GPU IMPLEMENTATIONS OF SCHEDULING HEURISTICS FOR HETEROGENEOUS COMPUTING ENVIRONMENTS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "GPU IMPLEMENTATIONS OF SCHEDULING HEURISTICS FOR HETEROGENEOUS COMPUTING ENVIRONMENTS"

Transcripción

1 GPU IMPLEMENTATIONS OF SCHEDULING HEURISTICS FOR HETEROGENEOUS COMPUTING ENVIRONMENTS MAURO CANABÉ SERGIO NESMACHNOW Centro de Cálculo, Facultad de Ingeniería Universidad de la República, Uruguay GPU IMPLEMENTATIONS OF SCHEDULING HEURISTICS FOR HETEROGENEOUS COMPUTING ENVIRONMENTS 1/16

2 CONTENIDO 1. Introducción 2. Planificación en entornos heterogéneos 3. Heurísticas para planificación 4. Computación en GPU 5. Implementación en GPU 6. Análisis experimental 7. Conclusiones y trabajos futuros GPU IMPLEMENTATIONS OF SCHEDULING HEURISTICS FOR HETEROGENEOUS COMPUTING ENVIRONMENTS 2/16

3 INTRODUCCIÓN Computación distribuida heterogénea (HC) Computación paralela: clusters, grid computing. Scheduling (Planificación) Asignación de tareas a recursos. Distintos criterios: tiempo de ejecución, utilización, otros. Problema NP-hard. La heterogeneidad aumenta la complejidad del problema Heterogeneous Computing Scheduling Problem (HCSP). Utilizacion de heurísticas y metaheurísticas para resolverlo. Este trabajo estudia la aplicación de técnicas de computación paralela en GPU para mejorar el desempeño de heurísticas de planificación en sistemas HC. GPU IMPLEMENTATIONS OF SCHEDULING HEURISTICS FOR HETEROGENEOUS COMPUTING ENVIRONMENTS 3/16

4 PLANIFICACIÓN EN ENTORNOS HETEROGÉNEOS HC: conjunto coordinado de recursos informáticos heterogéneos. La planificación es crucial para lograr la eficiencia. HCSP formulación: Conjunto de máquinas heterogéneas P = {m 1, m 2,..., m M }. Conjunto de tareas T = {t 1, t 2,..., t N } a ser ejecutado en P. Ejecución de función de tiempo ET: P T R. Tiempo necesario para ejecutar la tarea t i en la máquina m j. Objetivo: encontrar un asignacion (function f: T N S M ) que minimiza el makespan: makespan = HCSP es NP-hard, la dimensión de HCSP, espacio de búsqueda es O(M N ) GPU IMPLEMENTATIONS OF SCHEDULING HEURISTICS FOR HETEROGENEOUS COMPUTING ENVIRONMENTS 4/16

5 HEURÍSTICAS PARA PLANIFICACIÓN Las técnicas de planificación basadas en lista (list scheduling) son métodos deterministas que trabajan asignando prioridades a las tareas según criterios prefijados. 1) mientras queden tareas por asignar 2) determinar la tarea más adecuada de acuerdo con el criterio elegido 3) para cada tarea t no asignada, cada máquina m 4) evaluar criterio (t, m) 5) fin para 6) asigna la tarea seleccionada a la equipo seleccionado 7) fin mientras GPU IMPLEMENTATIONS OF SCHEDULING HEURISTICS FOR HETEROGENEOUS COMPUTING ENVIRONMENTS 5/16

6 Min-Min o o o Sufferage o o o HEURÍSTICAS BASADAS EN LISTA Algoritmo ávido que selecciona la tarea que se puede completar lo antes posible. El método comienza con el conjunto U de todas las tareas no asignadas, calcula el MCT para cada tarea en U para cada máquina, y asigna la tarea con el MCT mínimo general para la mejor máquina. La tarea asignada se quita de U, y el proceso se repite hasta que todas las tareas se asignan. Genera asignaciones más equilibradas y por lo general encuentra valores más pequeños de makespan que las otras heurísticas, ya que se espera que las tareas sean asignadas a las maquinas que las ejecutan más rápido. En casa paso de la iteracion determina cual es la tarea que se vera más afectada si no es asignada. El valor de sufferage se calcula como la diferencia entre el mejor MCT de la tarea y su segundo mejor MCT. Da prioridad a las tareas con valor de sufferage más alto, asignándolas a las máquinas que las ejecuten en el mínimo tiempo. GPU IMPLEMENTATIONS OF SCHEDULING HEURISTICS FOR HETEROGENEOUS COMPUTING ENVIRONMENTS 6/16

7 COMPUTACIÓN EN GPU Originalmente la GPU fue diseñada para desempeñar exclusivamente el procesamiento de gráficos en las computadoras. Hoy en día, las GPU tienen una potencia de cálculo de dimensiones considerables. En los últimos diez años, las GPUs han sido utilizadas como una arquitectura de hardware en paralelo para lograr la eficiencia en la ejecución de aplicaciones. En un principio el desarrollo fue mediante el uso de APIs gráficas como OpenGL y DirectX. En 2007 NVIDIA introduce CUDA, una arquitectura de software para la gestión de la GPU como un dispositivo de computación en paralelo sin necesidad de mapear los datos y el cálculo en un API gráfico. GPU IMPLEMENTATIONS OF SCHEDULING HEURISTICS FOR HETEROGENEOUS COMPUTING ENVIRONMENTS 7/16

8 COMPUTACIÓN EN GPU - CUDA CUDA se basa en una extensión del lenguaje C Para el programador CUDA, la GPU es un dispositivo informático que es capaz de ejecutar un gran número de threads en paralelo. Cada thread de la GPU ejecuta simultáneamente una copia de un procedimiento especifico sobre un conjunto de datos diferentes. La GPU tiene su propia DRAM, y los datos se copian de la memoria DRAM de la GPU a la memoria RAM de la máquina (y viceversa) mediante llamadas a la API de optimizada CUDA. GPU IMPLEMENTATIONS OF SCHEDULING HEURISTICS FOR HETEROGENEOUS COMPUTING ENVIRONMENTS 8/16

9 IMPLEMENTACIÓN EN GPU Este trabajo presenta implementaciones paralelas de MinMin y Sufferage en GPU. Para cada tarea no asignada se ejecuta en paralelo sobre todas las máquinas la evaluación del criterio propuesto, almacenando en un vector auxiliar el identificador de la tarea, el mejor valor obtenido para el criterio y la máquina a la cual hay que asignar la tarea para obtener dicho valor. Este vector se procesa para obtener el mejor valor que cumpla con los criterios y asignar la tarea a la máquina. Este procesamiento del vector también se realiza usando la GPU. En el caso particular del algoritmo Min-Min, se realizo el procesamiento por máquina en lugar de por tareas. Esta estrategia de paralelismo por máquina es menos eficiente por su pobre escalabilidad para problemas de grandes dimensiones. GPU IMPLEMENTATIONS OF SCHEDULING HEURISTICS FOR HETEROGENEOUS COMPUTING ENVIRONMENTS 9/16

10 IMPLEMENTACIÓN EN GPU GPU IMPLEMENTATIONS OF SCHEDULING HEURISTICS FOR HETEROGENEOUS COMPUTING ENVIRONMENTS 10/16

11 Plataforma computacional ANÁLISIS EXPERIMENTAL Dell PowerEdge, QuadCore E5530 at 2.27 GHz, 48 GB RAM, CentOS Linux 5.4. Tesla C1060 Computing Processor (240 processor cores at 1.33 GHz, 4 GB). Instancias de prueba 24 instancias, con dimensiones (tareas maquinas): , , , 16384x512, 32768x1024, y 65536x2048. Para cada dimensión se han generado veinticuatro instancias HCSP en relación a todas la combinaciones de heterogeneidad y consistencia. Doce de ellas teniendo en cuenta los valores de parametrización de Ali et al (2000) y las otras doce con los valores de Braun et al (2001). GPU IMPLEMENTATIONS OF SCHEDULING HEURISTICS FOR HETEROGENEOUS COMPUTING ENVIRONMENTS 11/16

12 Resultados experimentales RESULTADOS Min-Min y Sufferage: valores promedio en 24 ejecuciones para todas las dimensiones. GPU IMPLEMENTATIONS OF SCHEDULING HEURISTICS FOR HETEROGENEOUS COMPUTING ENVIRONMENTS 12/16

13 speedup RESULTADOS Análisis de speedup 6 5 Min-Min Sufferage x x x x x x x2048 dimensión GPU IMPLEMENTATIONS OF SCHEDULING HEURISTICS FOR HETEROGENEOUS COMPUTING ENVIRONMENTS 13/16

14 CONCLUSIONES Ambos algoritmos fueron desarrollados siguiendo un enfoque de descomposición de dominio simple, el cual permitió escalar para resolver problemas de dimensión grande (65536 tareas y 2048 máquinas). Los resultados experimentales demostraron que las implementaciones paralelas de Min-Min y Sufferage en la GPU proporcionan aceleraciones signifcativas sobre el tiempo requerido por las implementaciones secuenciales en la resolución de casos de tamaño significativo. Estas implementaciones paralelas permiten hacer frente a grandes escenarios de planificación en tiempos de ejecución razonables. GPU IMPLEMENTATIONS OF SCHEDULING HEURISTICS FOR HETEROGENEOUS COMPUTING ENVIRONMENTS 14/16

15 TRABAJO FUTURO Mejorar las implementaciones propuestas en GPU, principalmente mediante el estudio de la gestión de la memoria dentro de la GPU de forma que los threads accedan más eficientemente a memoria. Realizar implementaciones híbridas que sean capaces de utilizar varias GPUs coordinadas por la CPU. Complementar las heurísticas con métodos eficientes de búsqueda local implementados en GPU. GPU IMPLEMENTATIONS OF SCHEDULING HEURISTICS FOR HETEROGENEOUS COMPUTING ENVIRONMENTS 15/16

16 GRACIAS POR SU ATENCIÓN FACULTAD DE INGENIERÍA, UNIVERSIDAD DE LA REPÚBLICA, URUGUAY GPU IMPLEMENTATIONS OF SCHEDULING HEURISTICS FOR HETEROGENEOUS COMPUTING ENVIRONMENTS 16/16

Arquitecturas GPU v. 2013

Arquitecturas GPU v. 2013 v. 2013 Stream Processing Similar al concepto de SIMD. Data stream procesado por kernel functions (pipelined) (no control) (local memory, no cache OJO). Data-centric model: adecuado para DSP o GPU (image,

Más detalles

EL CLUSTER FING: COMPUTACIÓN DE ALTO DESEMPEÑO EN FACULTAD DE INGENIERÍA

EL CLUSTER FING: COMPUTACIÓN DE ALTO DESEMPEÑO EN FACULTAD DE INGENIERÍA EL CLUSTER FING: COMPUTACIÓN DE ALTO DESEMPEÑO EN FACULTAD DE INGENIERÍA SERGIO NESMACHNOW Centro de Cálculo, Instituto de Computación FACULTAD DE INGENIERÍA, UNIVERSIDAD DE LA REPÚBLICA, URUGUAY EL CLUSTER

Más detalles

Modelo de aplicaciones CUDA

Modelo de aplicaciones CUDA Modelo de aplicaciones CUDA Utilización de GPGPUs: las placas gráficas se utilizan en el contexto de una CPU: host (CPU) + uno o varios device o GPUs Procesadores masivamente paralelos equipados con muchas

Más detalles

CLUSTER FING: ARQUITECTURA Y APLICACIONES

CLUSTER FING: ARQUITECTURA Y APLICACIONES CLUSTER FING: ARQUITECTURA Y APLICACIONES SERGIO NESMACHNOW Centro de Cálculo, Instituto de Computación FACULTAD DE INGENIERÍA, UNIVERSIDAD DE LA REPÚBLICA, URUGUAY CONTENIDO Introducción Clusters Cluster

Más detalles

High Performance Computing and Architectures Group

High Performance Computing and Architectures Group HPCA Group 1 High Performance Computing and Architectures Group http://www.hpca.uji.es Universidad Jaime I de Castellón ANACAP, noviembre de 2008 HPCA Group 2 Generalidades Creado en 1991, al mismo tiempo

Más detalles

GRID COMPUTING MALLA DE ORDENADORES

GRID COMPUTING MALLA DE ORDENADORES GRID COMPUTING MALLA DE ORDENADORES Introducción Concepto Compartir potencia computacional; Aprovechamiento de ciclos de procesamiento; El Grid Computing se enmarca dentro de la tecnología de computación

Más detalles

Solving Dense Linear Systems on Platforms with Multiple Hardware Accelerators

Solving Dense Linear Systems on Platforms with Multiple Hardware Accelerators Solving Dense Linear Systems on Platforms with Multiple Hardware Accelerators Maribel Castillo, Francisco D. Igual, Rafael Mayo, Gregorio Quintana-Ortí, Enrique S. Quintana-Ortí, Robert van de Geijn Grupo

Más detalles

FUNDAMENTOS DE COMPUTACIÓN PARA CIENTÍFICOS. CNCA Abril 2013

FUNDAMENTOS DE COMPUTACIÓN PARA CIENTÍFICOS. CNCA Abril 2013 FUNDAMENTOS DE COMPUTACIÓN PARA CIENTÍFICOS CNCA Abril 2013 6. COMPUTACIÓN DE ALTO RENDIMIENTO Ricardo Román DEFINICIÓN High Performance Computing - Computación de Alto Rendimiento Técnicas, investigación

Más detalles

Talleres CLCAR. CUDA para principiantes. Título. Mónica Liliana Hernández Ariza, SC3UIS-CRC NVIDIA Research Center monicalilianahernandez8@gmail.

Talleres CLCAR. CUDA para principiantes. Título. Mónica Liliana Hernández Ariza, SC3UIS-CRC NVIDIA Research Center monicalilianahernandez8@gmail. a CUDA para principiantes Mónica Liliana Hernández Ariza, SC3UIS-CRC NVIDIA Research Center monicalilianahernandez8@gmail.com Tener un primer encuentro práctico con la programación en CUDA para personas

Más detalles

TUTORIAL: COMPUTACIÓN de ALTO DESEMPEÑO

TUTORIAL: COMPUTACIÓN de ALTO DESEMPEÑO TUTORIAL : COMPUTACIÓN de ALTO DESEMPEÑO SERGIO NESMACHNOW Centro de Cálculo, Instituto de Computación FACULTAD DE INGENIERÍA, UNIVERSIDAD DE LA REPÚBLICA, URUGUAY CONTENIDO Introducción Computadores paralelos

Más detalles

CLUSTER FING: PARALELISMO de MEMORIA DISTRIBUIDA

CLUSTER FING: PARALELISMO de MEMORIA DISTRIBUIDA CLUSTER FING: PARALELISMO de MEMORIA DISTRIBUIDA SERGIO NESMACHNOW Centro de Cálculo, Instituto de Computación FACULTAD DE INGENIERÍA, UNIVERSIDAD DE LA REPÚBLICA, URUGUAY CONTENIDO Introducción: arquitecturas

Más detalles

Guía de determinación de tamaño y escalabilidad de Symantec Protection Center 2.1

Guía de determinación de tamaño y escalabilidad de Symantec Protection Center 2.1 Guía de determinación de tamaño y escalabilidad de Symantec Protection Center 2.1 Guía de determinación de tamaño y escalabilidad de Symantec Protection Center El software descrito en el presente manual

Más detalles

- Capacidad para dirigir las actividades objeto de los proyectos del ámbito de la informática de acuerdo con los conocimientos adquiridos.

- Capacidad para dirigir las actividades objeto de los proyectos del ámbito de la informática de acuerdo con los conocimientos adquiridos. Competencias generales - Capacidad para concebir, redactar, organizar, planificar, desarrollar y firmar proyectos en el ámbito de la ingeniería en informática que tengan por objeto, de acuerdo con los

Más detalles

Trabajo TP6 Sistemas Legados

Trabajo TP6 Sistemas Legados Trabajo TP6 Sistemas Legados VIRTUALIZACIÓN DE SISTEMAS A TRAVÉS DE APLICACIONES DE PAGO Diego Gálvez - 649892 Diego Grande - 594100 Qué es la virtualización? Técnica empleada sobre las características

Más detalles

CLOUD COMPUTING: DE LA VIRTUALIZACIÓN DE APLICACIONES Y DE ESCRITORIO, A LA VIRTUALIZACIÓN DE SERVIDORES.

CLOUD COMPUTING: DE LA VIRTUALIZACIÓN DE APLICACIONES Y DE ESCRITORIO, A LA VIRTUALIZACIÓN DE SERVIDORES. CLOUD COMPUTING: DE LA VIRTUALIZACIÓN DE APLICACIONES Y DE ESCRITORIO, A LA VIRTUALIZACIÓN DE SERVIDORES. Ing. Edgar Gutiérrez a, M.C. José Ruiz a, Dr. Diego Uribe a, Dra. Elisa Urquizo a, Dr. Enrique

Más detalles

Ingeniero en Informática

Ingeniero en Informática UNIVERSIDAD DE ALMERÍA Ingeniero en Informática CLÚSTER DE ALTO RENDIMIENTO EN UN CLOUD: EJEMPLO DE APLICACIÓN EN CRIPTOANÁLISIS DE FUNCIONES HASH Autor Directores ÍNDICE 1. Introducción 2. Elastic Cluster

Más detalles

Motores de Búsqueda Web Tarea Tema 2

Motores de Búsqueda Web Tarea Tema 2 Motores de Búsqueda Web Tarea Tema 2 71454586A Motores de Búsqueda Web Máster en Lenguajes y Sistemas Informáticos - Tecnologías del Lenguaje en la Web UNED 30/01/2011 Tarea Tema 2 Enunciado del ejercicio

Más detalles

Grado en Ingeniería Informática

Grado en Ingeniería Informática Grado en Ingeniería Informática Competencias Generales y trasversales De acuerdo con la resolución del Consejo de Universidades de fecha 3 de marzo de 2009, para obtener este título de grado en ingeniería

Más detalles

Permite compartir recursos en forma coordinada y controlada para resolver problemas en organizaciones multiinstitucionales

Permite compartir recursos en forma coordinada y controlada para resolver problemas en organizaciones multiinstitucionales The Anatomy of the Grid Enabling Scalable Virtual Organization Autores : Ian Foster, Carl Kesselman y Steven Tuecke. 2001 GRIDS y Organizaciones Virtuales Permite compartir recursos en forma coordinada

Más detalles

Resolución de problemas en paralelo

Resolución de problemas en paralelo Resolución de problemas en paralelo Algoritmos Paralelos Tema 1. Introducción a la computación paralela (segunda parte) Vicente Cerverón Universitat de València Resolución de problemas en paralelo Descomposición

Más detalles

Un algoritmo genético híbrido para resolver el EternityII. Rico, Martin; Ros, Rodrigo Directora: Prof. Dra. Irene Loiseau

Un algoritmo genético híbrido para resolver el EternityII. Rico, Martin; Ros, Rodrigo Directora: Prof. Dra. Irene Loiseau Un algoritmo genético híbrido para resolver el EternityII Rico, Martin; Ros, Rodrigo Directora: Prof. Dra. Irene Loiseau Temas Temas Introducción Eternity II Historia Descripción Demo Metaheurísticas Algoritmos

Más detalles

Técnicas SuperEscalares en la Paralelización de Bibliotecas de Computación Matricial sobre Procesadores Multinúcleo y GPUs

Técnicas SuperEscalares en la Paralelización de Bibliotecas de Computación Matricial sobre Procesadores Multinúcleo y GPUs Técnicas SuperEscalares en la Paralelización de Bibliotecas de Computación Matricial sobre Procesadores Multinúcleo y GPUs Enrique S. Quintana-Ortí quintana@icc.uji.es High Performance Computing & Architectures

Más detalles

Desarrollo de un cluster computacional para la compilación de. algoritmos en paralelo en el Observatorio Astronómico.

Desarrollo de un cluster computacional para la compilación de. algoritmos en paralelo en el Observatorio Astronómico. Desarrollo de un cluster computacional para la compilación de algoritmos en paralelo en el Observatorio Astronómico. John Jairo Parra Pérez Resumen Este artículo muestra cómo funciona la supercomputación

Más detalles

Arquitecturas de computadoras

Arquitecturas de computadoras Arquitecturas de computadoras Colaboratorio Nacional de Computación Avanzada (CNCA) 2014 Contenidos 1 Computadoras 2 Estación de Trabajo 3 Servidor 4 Cluster 5 Malla 6 Nube 7 Conclusiones Computadoras

Más detalles

Recursos y servicios HPC en el BIFI

Recursos y servicios HPC en el BIFI Recursos y servicios HPC en el BIFI Guillermo Losilla Anadón Responsable grupo HPC e infraestructuras de computación del BIFI guillermo@bifi.es Indice Grupo HPC@BIFI Servicio de cálculo y almacenamiento

Más detalles

CURSOS DE VERANO 2014

CURSOS DE VERANO 2014 CURSOS DE VERANO 2014 CLOUD COMPUTING: LA INFORMÁTICA COMO SERVICIO EN INTERNET LA PLATAFORMA GOOGLE CLOUD PLATFORM. GOOGLE APP ENGINE Pedro A. Castillo Valdivieso Universidad de Granada http://bit.ly/unia2014

Más detalles

Seminario II: Introducción a la Computación GPU

Seminario II: Introducción a la Computación GPU Seminario II: Introducción a la Computación GPU CONTENIDO Introducción Evolución CPUs-Evolución GPUs Evolución sistemas HPC Tecnologías GPGPU Problemática: Programación paralela en clústers heterogéneos

Más detalles

Competencias generales vinculadas a los distintos módulos Módulo de Formación Básica

Competencias generales vinculadas a los distintos módulos Módulo de Formación Básica Competencias generales vinculadas a los distintos módulos Módulo de Formación Básica C1. Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para aplicar

Más detalles

Documento de Competencias. Facultad de Informática, UPV/EHU. 1 Estructura general del Grado TE1 TE2 TE3 TE4 TE5 TE6 TE7 TE8

Documento de Competencias. Facultad de Informática, UPV/EHU. 1 Estructura general del Grado TE1 TE2 TE3 TE4 TE5 TE6 TE7 TE8 Documento de Competencias Grado en INGENIERÍA INFORMÁTICA Facultad de Informática, UPV/EHU 1 Estructura general del Grado 1.1 Fundamentos de Tecnología de los Principios de Diseño de Sistemas Digitales

Más detalles

INTRODUCCIÓN A LA COMPUTACION EN LA NUBE Y BIG DATA (1) Ing. Carlos Ormella Meyer

INTRODUCCIÓN A LA COMPUTACION EN LA NUBE Y BIG DATA (1) Ing. Carlos Ormella Meyer INTRODUCCIÓN A LA COMPUTACION EN LA NUBE Y BIG DATA (1) Ing. Carlos Ormella Meyer En los últimos años, el interés por la Computación en la Nube (Cloud Computing), tanto para uso personal como para negocios,

Más detalles

270150 - TGA - Tarjetas Gráficas y Aceleradores

270150 - TGA - Tarjetas Gráficas y Aceleradores Unidad responsable: 270 - FIB - Facultad de Informática de Barcelona Unidad que imparte: 701 - AC - Departamento de Arquitectura de Computadores Curso: Titulación: 2014 GRADO EN INGENIERÍA INFORMÁTICA

Más detalles

Software Computacional y su clasificación

Software Computacional y su clasificación Software Computacional y su clasificación Capítulo 5 El software En modo sencillo el software permite que las personas puedan contarle a la computadora cierto tipo de problemas y que ésta a su vez le ofrezca

Más detalles

Sistemas de Archivos Implementación. Módulo 11. Departamento de Informática Facultad de Ingeniería Universidad Nacional de la Patagonia San Juan Bosco

Sistemas de Archivos Implementación. Módulo 11. Departamento de Informática Facultad de Ingeniería Universidad Nacional de la Patagonia San Juan Bosco Sistemas de Archivos Implementación Módulo 11 Departamento de Informática Facultad de Ingeniería Universidad Nacional de la Patagonia San Juan Bosco Objetivos Describir los detalles locales de la implementación

Más detalles

HPC en Uruguay: pasado, presente y futuro

HPC en Uruguay: pasado, presente y futuro Tercer Encuentro Nacional de Computación de Alto Rendimiento para Aplicaciones Científicas HPC en Uruguay: pasado, presente y futuro Sergio Nesmachnow Universidad de la República WHPC14, Córdoba, Argentina,

Más detalles

Asignación de Procesadores

Asignación de Procesadores INTEGRANTES: Asignación de Procesadores Un sistema distribuido consta de varios procesadores. Estos se pueden organizar como colección de estaciones de trabajo personales, una pila pública de procesadores

Más detalles

Algoritmos evolutivos multiobjetivo para despacho de tareas en redes heterogéneas

Algoritmos evolutivos multiobjetivo para despacho de tareas en redes heterogéneas Instituto de Computación Facultad de Ingeniería Universidad de la República Montevideo, Uruguay Proyecto de Grado Algoritmos evolutivos multiobjetivo para despacho de tareas en redes heterogéneas Darío

Más detalles

Una mirada práctica a los Micro-Kernels y los Virtual Machine Monitors François Armand, Michel Gien INFORMATICA III

Una mirada práctica a los Micro-Kernels y los Virtual Machine Monitors François Armand, Michel Gien INFORMATICA III Una mirada práctica a los Micro-Kernels y los Virtual Machine Monitors François Armand, Michel Gien INFORMATICA III DI PIETRO, Franco RODRIGUEZ, Matías VICARIO, Luciano Introducción En este papper se muestran

Más detalles

Nombre de la asignatura: Inteligencia Artificial. Créditos: 2-2 - 4. Aportación al perfil

Nombre de la asignatura: Inteligencia Artificial. Créditos: 2-2 - 4. Aportación al perfil Nombre de la asignatura: Inteligencia Artificial Créditos: 2-2 - 4 Aportación al perfil Diseñar e implementar interfaces hombre- máquina y máquinamáquina para la automatización de sistemas. Identificar

Más detalles

Programación en LabVIEW para Ambientes Multinúcleo

Programación en LabVIEW para Ambientes Multinúcleo Programación en LabVIEW para Ambientes Multinúcleo Agenda Introducción al Multithreading en LabVIEW Técnicas de Programación en Paralelo Consideraciones de Tiempo Real Recursos Evolución de la Instrumentación

Más detalles

Profesor Santiago Roberto Zunino. Página 1

Profesor Santiago Roberto Zunino. Página 1 Profesor Santiago Roberto Zunino. Página 1 Software según su Hardware. Para establecer el software que debemos utilizar, siempre tenemos que tener en cuenta el Hardware con el que contamos, para tener

Más detalles

CURSOS DE VERANO 2014

CURSOS DE VERANO 2014 CURSOS DE VERANO 2014 CLOUD COMPUTING: LA INFORMÁTICA COMO SERVICIO EN INTERNET La plataforma Google Cloud Platform. Google App Engine Pedro A. Castillo Valdivieso Universidad de Granada La plataforma

Más detalles

Es un software del tipo MAP-REDUCE realizada usando la librería MPI para la

Es un software del tipo MAP-REDUCE realizada usando la librería MPI para la Es un software del tipo MAP-REDUCE realizada usando la librería MPI para la ejecución de programas secuenciales de forma paralela con el requisito de no modificar los programas secuenciales. La idea fundamental

Más detalles

Plataformas Tecnológicas y Requerimientos Técnicos de las Aplicaciones de

Plataformas Tecnológicas y Requerimientos Técnicos de las Aplicaciones de Plataformas Tecnológicas y Requerimientos Técnicos de las Aplicaciones de Departamento de Sistemas 2014 Página 1 INDICE Introducción 3 Requisitos Generales del Entorno 3 Requisitos Generales de las Aplicaciones

Más detalles

Tema 11. Soporte del Sistema Operativo 11.1. REQUERIMIENTOS DE LOS SISTEMAS OPERATIVOS. 11.1.1. MULTIPROGRAMACIÓN.

Tema 11. Soporte del Sistema Operativo 11.1. REQUERIMIENTOS DE LOS SISTEMAS OPERATIVOS. 11.1.1. MULTIPROGRAMACIÓN. Tema 11 Soporte del Sistema Operativo 11.1. REQUERIMIENTOS DE LOS SISTEMAS OPERATIVOS. El sistema operativo es básicamente un programa que controla los recursos del computador, proporciona servicios a

Más detalles

VINCULACIÓN DE ASIGNATURAS A ÁREAS DE CONOCIMIENTO Graduado/a en Ingeniería Informática

VINCULACIÓN DE ASIGNATURAS A ÁREAS DE CONOCIMIENTO Graduado/a en Ingeniería Informática Página 1 de 6 Administración de Bases de Datos Administración de Redes y Sistemas Administración de Sistemas Operativos Algoritmia y Complejidad Ampliación de Física Análisis y Diseño de Algoritmos Análisis

Más detalles

Unidad 1: Conceptos generales de Sistemas Operativos.

Unidad 1: Conceptos generales de Sistemas Operativos. Unidad 1: Conceptos generales de Sistemas Operativos. Tema 2: Estructura de los sistemas de computación. 2.1 Funcionamiento de los sistemas de computación. 2.2 Ejecución de instrucciones e interrupciones

Más detalles

ACTIVIDADES TEMA 1. EL LENGUAJE DE LOS ORDENADORES. 4º E.S.O- SOLUCIONES.

ACTIVIDADES TEMA 1. EL LENGUAJE DE LOS ORDENADORES. 4º E.S.O- SOLUCIONES. 1.- a) Explica qué es un bit de información. Qué es el lenguaje binario? Bit es la abreviatura de Binary digit. (Dígito binario). Un bit es un dígito del lenguaje binario que es el lenguaje universal usado

Más detalles

Computación Híbrida, Heterogénea y Jerárquica

Computación Híbrida, Heterogénea y Jerárquica Computación Híbrida, Heterogénea y Jerárquica http://www.ditec.um.es/ javiercm/curso psba/ Curso de Programación en el Supercomputador Ben-Arabí, febrero-marzo 2012 Organización aproximada de la sesión,

Más detalles

Tarjetas gráficas para acelerar el cómputo complejo

Tarjetas gráficas para acelerar el cómputo complejo LA TECNOLOGÍA Y EL CÓMPUTO AVANZADO Tarjetas gráficas para acelerar el cómputo complejo Tarjetas gráficas para acelerar el cómputo complejo Jorge Echevarría * La búsqueda de mayor rendimiento A lo largo

Más detalles

En verde están algunas propuestas que entendemos que faltan y que ayudarían a mejorar las fichas sustancialmente.

En verde están algunas propuestas que entendemos que faltan y que ayudarían a mejorar las fichas sustancialmente. NOTAS ACLARATORIAS: Esta ficha de grado es la resultante de las dos reuniones celebradas (9 enero 2009 y 23 de febrero de 2009) por la subcomisión creada desde el MICIIN para debatir las fichas de Grado

Más detalles

Equipos de Cálculo LinuxVixion basados en GPU. Sistemas de Modelización Molecular Certificados para Amber Molecular Dynamics

Equipos de Cálculo LinuxVixion basados en GPU. Sistemas de Modelización Molecular Certificados para Amber Molecular Dynamics Equipos de Cálculo LinuxVixion basados en GPU Sistemas de Modelización Molecular Certificados para Amber Molecular Dynamics Madrid, 2014 www.linuxvixion.com 1. Presentación LinuxVixion, S.L, compañía española

Más detalles

Nicolás Zarco Arquitectura Avanzada 2 Cuatrimestre 2011

Nicolás Zarco Arquitectura Avanzada 2 Cuatrimestre 2011 Clusters Nicolás Zarco Arquitectura Avanzada 2 Cuatrimestre 2011 Introducción Aplicaciones que requieren: Grandes capacidades de cómputo: Física de partículas, aerodinámica, genómica, etc. Tradicionalmente

Más detalles

Tema 2: Implementación del núcleo de un Sistema Operativo

Tema 2: Implementación del núcleo de un Sistema Operativo Tema 2: Implementación del núcleo de un Sistema Operativo 1. Sistema Operativo Unix 2. Sistema Operativo Windows (a partir de NT) Dpto. Lenguajes y Sistemas Informáticos. Universidad de Granada 1 1. Sistema

Más detalles

MÁSTERES PROPIOS EN INFORMÁTICA IMPARTIDOS EN MODALIDAD TELEFORMACIÓN (VIRTUAL CON TUTORIZACIÓN)

MÁSTERES PROPIOS EN INFORMÁTICA IMPARTIDOS EN MODALIDAD TELEFORMACIÓN (VIRTUAL CON TUTORIZACIÓN) CURSO 2009-2010 MÁSTERES PROPIOS EN INFORMÁTICA IMPARTIDOS EN MODALIDAD TELEFORMACIÓN (VIRTUAL CON TUTORIZACIÓN) MASTER EN PROYECTOS Y DIRECCIÓN INFORMÁTICA AVANZADA MASTER EN LENGUAJES E INGENIERÍA DEL

Más detalles

Facultad Politécnica UNA Ing. Julio Paciello juliopaciello@gmail.com

Facultad Politécnica UNA Ing. Julio Paciello juliopaciello@gmail.com Facultad Politécnica UNA Ing. Julio Paciello juliopaciello@gmail.com Contenidos Clúster de Investigación Aplicada Proyectos HPC Clúster Hadoop para tecnologías de BI Una nube privada para la Administración

Más detalles

Denominación de la materia. N créditos ECTS = 36 carácter = MIXTA INGENIERIA DE COMPUTADORAS

Denominación de la materia. N créditos ECTS = 36 carácter = MIXTA INGENIERIA DE COMPUTADORAS Denominación de la materia INGENIERIA DE COMPUTADORAS N créditos ECTS = 36 carácter = MIXTA Ubicación dentro del plan de estudios y duración La materia Ingeniería de Computadoras está formada por 6 asignaturas

Más detalles

Modelo de estimación de speedup factor mediante umbralización en multicores asimétricos

Modelo de estimación de speedup factor mediante umbralización en multicores asimétricos Modelo de estimación de speedup factor mediante umbralización en multicores asimétricos Reporte Técnico Adrian Pousa 1 Juan Carlos Saez 1 Instituto de Investigación en Informática LIDI Argentina. Facultad

Más detalles

REPÚBLICA DE PANAMÁ MINISTERIO DE SALUD GUÍA PARA SOLICITAR SOPORTE A LA HERRAMIENTA INFORMATICA SIREGES

REPÚBLICA DE PANAMÁ MINISTERIO DE SALUD GUÍA PARA SOLICITAR SOPORTE A LA HERRAMIENTA INFORMATICA SIREGES REPÚBLICA DE PANAMÁ MINISTERIO DE SALUD GUÍA PARA SOLICITAR SOPORTE A LA HERRAMIENTA INFORMATICA SIREGES Página 1 Tabla de Contenidos INTRODUCCIÓN... 3 OBJETIVOS... 4 REQUISITOS DE HARDWARE Y SOFTWARE

Más detalles

Es el conjunto de programas y procedimientos ejecutados en un computador, necesarios para hacer posible la realización de una tarea específica.

Es el conjunto de programas y procedimientos ejecutados en un computador, necesarios para hacer posible la realización de una tarea específica. Introducción a la tecnología informática 1- EL SISTEMA DE CÓMPUTO Un sistema de cómputo es un conjunto de elementos físicos y electrónicos (Hardware), los cuales funcionan ordenadamente bajo el control

Más detalles

Generalidades Computacionales

Generalidades Computacionales Capítulo 2 Generalidades Computacionales 2.1. Introducción a los Computadores Definición: Un computador es un dispositivo electrónico que puede transmitir, almacenar, recuperar y procesar información (datos).

Más detalles

Control térmico de un Turbofan

Control térmico de un Turbofan DEPARTAMENTO DE LENGUAJES Y SISTEMAS INFORMÁTICOS Control térmico de un Turbofan Proyecto de la asignatura programación en tiempo real y bases de datos 23/01/2014 PROYECTO Contenido 1. Objetivo y alcance

Más detalles

Kepler. 1. Presentación de la arquitectura. Índice de contenidos [25 diapositivas] Kepler, Johannes (1571-1630)

Kepler. 1. Presentación de la arquitectura. Índice de contenidos [25 diapositivas] Kepler, Johannes (1571-1630) Índice de contenidos [25 diapositivas] Manuel Ujaldón Nvidia CUDA Fellow Dpto. Arquitectura de Computadores Universidad de Málaga 1. Presentación de la arquitectura [3] 2. Los cores y su organización [7]

Más detalles

Sistema de gestión de procesos institucionales y documental.

Sistema de gestión de procesos institucionales y documental. [Documento versión 1.7 del 10/10/2015] Sistema de gestión de procesos institucionales y documental. El sistema de gestión de procesos institucionales y documental, es una solución diseñada para mejorar

Más detalles

www.bsc.es RECURSOS SUPERCOMPUTACIÓN BSC- CNS RES PRACE

www.bsc.es RECURSOS SUPERCOMPUTACIÓN BSC- CNS RES PRACE www.bsc.es RECURSOS SUPERCOMPUTACIÓN CNS RES PRACE BSC- + Equipos + Capacidad TIER 0 Centros europeos TIER 1 Centros nacionales TIER 2 Centros regionales y universidades 2 BARCELONA SUPERCOMPUTING CENTER

Más detalles

CA Automation Suite for Hybrid Clouds

CA Automation Suite for Hybrid Clouds HOJA DEL PRODUCTO: For Hybrid Clouds for Hybrid Clouds for Hybrid Clouds está diseñada para aumentar la agilidad y la eficacia, de forma que pueda hacer lo siguiente: Sobrellevar las ráfagas de demanda

Más detalles

Programación híbrida en arquitecturas cluster de multicore. Escalabilidad y comparación con memoria compartida y pasaje de mensajes.

Programación híbrida en arquitecturas cluster de multicore. Escalabilidad y comparación con memoria compartida y pasaje de mensajes. Programación híbrida en arquitecturas cluster de multicore. Escalabilidad y comparación con memoria compartida y pasaje de mensajes. Fabiana Leibovich, Armando De Giusti, Marcelo Naiouf, Laura De Giusti,

Más detalles

Implementación de tecnologías móviles para celular en una biblioteca universitaria

Implementación de tecnologías móviles para celular en una biblioteca universitaria Título de la ponencia: Implementación de tecnologías móviles para celular en una biblioteca universitaria Información del autor(es): Nombres y apellidos: JOSE O. VERA Grado académico: Ingeniero en Electrónica

Más detalles

High Performance Computing y Big Data en AWS. +info: (http://gac.udc.es) HPC y Big Data en AWS 16 Abril, 2012 1 / 14

High Performance Computing y Big Data en AWS. +info: (http://gac.udc.es) HPC y Big Data en AWS 16 Abril, 2012 1 / 14 High Performance Computing y Big Data en AWS +info: (http://gac.udc.es) HPC y Big Data en AWS 16 Abril, 212 1 / 14 High Performance Computing High Performance Computing (HPC) Afonta grandes problemas empresariales,

Más detalles

Computación heterogénea y su programación. 1. Introducción a la computación heterogénea. Indice de contenidos [38 diapositivas]

Computación heterogénea y su programación. 1. Introducción a la computación heterogénea. Indice de contenidos [38 diapositivas] Computación heterogénea y su programación Manuel Ujaldón Nvidia CUDA Fellow Departmento de Arquitectura de Computadores Universidad de Málaga (España) Indice de contenidos [38 diapositivas] 1. Introducción

Más detalles

Segmentación de Imágenes en Procesadores Many-Core

Segmentación de Imágenes en Procesadores Many-Core Universidad de Santiago de Compostela Segmentación de Imágenes en Procesadores Many-Core Lilien Beatriz Company Garay Fernández lilien.gf@gmail.com Indice 1. Introducción Single-chip Cloud Computer (SCC)

Más detalles

Tópicos Avanzados de Análisis y Diseño INGENIERIA DE SOFTWARE ING. MA. MARGARITA LABASTIDA ROLDÁN

Tópicos Avanzados de Análisis y Diseño INGENIERIA DE SOFTWARE ING. MA. MARGARITA LABASTIDA ROLDÁN Tópicos Avanzados de Análisis y Diseño INGENIERIA DE SOFTWARE ING. MA. MARGARITA LABASTIDA ROLDÁN Proceso de Negocio (Business Process) Conjunto estructurado, medible de actividades para producir un producto.

Más detalles

Implementación de un Cluster de Computadoras con software libre para Computación Científica en Jicamarca

Implementación de un Cluster de Computadoras con software libre para Computación Científica en Jicamarca Implementación de un Cluster de Computadoras con software libre para Computación Científica en Jicamarca A.Zamudio M. Milla Contenido de la Presentación 1 Radio Observatorio de Jicamarca 2 3 4 5 6 Índice

Más detalles

Laboratorio de Herramientas Computacionales

Laboratorio de Herramientas Computacionales Laboratorio de Herramientas Computacionales Tema 1.1 Componentes físicos de la computadora UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO FACULTAD DE INGENIERIA ELECTRICA M.I. ROSALÍA MORA JUÁREZ Antecedentes

Más detalles

INFORME TÉCNICO PREVIO DE EVALUACIÓN DE SOFTWARE N 015-2012 SOFTWARE DE VIRTUALIZACIÓN

INFORME TÉCNICO PREVIO DE EVALUACIÓN DE SOFTWARE N 015-2012 SOFTWARE DE VIRTUALIZACIÓN INFORME TÉCNICO PREVIO DE EVALUACIÓN DE SOFTWARE N 01-2012 SOFTWARE DE VIRTUALIZACIÓN I. NOMBRE DEL ÁREA El área encargada de la evaluación técnica para la adquisición de software es la Unidad de Tecnologías

Más detalles

rutas e información relacionada con puntos de interés en la UDLAP. como los requerimientos de hardware y software establecidos.

rutas e información relacionada con puntos de interés en la UDLAP. como los requerimientos de hardware y software establecidos. Capítulo I. Planteamiento del problema Este capítulo presentará la introducción y planteamiento del problema a resolver por el sistema que se implementará, llamado Navin, un servicio basado en localización

Más detalles

ESPECIALIZACIÓN EN GESTIÓN DE BASE DE DATOS GUÍA DIDÁCTICA PARA LA GESTIÓN DE PROYECTOS Código: EGBD-P01-GD01

ESPECIALIZACIÓN EN GESTIÓN DE BASE DE DATOS GUÍA DIDÁCTICA PARA LA GESTIÓN DE PROYECTOS Código: EGBD-P01-GD01 ESPECIALIZACIÓN EN GESTIÓN DE BASE DE DATOS GUÍA DIDÁCTICA PARA LA GESTIÓN DE PROYECTOS Código: EGBD-P01-GD01 1. IDENTIFICACIÓN DE LA GUÍA DIDÁCTICA DISEÑO Y ADMINISTRACIÓN DE UNA BODEGA DE DATOS Nombre

Más detalles

Procesos. Bibliografía. Threads y procesos. Definiciones

Procesos. Bibliografía. Threads y procesos. Definiciones Procesos Prof. Mariela Curiel Bibliografía A. Tanembaum & M. Van Steen. Sistemas Distribuidos. Principios y Paradigmas. 2da. Edición. Smith & Nair. The Architecture of Virtual Machines. IEEE Computer.

Más detalles

270068 - PAP - Programación y Arquitecturas Paralelas

270068 - PAP - Programación y Arquitecturas Paralelas Unidad responsable: 270 - FIB - Facultad de Informática de Barcelona Unidad que imparte: 701 - AC - Departamento de Arquitectura de Computadores Curso: Titulación: 2014 GRADO EN INGENIERÍA INFORMÁTICA

Más detalles

Tecninorte Programación y Mantenimiento Parque Empresarial Tirso González, 22 - oficina 3 39610 - Astillero - Cantabria

Tecninorte Programación y Mantenimiento Parque Empresarial Tirso González, 22 - oficina 3 39610 - Astillero - Cantabria Misión y Valores Para nuestra empresa el cliente es lo más importante, por ello ofrecemos una estrecha relación de confianza y colaboración. Nuestra intención es poder ofrecer a nuestros clientes un servicio

Más detalles

Diferencias entre Windows 2003 Server con Windows 2008 Server

Diferencias entre Windows 2003 Server con Windows 2008 Server Diferencias entre Windows 2003 Server con Windows 2008 Server WINDOWS SERVER 2003 Windows Server 2003 es un sistema operativo de propósitos múltiples capaz de manejar una gran gama de funsiones de servidor,

Más detalles

Linux Week PUCP. Computación de Alto Rendimiento en Linux. rmiguel@senamhi.gob.pe

Linux Week PUCP. Computación de Alto Rendimiento en Linux. rmiguel@senamhi.gob.pe Linux Week PUCP 2006 Computación de Alto Rendimiento en Linux Richard Miguel San Martín rmiguel@senamhi.gob.pe Agenda Computación Científica Computación Paralela High Performance Computing Grid Computing

Más detalles

Computación de Propósito General en Unidades de Procesamiento Gráfico GPGPU. Clase 0 Lanzamiento del Curso. Motivación

Computación de Propósito General en Unidades de Procesamiento Gráfico GPGPU. Clase 0 Lanzamiento del Curso. Motivación Computación de Propósito General en Unidades de Procesamiento Gráfico () Pablo Ezzatti, Martín Pedemonte Clase 0 Lanzamiento del Curso Contenido Evolución histórica en Fing Infraestructura disponible en

Más detalles

Introducción. Por último se presentarán las conclusiones y recomendaciones pertinentes.

Introducción. Por último se presentarán las conclusiones y recomendaciones pertinentes. Introducción En el presente documento se explicarán las consideraciones realizadas para implementar la convolución bidimensional en la arquitectura CUDA. En general se discutirá la metodología seguida

Más detalles

Gestión de las Pruebas Funcionales

Gestión de las Pruebas Funcionales Gestión de las Pruebas Funcionales Beatriz Pérez Centro de Ensayos de Software Centro de Ensayos de Software Consorcio creado en Junio de 2004 entre Cámara Uruguaya de Tecnologías de la Información (CUTI)

Más detalles

Framework para el Entrenamiento en Seguridad Informática

Framework para el Entrenamiento en Seguridad Informática Introducción Framework para el Entrenamiento en Seguridad Informática Juan Diego Campo Marcelo Rodríguez Grupo de Seguridad Instituto de Computación Facultad de Ingeniería - UdelaR Jueves 24 de Junio,

Más detalles

MATERIA: Arquitectura de Computadoras CÓDIGO: COM 152 CRÉDITOS: 3. PERIODO LECTIVO: Mayo-Agosto del 2004. PRE-REQUISITO: Ninguno

MATERIA: Arquitectura de Computadoras CÓDIGO: COM 152 CRÉDITOS: 3. PERIODO LECTIVO: Mayo-Agosto del 2004. PRE-REQUISITO: Ninguno UNIVERSIDAD DE ESPECIALIDADES ESPÍRITU SANTO FACULTAD DE SISTEMAS, TELECOMUNICACIONES Y ELECTRÓNICA PROGRAMA ANALÍTICO (SUBJECT DESCRIPTION) MATERIA: Arquitectura de Computadoras CÓDIGO: COM 152 CRÉDITOS:

Más detalles

Servicios avanzados de supercomputación para la ciència y la ingeniería

Servicios avanzados de supercomputación para la ciència y la ingeniería Servicios avanzados de supercomputación para la ciència y la ingeniería Servicios avanzados de supercomputación para la ciència y la ingeniería HPCNow! provee a sus clientes de la tecnología y soluciones

Más detalles

PROGRAMA FORMATIVO Virtualización, computación en la nube y alta disponibilidad con Oracle Solaris

PROGRAMA FORMATIVO Virtualización, computación en la nube y alta disponibilidad con Oracle Solaris PROGRAMA FORMATIVO Virtualización, computación en la nube y alta disponibilidad con Oracle Solaris Julio 2014 DATOS GENERALES DE LA ESPECIALIDAD 1. Familia Profesional: INFORMÁTICA Y COMUNICACIONES Área

Más detalles

GANETEC SOLUTIONS HPC Farmacéuticas

GANETEC SOLUTIONS HPC Farmacéuticas GANETEC SOLUTIONS HPC Farmacéuticas La integración de tecnologías HPC en el sector Farmacéutico y de la Bioinformática ha permitido grandes avances en diversos campos. NUESTRA VISIÓN Estas nuevas posibilidades

Más detalles

Compiladores y Lenguajes de Programación. Maria de Guadalupe Cota Ortiz

Compiladores y Lenguajes de Programación. Maria de Guadalupe Cota Ortiz Compiladores y Lenguajes de Programación Maria de Guadalupe Cota Ortiz Organizaciones que rigen las normas para estandarización de Lenguajes de Programación IEEE (Instituto de Ingenieros Eléctricos y Electrónicos)

Más detalles

Módulo: Modelos de programación para Big Data

Módulo: Modelos de programación para Big Data Program. paralela/distribuida Módulo: Modelos de programación para Big Data (título original: Entornos de programación paralela basados en modelos/paradigmas) Fernando Pérez Costoya Introducción Big Data

Más detalles

Soluciones para entornos HPC

Soluciones para entornos HPC Dr.. IT Manager / Project Leader @ CETA-Ciemat abelfrancisco.paz@ciemat.es V Jornadas de Supercomputación y Avances en Tecnología INDICE 1 2 3 4 HPC Qué? Cómo?..................... Computación (GPGPU,

Más detalles

Perspectivas de la Computación Científica. Clusters, Grids y Clouds. Desarrollos y retos Raúl Ramos Pollán Universidad Nacional de Colombia

Perspectivas de la Computación Científica. Clusters, Grids y Clouds. Desarrollos y retos Raúl Ramos Pollán Universidad Nacional de Colombia Perspectivas de la Computación Científica. Clusters, Grids y Clouds. Desarrollos y retos Raúl Ramos Pollán Universidad Nacional de Colombia 1 Computación Científica La Ciencia e Ingeniería Basada en la

Más detalles

CAPITULO II MANUAL DE USUARIO

CAPITULO II MANUAL DE USUARIO 1 CAPITULO II MANUAL DE USUARIO 2 CONTENIDO GENERALIDADES Introducción 5 REQUERIMIENTOS Servidor no Dedicado 6 Consideraciones Generales 7-8 GUIA DE INSTALACION Instalación Cliente 11 Desinstalación del

Más detalles

DESKTOP GRID Y COMPUTACIÓN VOLUNTARIA: INTRODUCCIÓN A LA TECNOLOGÍA BOINC

DESKTOP GRID Y COMPUTACIÓN VOLUNTARIA: INTRODUCCIÓN A LA TECNOLOGÍA BOINC DESKTOP GRID Y COMPUTACIÓN VOLUNTARIA: INTRODUCCIÓN A LA TECNOLOGÍA BOINC José Luis Guisado Lizar http://cum.unex.es/profes/profes/jlguisado Grupo de Evolución Artificial (GEA) Universidad de Extremadura

Más detalles

,7 PREVIO DE EVALUACIÓN DE SOFTWARE No 01 8-2008-GT1000

,7 PREVIO DE EVALUACIÓN DE SOFTWARE No 01 8-2008-GT1000 INFORME TECNICO,7 PREVIO DE EVALUACIÓN DE SOFTWARE No 01 8-2008-GT1000 Adquisición de Software para el diseño de contenido impreso, interactivo; películas; vídeos y contenido para dispositivos m 1. MBRE

Más detalles

Procesamiento de imágenes en GPUs mediante CUDA. I. Introducción. Indice de contenidos

Procesamiento de imágenes en GPUs mediante CUDA. I. Introducción. Indice de contenidos Procesamiento de imágenes en GPUs mediante CUDA Manuel Ujaldón Martínez Nvidia CUDA Fellow Departamento de Arquitectura de Computadores Universidad de Málaga Indice de contenidos 1. Introducción. [2] 2.

Más detalles

Carrera: SCC-1014 SATCA 1 2-2-4

Carrera: SCC-1014 SATCA 1 2-2-4 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Lenguajes de Interfaz Carrera: Ingeniería en Sistemas Computacionales Clave de la asignatura: SATCA 1 SCC-1014 2-2-4 2.- PRESENTACIÓN Caracterización

Más detalles