -> f(n), f(n)*p, f(n)->p Por hipótesis inductiva f(n) no es una contradicción, esto es, para alguna asignación de valores de verdad de la variable proposicional la forma es verdadera. Haciendo la tabla de verdad de todas las formulas de n+1 conectivos y una sola variable proposicional distinta se puede ver que ninguna de la formulas es una contradicción. Esto demuestra por inducción que para las formulas de una variable proposicional distinta, usando solamente los conectivos {*, ->} no se puede formar una contradicción. Por lo tanto no es cierto que cualquier función booleana se pueda expresar usando solamente los conectivos {*, ->}, por ejemplo las contradicciones en formulas proposicionales de una sola variable proposicional distinta, no se pueden expresar. 2a) Por ser (A B) maximal consistente, para toda formula a se da que: a ϵ (A B) o a ϵ (A B) Por propiedad de a ϵ (A B) si y solo si a ϵ A y a ϵ B a ϵ (A B) si y solo si a ϵ A y a ϵ B esto dice que para toda formula a, o a esta a en A o a esta en A. No puede estar a y a en A porque A es consistente, además, si a esta en A entonces a esta en B y si a esta en A entonces a esta en B o sea, todo elemento que está en A esta en B esto es por definición A B de la misma manera

3 para toda formula a, o a esta a en B o a esta en B. si a esta en B entonces a esta en A y si a esta en B entonces a esta en A o sea, todo elemento que está en B esta en A esto es B A o sea A es igual a B si (A B) es maximal consisistente y A y B son consistentes 2b) Sea: A B maximal consistente Y sea: A = {p p, p} (A B) o sea A p p o se p, tal que A p p esto es A es inconsistente B = {p, p} (A B) o sea B p p o se p, tal que B p p esto es B es inconsistente A y B son inconsistentes pero (A B) es maximal consistente. Este ejemplo muestra que es falso que: si A y B son inconsistentes entonces (A B) no puede ser maximal consistente o lo que es lo mismo si (A B) es maximal consistente entonces A y B tienen que ser consistentes 3) Clase de los modelos de equivalencia C = {A R es de equivalencia} Axiomas de equivalencia x. (x,x) R(x,x) x, y. (x,y) R (y, x) R x, y.(x, y) R (y,z) R(x,y) (x,z ) R Como se demuestra que la axiomatizacion es correcta y completa con respecto a la clase de modelos

4 de equivalencia? Estuve pensando todo el fin de semana y no me salió. Demostrar que la axiomatización es completa con respecto a la clase de todos los modelos. Todas las cosas que pueda demostrar con un conjunto de axiomas las voy a poder demostrar si agrego más axiomas al conjunto de axiomas. Esto es: A a y A B entonces B a y recordando que una demostración es una cadena a1,,an, donde an=a y a1,..,an son algunos de los axiomas, son elementos de A, o se obtienen por modus ponen de los anteriores. Si hay una demostración de a a partir de A, entonces la misma demostración es una demostración un un conjunto mas grande de axiomas. Esto es, la axiomatización es completa respecto a la clase de todos los modelos Demostración de que la axiomatización no es correcta respecto a la clase de todos los modelos. Por ejemplo, para el modelo: U = {Analia, Juan, Pedro} Relación es profesor esprofesor = {(Analia, Juan), (Analia, Pedro)} El modelo cumple los axiomas de todos los modelos menos los axiomas de equivalencia, en particular el axioma de simetría no se cumple: (Analia, Juan) esprofesor (Analia, Juan) esprofesor Analia es profesora de Juan pero Juan no es profesor de Analia Esto es, la axiomatización no es correcta respecto a un modelo de la clase de todos los modelos. Tengo que demostrar que el modelo satisface todos los axiomas? Este punto no me salió, lo pensé todo el fin de semana, como se demuestra que los modelos de las clases de equivalencia satisfacen los axiomas. 4) Esta bien esta demostración con palabras? Sea: la formula que expresa que hay un ciclo en la relación R que no está bajo control.

5 Sean: (1) la formula que expresa que hay un ciclo de largo 1 que no está bajo control. (2) la formula que expresa que hay un ciclo de largo 2 o menor que no está bajo control. (n) la formula que expresa que hay un ciclo de largo n o menor que no está bajo control. = { (n) n > 0} { } es insatisfactible, la primer parte dice que no hay ningún ciclo de largo n o menor, para todo n, que no está bajo control. La segunda parte dice que hay un clico que no está bajo control. Supongamos que todos los ciclos menores o iguales a k están bajo control, entonces { (k) } { } Dice que no hay ningún ciclo de largo menor o igual a k que no esté bajo control y lo segundo dice que hay un ciclo que no está bajo control, el ciclo que no está bajo control puede ser un ciclo que tiene largo mayor a k. Este conjunto es satisfactible y es un subconjunto de { (k) } { } { (n) n > 0} { } Pero por el teorema de compacidad el subconjunto tendría que ser insatisfactible, pero es satisfactible, significando que no se podía expresar la propiedad con lógica de primer orden. Saludos, Marcos

Ampliación Matemática Discreta. Justo Peralta López

Ampliación Matemática Discreta. Justo Peralta López Justo Peralta López UNIVERSIDAD DE ALMERíA DEPARTAMENTO DE ÁGEBRA Y ANÁLISIS MATEMÁTICO 1 Introducción 2 Definición semántica de las proposiciones 3 Diagrama de valores de certeza 4 Evaluación de fórmulas.

Más detalles

Cuantificadores y Métodos de Demostración

Cuantificadores y Métodos de Demostración Cuantificadores y Métodos de Demostración 1. Cuantificadores... 1 1.1. Cuantificador Existencial... 2 1.2. Cuantificador Universal... 3 2. Métodos de Demostración... 4 1. Cuantificadores Hasta ahora habíamos

Más detalles

Algebras booleanas. B2) Leyes Distributivas. Cada operación es distributiva con respecto a la otra:

Algebras booleanas. B2) Leyes Distributivas. Cada operación es distributiva con respecto a la otra: Algebras booleanas AXIOMAS DEL ALGEBRA DE BOOLE Sea B un conjunto en el cual se han definido dos operaciones binarias, + y * (En algunos casos se definen en términos de y respectivamente), y una operación

Más detalles

Matemáticas Discretas TC1003

Matemáticas Discretas TC1003 Matemáticas Discretas TC1003 Métodos de Demostración Departamento de Matemáticas / Centro de Sistema Inteligentes ITESM Métodos de Demostración Matemáticas Discretas - p. 1/13 Introducción En esta sección

Más detalles

Sintaxis LÓGICA COMPUTACIONAL CÁLCULO DE PROPOSICIONES. Funciones boolenas. Semántica

Sintaxis LÓGICA COMPUTACIONAL CÁLCULO DE PROPOSICIONES. Funciones boolenas. Semántica Proposiciones atómicas y compuestas Sintaxis LÓGICA COMPUTACIONAL CÁLCULO DE PROPOSICIONES Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNAM E-mail: fhq@cienciasunammx Página

Más detalles

IIC2213. IIC2213 Teorías 1 / 42

IIC2213. IIC2213 Teorías 1 / 42 Teorías IIC2213 IIC2213 Teorías 1 / 42 Qué es una teoría? Una teoría es un cúmulo de información. Debe estar libre de contradicciones. Debe ser cerrada con respecto a lo que se puede deducir de ella. Inicialmente

Más detalles

LÓGICA FORMAL TEORIAS DE PRIMER ORDEN. Teoremas. Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid

LÓGICA FORMAL TEORIAS DE PRIMER ORDEN. Teoremas. Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid LÓGICA FORMAL TEORIAS DE PRIMER ORDEN Pedro López Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid Fórmulas elementales 1 Teniendo en cuenta las definiciones:

Más detalles

LÓGICA FORMAL TEORIAS DE PRIMER ORDEN. Teoremas

LÓGICA FORMAL TEORIAS DE PRIMER ORDEN. Teoremas LÓGICA FORMAL TEORIAS DE PRIMER ORDEN Pedro López Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid Fórmulas elementales 1 Teniendo en cuenta las definiciones:

Más detalles

Lógica proposicional: Lectura única

Lógica proposicional: Lectura única Lógica proposicional: Lectura única Una fórmula ϕ es atómica si ϕ = p, donde p P. Una fórmula ϕ es compuesta si no es atómica. - Si ϕ = ( α), entonces es un conectivo primario de ϕ y α es una subfórmula

Más detalles

Análisis lógico Cálculo de proposiciones

Análisis lógico Cálculo de proposiciones Sintaxis Semántica Sistemas de demostración Análisis lógico Cálculo de proposiciones Departamento de Matemáticas Facultad de Ciencias, UNAM E-mail: fhq@ciencias.unam.mx Página Web: www.matematicas.unam.mx/fhq

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo. Contenidos Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo Complementos Contenidos Clase 1: Elementos de lógica: Conectivos, tablas de verdad, tautologías y contingencias.

Más detalles

Introducción a la Matemática Discreta

Introducción a la Matemática Discreta Introducción a la Matemática Discreta Lógica proposicional y Álgebras de Boole Luisa María Camacho Camacho Introd. a la Matemática Discreta 1 / 25 Introducción a la Matemática Discreta Temario Tema 1.

Más detalles

Sistema Axiomático para el Cálculo Proposicional

Sistema Axiomático para el Cálculo Proposicional Sistema Axiomático para el Cálculo Proposicional Lógica Matemática José de Jesús Lavalle Martínez 12 de julio de 2011 Resumen Este documento es una traducción de partes de la sección 1.4 AN AXIOM SYSTEM

Más detalles

Introducción a la Lógica

Introducción a la Lógica Tema 0 Introducción a la Lógica En cualquier disciplina científica se necesita distinguir entre argumentos válidos y no válidos. Para ello, se utilizan, a menudo sin saberlo, las reglas de la lógica. Aquí

Más detalles

Los Teoremas de Incompletitud de Gödel: Parte II: Coherencia y completitud

Los Teoremas de Incompletitud de Gödel: Parte II: Coherencia y completitud Los Teoremas de Incompletitud de Gödel: Parte II: Coherencia y completitud Guillermo Morales Luna Departmento de Computación CINVESTAV-IPN gmorales@cs.cinvestav.mx 2-o Encuentro Nacional de Epistemología

Más detalles

CLAVE DE EXAMEN Matemática para computación 1 código de curso: 960

CLAVE DE EXAMEN Matemática para computación 1 código de curso: 960 universidad de san carlos Facultad de Ingeniería Escuela de Ciencias Departamento de Matemática clave-960-1-m-2-00-2012 CLAVE DE EXAMEN Matemática para computación 1 código de curso: 960 Datos de la clave

Más detalles

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- V V V V F F F V F F F V

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- V V V V F F F V F F F V Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Tablas de Verdad: p q p q p p V V V V F V F F F V F V F F F F p q p q V V V V F V F V V F F F p q p q V V V V F F F V V F F V p q p q

Más detalles

Consecuencia Lógica. Desde un punto de vista lógico, un argumento no es más que una sucesión (finita) de premisas o hipótesis y una conclusión.

Consecuencia Lógica. Desde un punto de vista lógico, un argumento no es más que una sucesión (finita) de premisas o hipótesis y una conclusión. Desde un punto de vista lógico, un argumento no es más que una sucesión (finita) de premisas o hipótesis y una conclusión. 1,, n Un argumento es correcto si la conclusión es consecuencia, si se sigue,

Más detalles

LOS GRÁFICOS EXISTENCIALES DE PEIRCE EN LOS SISTEMAS ALFA o Y ALFA00. YURr ALEXANDER POVEDA QUIÑONES

LOS GRÁFICOS EXISTENCIALES DE PEIRCE EN LOS SISTEMAS ALFA o Y ALFA00. YURr ALEXANDER POVEDA QUIÑONES oletín de Matemáticas Nueva Serie, Volumen VII No. 1 (2000), pp. 5-17 LOS GRÁFICOS EXISTENCILES DE PEIRCE EN LOS SISTEMS LF o Y LF00 YURr LEXNDER POVED QUIÑONES STRCT. Las reglas deductivas de eliminación

Más detalles

Conjuntos, relaciones y funciones Susana Puddu

Conjuntos, relaciones y funciones Susana Puddu Susana Puddu 1. Repaso sobre la teoría de conjuntos. Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros. Dados dos conjuntos A y B decimos que A está contenido en B o también

Más detalles

MEL* Sistemas formales y sistemas lógicos 1

MEL* Sistemas formales y sistemas lógicos 1 2.1.1 2 2a (x y) z : z x y 2b x y x y : x y x y 2.1.2 1 1a Hay que expresar cada uno de los operadores de la tabla de 2.1.2.3 en términos de y y las variables x, y. Nótese que se describen como operadores

Más detalles

Lógica Proposicional IIC2213. IIC2213 Lógica Proposicional 1/42

Lógica Proposicional IIC2213. IIC2213 Lógica Proposicional 1/42 Lógica Proposicional IIC2213 IIC2213 Lógica Proposicional 1/42 Por qué necesitamos la lógica? Necesitamos un lenguaje con una sintaxis precisa y una semántica bien definida. Queremos usar este lenguaje

Más detalles

Lógica Proposicional IIC2213. IIC2213 Lógica Proposicional 1/42

Lógica Proposicional IIC2213. IIC2213 Lógica Proposicional 1/42 Lógica Proposicional IIC2213 IIC2213 Lógica Proposicional 1/42 Por qué necesitamos la lógica? Necesitamos un lenguaje con una sintaxis precisa y una semántica bien definida. Queremos usar este lenguaje

Más detalles

Matemáticas Discretas Lógica

Matemáticas Discretas Lógica Coordinación de Ciencias Computacionales - INAOE Matemáticas Discretas Lógica Cursos Propedéuticos 2010 Ciencias Computacionales INAOE Lógica undamentos de Lógica Cálculo proposicional Cálculo de predicados

Más detalles

Coordinación de Matemática I (MAT021)

Coordinación de Matemática I (MAT021) Coordinación de Matemática I (MAT01) Taller Primer semestre de 01 Semana 1: Lunes 6 viernes 30 de marzo Ejercicios Ejercicio 1 1. Sea x 0 un número real, mostrar que si x 0 < r para todo r > 0 entonces

Más detalles

Pauta 1 : Lógica Proposicional

Pauta 1 : Lógica Proposicional MA1101-5 Introducción al Álgebra Profesor: Mauricio Telias Auxiliar: Arturo Merino P1. [Metódos de Demostración] Sean p, q, r, s proposiciones lógicas. Pauta 1 : Lógica Proposicional a) Demuestre mediante

Más detalles

Razonamiento Automático. Representación en Lógica de Predicados. Aplicaciones. Lógica de Predicados. Sintáxis y Semántica

Razonamiento Automático. Representación en Lógica de Predicados. Aplicaciones. Lógica de Predicados. Sintáxis y Semántica Razonamiento Automático II.1 Representación en Lógica de Predicados Razonamiento en IA se refiere a razonamiento deductivo n Nuevos hechos son deducidos lógicamente a partir de otros. Elementos: n Representación

Más detalles

Resumen de aritmética de Peano

Resumen de aritmética de Peano Resumen de aritmética de Peano UDELAR/FING/IMERL 16 de febrero de 2017 1. Fundamentos de la Aritmética de Peano. Axioma 1.1. Existe un conjunto al que denotamos N, un elemento 0 N y una función s : N N

Más detalles

El problema de satisfacción

El problema de satisfacción El problema de satisfacción Definición Un conjunto de fórmulas Σ es satisfacible si existe una valuación σ tal que σ(σ) = 1. En caso contrario, Σ es inconsistente. IIC2213 Lógica Proposicional 33 / 42

Más detalles

Capítulo 4. Lógica matemática. Continuar

Capítulo 4. Lógica matemática. Continuar Capítulo 4. Lógica matemática Continuar Introducción La lógica estudia la forma del razonamiento, es una disciplina que por medio de reglas y técnicas determina si un teorema es falso o verdadero, además

Más detalles

Tema 1: Sintaxis y Semántica de la Lógica Proposicional

Tema 1: Sintaxis y Semántica de la Lógica Proposicional Tema 1: Sintaxis y Semántica de la Lógica Proposicional Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Lógica y Computabilidad Curso 2010 11 LC, 2010 11 Lógica Proposicional

Más detalles

CIENCIAS FORMALES CIENCIAS FÁCTICAS

CIENCIAS FORMALES CIENCIAS FÁCTICAS UNA CLASIFICACIÓN DE LAS CIENCIAS CIENCIAS FORMALES CIENCIAS FÁCTICAS CIENCIAS FORMALES MATEMÁTICA LÓGICA CIENCIAS FÁCTICAS FÍSICA BIOLOGÍA QUÍMICA CIENCIAS SOCIALES OTRAS CIENCIAS FORMALES VOCABULARIO

Más detalles

Clase Práctica 1 - Inducción estructural, conectivos adecuados y consecuencia - Viernes 23 de marzo de 2012

Clase Práctica 1 - Inducción estructural, conectivos adecuados y consecuencia - Viernes 23 de marzo de 2012 Lógica y Computabilidad Primer Cuatrimestre 2012 Clase Práctica 1 - Inducción estructural, conectivos adecuados y consecuencia - Viernes 23 de marzo de 2012 Definición 1. Notaremos con Form al conjunto

Más detalles

Lógica Proposicional (LP)

Lógica Proposicional (LP) Lógica Proposicional (LP) Proposición Enunciado del que puede afirmarse si es verdadero o falso Oración declarativa Cuáles de las siguientes son proposiciones? ) Pedro es alto. 2) Juan es estudiante. 3)

Más detalles

1. Ejercicios propuestos

1. Ejercicios propuestos Coordinación de Matemática I (MAT021) 1 er Semestre de 2015 Semana 1: Guía de Ejercicios de Complemento, lunes 9 viernes 13 de Marzo Contenidos Clase 1: Elementos de lógica: conectivos, tablas de verdad,

Más detalles

Semántica del Cálculo Proposicional

Semántica del Cálculo Proposicional Semántica del Cálculo Proposicional Revisiones: Abril y Mayo del 2005 - Abril 2006 Á 1. Valuación como función. Notación: Con Form se identifica al conjunto de todas las fómulas y Var al conjunto de todas

Más detalles

Introducción a la Lógica Proposicional Seminario de Matemáticas

Introducción a la Lógica Proposicional Seminario de Matemáticas Introducción a la Lógica Proposicional Seminario de Matemáticas Julio Ariel Hurtado Alegría ahurtado@unicauca.edu.co 8 de mayo de 2015 Julio A. Hurtado A. Departamento de Sistemas 1 / 34 Agenda Motivación

Más detalles

Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid

Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid LÓGICA FORMAL Lógica Proposicional: Teorema de Efectividad Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid Lógica Proposicional 1 La lógica proposicional

Más detalles

ÁLGEBRA I. Curso Grado en Matemáticas

ÁLGEBRA I. Curso Grado en Matemáticas ÁLGEBRA I. Curso 2012-13 Grado en Matemáticas Relación 1: Lógica Proposicional y Teoría de Conjuntos 1. Establecer las siguientes tautologías: (a) A A A (b) A A A (c) A B B A (d) A B B A (e) (A B) C A

Más detalles

Proposiciones. Estructuras Discretas. Lógica de proposiciones y de predicados. Tablas de Verdad. Operadores Lógicos.

Proposiciones. Estructuras Discretas. Lógica de proposiciones y de predicados. Tablas de Verdad. Operadores Lógicos. Estructuras Discretas Proposiciones Lógica de proposiciones y de predicados Claudio Lobos clobos@inf.utfsm.cl Universidad Técnica Federico Santa María Estructuras Discretas INF 152 Definición: proposición

Más detalles

Lógica Proposicional IIC1253. IIC1253 Lógica Proposicional 1/64

Lógica Proposicional IIC1253. IIC1253 Lógica Proposicional 1/64 Lógica Proposicional IIC1253 IIC1253 Lógica Proposicional 1/64 Inicio de la Lógica Originalmente, la Lógica trataba con argumentos en el lenguaje natural. Ejemplo Es el siguiente argumento válido? Todos

Más detalles

Lógica de primer orden: Repaso y notación

Lógica de primer orden: Repaso y notación Lógica de primer orden: Repaso y notación IIC3263 IIC3263 Lógica de primer orden: Repaso y notación 1 / 29 Lógica de primer orden: Vocabulario Una fórmula en lógica de primer orden está definida sobre

Más detalles

Teorías. Una teoría acerca de una base de conocimiento Σ contendrá no sólo a Σ sino que a todo lo que se puede deducir de Σ.

Teorías. Una teoría acerca de una base de conocimiento Σ contendrá no sólo a Σ sino que a todo lo que se puede deducir de Σ. Teorías Qué es una teoría? Ya hemos usado antes la noción de base de conocimiento Este concepto se refiere a un conocimiento, representado a través de axiomas. Una teoría acerca de una base de conocimiento

Más detalles

14/02/2017. TEMA 3: EL CUERPO DE LOS NUMEROS REALES Esp. Prof. Liliana N. Caputo

14/02/2017. TEMA 3: EL CUERPO DE LOS NUMEROS REALES Esp. Prof. Liliana N. Caputo TEMA 3: EL CUERPO DE LOS NUMEROS REALES Esp. Prof. Liliana N. Caputo Así como al estudiar conjuntos hablamos de la existencia de términos primitivos (que no se definen), para definir algunos conjuntos,

Más detalles

Tema 3 Equivalencia. Formas normales.

Tema 3 Equivalencia. Formas normales. Tema 3 Equivalencia. Formas normales. Lógica Proposicional Antonio de J. Pérez Jiménez Departamento Ccia. Lógica Informática Antonio de J. Pérez Jiménez (Departamento Ccia.) Tema 3 Equivalencia. Formas

Más detalles

Álgebra Booleana. Guía Álgebra Booleana. Tema I: Álgebra de Boole

Álgebra Booleana. Guía Álgebra Booleana. Tema I: Álgebra de Boole Guía Álgebra Booleana Tema I: Álgebra de Boole AXIOMAS DEL ALGEBRA DE BOOLE Sea B un conjunto en el cual se han definido dos operaciones binarias, + y * (En algunos casos se definen en términos de y respectivamente),

Más detalles

Universidad de Santiago de Chile Departamento de Matemática y C.C. Ingeniería Civil

Universidad de Santiago de Chile Departamento de Matemática y C.C. Ingeniería Civil Universidad de Santiago de Chile Departamento de Matemática y C.C. Ingeniería Civil Pep N o 1 de Álgebra1 Ingeniería Civil Profesor Ricardo Santander Baeza 14 de mayo del 2007 (1) Sean p, q y r proposiciones

Más detalles

Introdución a la Lógica Proposicional

Introdución a la Lógica Proposicional Introdución a la Lógica Proposicional Pablo Barceló P. Barceló Lógica Proposicional - CC52A 1 / 24 Lógica proposicional: Sintaxis Tenemos los siguientes elementos: - Variables proposicionales (P): p, q,

Más detalles

Proposicional. Curso Mari Carmen Suárez de Figueroa Baonza

Proposicional. Curso Mari Carmen Suárez de Figueroa Baonza Semántica Proposicional Curso 2014 2015 Mari Carmen Suárez de Figueroa Baonza mcsuarez@fi.upm.es Contenidos Introducción Interpretación de FBFs proposicionales Validez Satisfacibilidad Validez y Satisfacibilidad

Más detalles

Teoremas: Condiciones Necesarias, Condiciones Suficientes y Condiciones Necesarias y Suficientes

Teoremas: Condiciones Necesarias, Condiciones Suficientes y Condiciones Necesarias y Suficientes FUNCIONES DE VARIABLE COMPLEJA 1 Teoremas: Condiciones Necesarias, Condiciones Suficientes y Condiciones Necesarias y Suficientes Lógica Matemática Una prioridad que tiene la enseñanza de la matemática

Más detalles

Lógica Informática. Grupo 3. Curso 2005/06.

Lógica Informática. Grupo 3. Curso 2005/06. Dpto. de Ciencias de la Computacin e Inteligencia Artificial Universidad de Sevilla Lógica Informática. Grupo 3. Curso 2005/06. Ejercicios de Lógica Proposicional. Temas 1 a 5 Ejercicio 1. Expresar mediante

Más detalles

Resolución Proposicional

Resolución Proposicional Resolución Proposicional IIC2213 IIC2213 Resolución Proposicional 1 / 19 Resolución proposicional Sabemos que Σ = ϕ si y sólo si Σ { ϕ} es inconsistente. Cómo verificamos si Σ { ϕ} es inconsistente? El

Más detalles

Sobre el teorema de la deducción

Sobre el teorema de la deducción Sobre el teorema de la deducción José Alfredo Amor Montaño La teoría formal L para la lógica de proposiciones tiene como conjunto de símbolos primitivos al conjunto S = {, } {(, )} {P i } i N, de conectivos

Más detalles

Lógicas no clásicas: Introducción a la lógica modal

Lógicas no clásicas: Introducción a la lógica modal Lógicas no clásicas: Introducción a la lógica modal Pedro Arturo Góngora Luna pedro.gongora@gmail.com Índice 1. Repaso 1 1.1. Relaciones binarias............................... 1 1.2. Relaciones binarias

Más detalles

Operaciones con conjuntos (ejercicios)

Operaciones con conjuntos (ejercicios) Operaciones con conjuntos (ejercicios) Ejemplo: Definición de la diferencia de conjuntos. Sean y conjuntos. Entonces \ := { x: x x / }. Esto significa que para todo x tenemos la siguiente equivalencia:

Más detalles

Parte Valor Puntuación I 36 II 54 Total 90

Parte Valor Puntuación I 36 II 54 Total 90 Universidad de Puerto Rico, Río Piedras Facultad de Ciencias Naturales Departamento de Matemáticas San Juan, Puerto Rico Apellidos: Nombre: No. estudiente: Profesor: Dr. M Mate 5 Examen I: 6 de septiembre

Más detalles

UNIDAD I: LÓGICA MATEMÁTICA

UNIDAD I: LÓGICA MATEMÁTICA UNIDAD I: LÓGICA MATEMÁTICA 1.1. Introducción La Lógica Matemática es la rama de las Matemáticas que nos permite comprender sobre la validez o no de razonamientos y demostraciones que se realizan. La lógica

Más detalles

Tema 6: Teoría Semántica

Tema 6: Teoría Semántica Tema 6: Teoría Semántica Sintáxis Lenguaje de de las las proposiciones Lenguaje de de los los predicados Semántica Valores Valores de de verdad verdad Tablas Tablas de de verdad verdad Tautologías Satisfacibilidad

Más detalles

Lógica Proposicional. Del conjunto de hipótesis Γ se deduce α?

Lógica Proposicional. Del conjunto de hipótesis Γ se deduce α? Proposicional Metateoría: Corrección y Completitud Proposicional - 1 Del conjunto de hipótesis Γ se deduce α? Γ = α? -Tablas de verdad - Equivalencia lógicas Existen métodos que siempre responden SI o

Más detalles

Clase práctica 3: Consecuencia Lógica

Clase práctica 3: Consecuencia Lógica Clase práctica 3: Consecuencia Lógica (by Laski) Primer Cuatrimestre 2014 Repaso de la teórica Decimos que una valuación v satisface a una fórmula P si v(p ) = 1, y que satisface a un conjunto de fórmulas

Más detalles

Lógica Proposicional

Lógica Proposicional Lógica y Computabilidad Julián Dabbah (sobre clases de María Emilia Descotte y Laski) 6 de octubre de 2017 Repaso Sintaxis Variables / símbolos proposicionales (PROP): p, p', p,... (los notamos p, q, r...,

Más detalles

Repaso de Lógica de Primer Orden

Repaso de Lógica de Primer Orden Repaso de Lógica de Primer Orden IIC3260 IIC3260 Repaso de Lógica de Primer Orden 1 / 29 Lógica de primer orden: Vocabulario Una fórmula en lógica de primer orden está definida sobre algunas constantes

Más detalles

Sistemas deductivos. Lógica Computacional. Curso 2005/2006. Departamento de Matemática Aplicada Universidad de Málaga

Sistemas deductivos. Lógica Computacional. Curso 2005/2006. Departamento de Matemática Aplicada Universidad de Málaga Sistemas deductivos Lógica Computacional Departamento de Matemática plicada Universidad de Málaga Curso 2005/2006 Contenido 1 Sistema axiomático de Lukasiewicz Sistema proposicional Extensión a predicados

Más detalles

Departamento de Ingeniería Matemática - Universidad de Chile

Departamento de Ingeniería Matemática - Universidad de Chile 1. Lógica Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Introducción al Álgebra 08-1 Importante: Visita regularmente http://www.dim.uchile.cl/~algebra. Ahí encontrarás

Más detalles

LOS AXIOMAS DE PEANO Y EL PRINCIPIO DE INDUCCIÓN MATEMÁTICA

LOS AXIOMAS DE PEANO Y EL PRINCIPIO DE INDUCCIÓN MATEMÁTICA LOS AXIOMAS DE PEANO Y EL PRINCIPIO DE INDUCCIÓN MATEMÁTICA OMAR HERNÁNDEZ RODRÍGUEZ Y JORGE M. LÓPEZ FERNÁNDEZ Resumen. En este escrito N representa el conjunto de los números naturales y para cada n

Más detalles

Módulo 8 Implicación. Equivalencia Lógica

Módulo 8 Implicación. Equivalencia Lógica Módulo 8 Implicación. Equivalencia Lógica OBJETIO: Identificará la suposición o hipótesis de la implicación y su conclusión, expresará en diferentes formas una implicación; e identificará las proposiciones

Más detalles

Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 2: Lógica de Predicados y Métodos de Demostración

Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 2: Lógica de Predicados y Métodos de Demostración Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 2: Lógica de Predicados y Métodos de Demostración Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 1: Fundamentos:

Más detalles

Leyes 0-1 IIC3260. IIC3260 Leyes / 77

Leyes 0-1 IIC3260. IIC3260 Leyes / 77 Leyes 0-1 IIC3260 IIC3260 Leyes 0-1 1 / 77 Leyes 0-1: Notación Dado: Vocabulario L Recuerde que una propiedad P sobre L (L-propiedad) es un subconjunto de Struct[L] Notación sl n : Número de L-estructuras

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS.

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción 1 La lógica es

Más detalles

Tema de la clase: Lógica Matemática. Introducción

Tema de la clase: Lógica Matemática. Introducción Tema de la clase: Lógica Matemática Instructor: Marcos Villagra Clase # 01 Escriba: Sergio Mercado Fecha 30/10/2017 Introducción Una de las características principales que distinguen a las matemáticas

Más detalles

Matemática Estructural, 2013-I Examen Final SOLUCIONES

Matemática Estructural, 2013-I Examen Final SOLUCIONES Matemática Estructural, 2013-I Examen Final SOLUCIONES John Goodrick May 27, 2013 Problema 1 (4 puntos) Verdadero o falso: Si R es una relación sobre P(N) que satisface las tres propiedades: (i) R es reflexiva;

Más detalles

Sin importar el valor de verdad de sus partes constituyentes.

Sin importar el valor de verdad de sus partes constituyentes. Consideremos las siguientes proposiciones. Ejemplo 1 Dos rectas diferentes en un plano son paralelas o se cortan sólo en un punto. Ejemplo 1=0. Ejemplo 3 3x = 5 y y = 1 Ejemplo 4 x no es > 0. Ejemplo 5

Más detalles

03. Introducción a los circuitos lógicos

03. Introducción a los circuitos lógicos 03. Introducción a los circuitos lógicos 1. LÓGICA DE PROPOSICIONES...2 PROPOSICIÓN...2 CONECTORES U OPERADORES LÓGICOS...2 Tablas de...2 Tautología...2 Contradicción...2 2. ÁLGEBRA DE BOOLE...3 AXIOMAS

Más detalles

LOS GRÁFICOS EXISTENCIALES DE PEIRCE EN LOS SISTEMAS ALFA 0. Yuri Alexander Poveda

LOS GRÁFICOS EXISTENCIALES DE PEIRCE EN LOS SISTEMAS ALFA 0. Yuri Alexander Poveda I Jornada Peirce en rgentina 10 de septiembre de 2004 LOS GRÁFIOS EXISTENILES DE PEIRE EN LOS SISTEMS LF 0 Yuri lexander Poveda yapoveda@hotmail.com Las reglas deductivas de eliminación y de inserción

Más detalles

Espacios Conexos Espacio Conexo

Espacios Conexos Espacio Conexo Capítulo 4 Espacios Conexos Una forma natural de construir nuevos espacios topológicos es pegando en forma disjunta, es decir. Sean (X,T X ),(Y,T Y ) dos espacios topológicos, luego definimos Z = X {0}

Más detalles

Introducción a la Lógica proposicional Tablas de Verdad y Relación de fuerza Representando el mundo real Falacias Lógica trivaluada Ejercicios

Introducción a la Lógica proposicional Tablas de Verdad y Relación de fuerza Representando el mundo real Falacias Lógica trivaluada Ejercicios Menú del día Fórmulas bien formadas Tablas de verdad Tautologías, Contingencias y Contradicciones Relación de fuerza con Lógica proposicional. con semántica de cortocircuito Qué es la lógica proposicional?

Más detalles

Benemérita Universidad Autónoma de Puebla

Benemérita Universidad Autónoma de Puebla Tarea No. 1 Matemáticas Elementales Profesor Fco. Javier Robles Mendoza Benemérita Universidad Autónoma de Puebla Facultad de Ciencias de la Computación Lógica y Conjuntos 1. Considere las proposiciones

Más detalles

Introducción a los números reales

Introducción a los números reales Grado en Matemáticas Curso 2009-2010 Índice Conjuntos numéricos 1 Conjuntos numéricos Tienen nombre Y cuatro operaciones básicas 2 Teoremas y demostraciones Métodos de demostración 3 El axioma fundamental

Más detalles

MÉTODOS DE DEMOSTRACIÓN

MÉTODOS DE DEMOSTRACIÓN 2016-1 1 Presentación 2 Métodos de Demostración Sobre métodos de demostración algunas preguntas de interés 1 Qué es una demostración? Sobre métodos de demostración algunas preguntas de interés 1 Qué es

Más detalles

Rudimentos de lógica

Rudimentos de lógica Rudimentos de lógica Eugenio Miranda Palacios 1. El método axiomático Matemáticas es el estudio de las relaciones entre ciertos objetos ideales como números, funciones y figuras geométricas. Estos objetos

Más detalles

Propuesta sobre la enseñanza de la demostración de implicaciones

Propuesta sobre la enseñanza de la demostración de implicaciones Propuesta sobre la enseñanza de la demostración de implicaciones Brenes 1 La enseñanza de la demostración Durante el primer año de estudios en las carreras de matemática y enseñanza de matemática usualmente

Más detalles

Teorema de incompletitud de Gödel

Teorema de incompletitud de Gödel Teorema de incompletitud de Gödel Theorem (Gödel) Th(N) es una teoría indecidible. IIC2213 Teorías 79 / 109 Teorema de incompletitud de Gödel Theorem (Gödel) Th(N) es una teoría indecidible. Corolario

Más detalles

Tema 2: (Tecnologías Informáticas) Curso Dpto. Ciencias de la Computación Inteligencia Artificial Universidad de Sevilla

Tema 2: (Tecnologías Informáticas) Curso Dpto. Ciencias de la Computación Inteligencia Artificial Universidad de Sevilla y Tema 2: y Dpto. Ciencias de la Computación Inteligencia Artificial Universidad de Sevilla Lógica Informática (Tecnologías Informáticas) Curso 2017 18 Contenido y En este tema presentaremos mecanismos

Más detalles

Material educativo. Uso no comercial 1.4 MÉTODOS DE DEMOSTRACIÓN Método directo o Método de la hipótesis auxiliar

Material educativo. Uso no comercial 1.4 MÉTODOS DE DEMOSTRACIÓN Método directo o Método de la hipótesis auxiliar 1.4 MÉTODOS DE DEMOSTRACIÓN Designamos en esta forma las estrategias o esquemas más generales que identificamos en los procesos deductivos. Estos modelos están fundamentados lógicamente en teoremas o reglas

Más detalles

Propiedades de imágenes y preimágenes

Propiedades de imágenes y preimágenes Propiedades de imágenes y preimágenes Objetivos. Demostrar las propiedades principales de las imágenes y preimágenes, por ejemplo que f[a B] = f[a] f[b]. Requisitos. Definición y ejemplos de imágenes y

Más detalles

El sistema deductivo de Hilbert

El sistema deductivo de Hilbert El sistema deductivo de Hilbert IIC2213 IIC2213 El sistema deductivo de Hilbert 1 / 17 Completidad de resolución proposicional Qué tenemos que agregar a nuestro sistema de deducción para que sea completo?

Más detalles

Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad

Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad Estructuras Discretas Relaciones Definición: relación Relaciones Claudio Lobos, Jocelyn Simmonds clobos,jsimmond@inf.utfsm.cl Universidad Técnica Federico Santa María Estructuras Discretas INF 152 Sean

Más detalles

Propiedad de Completez (Parte 2) (3) Si A es un subconjunto de un campo ordenado F y u F, se dice que u es un máximo de A si,

Propiedad de Completez (Parte 2) (3) Si A es un subconjunto de un campo ordenado F y u F, se dice que u es un máximo de A si, Unidad. Números Reales.1 Números Naturales, Enteros, Racionales, Irracionales y Reales Propiedad de Completez (Parte ) Denición 1. (1) Si A es un subconjunto de un campo ordenado F y u F, se dice que es

Más detalles

Lógica Clásica Proposicional

Lógica Clásica Proposicional Lógica Clásica Proposicional Lógica Computacional Departamento de Matemática Aplicada Universidad de Málaga 10 de enero de 2008 Contenido 1 Sintaxis Alfabeto Fórmulas bien formadas Funciones recursivas

Más detalles

LÓGICA FORMAL TEORIAS DE PRIMER ORDEN. Sintaxis y semántica

LÓGICA FORMAL TEORIAS DE PRIMER ORDEN. Sintaxis y semántica LÓGICA FORMAL TEORIAS DE PRIMER ORDEN Sintaxis y semántica Pedro López Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid Lenguajes de primer orden 1 La lógica

Más detalles

Álgebra Booleana circuitos lógicos

Álgebra Booleana circuitos lógicos Álgebra Booleana y circuitos lógicos OBJETIVO GENERAL Teniendo en cuenta que los circuitos digitales o lógicos operan de forma binaria, emplear el álgebra booleana como fundamento teórico para el análisis,

Más detalles

Introducción. Ejemplos de expresiones que no son proposiciones

Introducción. Ejemplos de expresiones que no son proposiciones Introducción El objetivo de los matemáticos es descubrir y comunicar ciertas verdades. Las matemáticas son el lenguaje de los matemáticos y una demostración, es un método para comunicar una verdad matemática

Más detalles

SOBRE LOGICA MATEMATICA. Sandra M. Perilla-Monroy. Departamento de Ciencias Básicas, Universidad Santo Tomás, Bogotá, Colombia.

SOBRE LOGICA MATEMATICA. Sandra M. Perilla-Monroy. Departamento de Ciencias Básicas, Universidad Santo Tomás, Bogotá, Colombia. SOBRE LOGICA MATEMATICA Sandra M. Perilla-Monroy Departamento de Ciencias Básicas, Universidad Santo Tomás, Bogotá, Colombia. Resumen. sandraperilla@usantotomas.edu.co Carrera 9 No 51-11 Bogotá Colombia

Más detalles

p q p q p (p q) V V V V V F F F F V V F F F V F

p q p q p (p q) V V V V V F F F F V V F F F V F 3.2 Reglas de inferencia lógica Otra forma de transformación de las proposiciones lógicas son las reglas de separación, también conocidas como razonamientos válidos elementales, leyes del pensamiento,

Más detalles

Demostración Contraejemplo. Métodos Indirectos

Demostración Contraejemplo. Métodos Indirectos DEMOSTRACION Una demostración de un teorema es una verificación escrita que muestra que el teorema es verdadero. Informalmente, desde el punto de vista de la lógica, una demostración de un teorema es un

Más detalles

Ejercicios de lógica

Ejercicios de lógica 1. Sistemas formales. Ejercicios de lógica 1. Considere el siguiente sistema formal: Símbolos: M, I, U. Expresiones: cualquier cadena en los símbolos. Axioma: UMUIUU Regla de inferencia: xmyiz xumyuizuu

Más detalles

Lógica proposicional. Ivan Olmos Pineda

Lógica proposicional. Ivan Olmos Pineda Lógica proposicional Ivan Olmos Pineda Introducción Originalmente, la lógica trataba con argumentos en el lenguaje natural es el siguiente argumento válido? Todos los hombres son mortales Sócrates es hombre

Más detalles

Guía 4: Demostraciones en Cálculo Proposicional

Guía 4: Demostraciones en Cálculo Proposicional Introducción a los Algoritmos - 2do. cuatrimestre 2014 Guía 4: Demostraciones en Cálculo Proposicional Docentes: Walter Alini y Luciana Benotti. El objetivo principal de esta guía es lograr un buen entrenamiento

Más detalles

Introducción. Ejemplos de expresiones que no son proposiciones

Introducción. Ejemplos de expresiones que no son proposiciones Introducción El objetivo de los matemáticos es descubrir y comunicar ciertas verdades. Las matemáticas son el lenguaje de los matemáticos y una demostración, es un método para comunicar una verdad matemática

Más detalles