Se va a cumplir que cuanto mayor sea el tiempo de conservación, mayor será el deterioro.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Se va a cumplir que cuanto mayor sea el tiempo de conservación, mayor será el deterioro."

Transcripción

1 Índice de la Asignatura Tecnología de los Alimentos TEMA 1: INTRODUCCIÓN. La conservación de un alimento consiste en mantener su nivel de calidad inicial, en color, forma, sabor, etc. Por lo tanto, habrá que luchar contra las alteraciones, internas o externas, que modifican esas condiciones iniciales. Los productos pueden ir evolucionando, al degradarse, por diversas reacciones: Reacciones químicas de degradación. Reacciones de Maillard (pardeamiento enzimático) entre azúcares y proteínas, se transforman en compuestos intermedios y después en polímeros pardos (suelen ser amargos). Desnaturalización de las proteínas o de los ácidos nucleicos. Se producen cambios en la estructura terciaria o cuaternaria que producen variaciones de textura, características organolépticas, etc. Modificación de los almidones (amilasas, variación de temperatura...), las propiedades que aportan esos almidones se van a perder (espesantes). Oxidaciones, en las grasas dan lugar a enranciamientos. Muchas de esas oxidaciones suelen ser de origen enzimático. Reacciones enzimáticas de degradación. Enzimas de ruptura, rompen compuestos mayores hidrolasas como son por ejemplo las amilasas (almidón), las proteasas (proteínas), las lipasas (ácidos grasos), las glucoxidasas (glúcidos). Enzimas oxidasas, que por lo general son malas. Entre ellas están las polifenoloxidasas (polifenoles) o las lipoxigenasas (lípidos). Reacciones biológicas. Las van a soportar todos los productos, cuando se unen a microorganismos se forman metabolitos, se producen reacciones alternantes, algunas de las cuales pueden ser tóxicas, a diferencia de las anteriores, que solo afectan al aspecto y no son perjudiciales. Se pueden producir tanto en medios aerobios como en anaerobios. Todas estas reacciones pueden ser empleadas tanto para dirigir/controlar los procesos de fabricación de determinados productos. FACTORES QUE INFLUYEN EN EL DETERIORO. El tiempo. Se va a cumplir que cuanto mayor sea el tiempo de conservación, mayor será el deterioro. Temperatura. 1

2 Suele seguir un proceso de deterioro de crecimiento exponencial: a mayor temperatura, mayor deterioro (siempre considerando una temperatura normal, entre los 0 30 ºC). Una vez superados ciertos límites (por encima o por debajo) la temperatura es beneficiosa porque nos sirve para controlar el crecimiento y la eliminación de microorganismos. Hidratación. Incide directamente en las reacciones biológicas, ya que el agua es el medio en el que los microorganismos desarrollan su metabolismo, luego podemos decir que a mayor cantidad de agua se va a producir un mayor deterioro. Acidez (ph). El valor de ph que el producto presente va a influir sobre todo en las reacciones enzimáticas y biológicas, de tal manera que menor ph produce un menor crecimiento de microorganismos. Composición de la atmósfera. Se puede crear una determinada atmósfera en ambientes controlados, si no existe aire (oxígeno) entonces no se van a producir oxidaciones, no se produce el desarrollo de organismos aerobios, etc. Una característica de los productos vegetales una vez recogidos es que siguen respirando; cuando acaban con el oxígeno, la respiración se detiene. TECNICAS PARA EVITAR ALTERACIONES. Hay tres métodos para conseguirlo, (en esta asignatura sólo veremos los físicos) Métodos Físicos. Calentamiento. Todos los tratamientos térmicos van a eliminar enzimas y microorganismos Enfriamiento. Los tratamientos de congelación o de refrigeración no destruyen los microorganismos pero retrasan o detienen su desarrollo. Desecación. La concentración, la deshidratación o la liofilización son tratamientos de inhibición de la actividad del agua (disminuye la actividad enzimática) Métodos químicos. Aditivos. Conservantes. CO2 Métodos Microbiológicos. (Fermentación) TEMA 2: TRATAMIENTOS POR CALOR, GENERALIDADES. El principal objetivo de todos los tratamientos térmicos es el de asegurar la destrucción de todos los microorganismos vivos que pueden deteriorar la calidad o de perjudicar la salud del consumidor. Cada microorganismo tiene su propia resistencia al calor y aunque a 300 ºC se les mata a todos, no se le puede aplicar est temperatura a los productos por las alteraciones organolépticas que estos sufrirían. Lo que se va a intentar es eliminar la mayor parte de los microorganismos sin alterar las demasiado las características propias 2

3 al producto. A determinadas temperaturas sólo se acaba con ciertos microorganismos pero las características se conservan mejor. Las enzimas son bastante sensibles al calor y es de los elementos que más pronto se degradan Para diseñar un proceso térmico hay que conocer la termorresistencia de los microorganismos pertenecientes al producto, la naturaleza del alimento y los parámetros que le vienen asociados (conductividad del calor, alteraciones por calor, velocidad de transmisión de calor...). Todos los tratamientos térmicos en los que se apliquen altas temperaturas y tiempos prolongados se va a producir una destrucción de microorganismos y enzimas. Los que apliquen temperaturas altas pero tiempos cortos consiguen lo mismo salvo que se conservan mucho mejor las características organolépticas del alimento. Según lo que se quiera conseguir, el tratamiento será más o menos severo. En algunos casos eliminar la flora microbiana pero solo superficialmente, en otros eliminaremos sólo los que son perjudiciales para la salud y en otros será necesario eliminar todos los microorganismos. Ventajas del calor: Los tratamientos por calor se pueden controlar de forma muy exacta, tanto en duración como en la temperatura aplicada al producto. Se destruyen componentes antinutricionales del alimento (componentes del alimento que disminuyen la disponibilidad de algunos nutrientes). CLASIFICACION DE LOS TRATAMIENTOS TERMICOS. Escaldado. En esta operación no se produce una destrucción fuerte de microorganismos, se realiza con vapor de agua o con agua caliente a una temperatura de unos 85 95ºC/ 5 minutos. Se aplica a frutas y verduras (delicadas), el objetivo es facilitar procesos posteriores (por ejemplo, elimina gases por la estructura porosa del tejido vegetal lo cual permite hacer el vacío en una conserva). El escaldado nos va a eliminar todas las enzimas, lo que nos asegura que no se estropeen a corto plazo. > Para este proceso se suele reducir el tamaño de las piezas[author:rbh]. Pasterización. Se aplica sobre todo en líquidos. Las temperaturas no suelen sobrepasar los 100 ºC, los tiempos son más largos que los del escaldado. El objetivo principal de este proceso es la reducción de la carga microbiana, eliminamos sólo los microorganismos patógenos, por lo que aun van a quedar algunos en el producto. Esterilización. Proceso similar pero realizado a temperaturas superiores ( ºC /10 minutos), por tanto los alimentos se ven más alterados que con la pasterización (sabores distintos). Se pretende destruir todos los microorganismos, tanto los patógenos como los que pueden afectar al estado de los alimentos, lo que nos proporciona una vida útil de unos 6 meses. Hay que tener cuidado de no exponer los productos tratados a lugares contaminados porque el producto se recargaría de microbios de nuevo. 3

4 Dentro de la esterilización existe la HTST (Alta Temperatura en Poco Tiempo) UHT (Temperatura Ultra Alta). Temperaturas de 140 ºC nos permiten reducir los tiempos de tratamiento de minutos a segundos con la consiguiente mejora en la calidad del producto (manteniendo lo más posible su nivel de calidad inicial, en color, forma, sabor, etc.). Sólo se puede conseguir en líquidos ya que los sólidos necesitan más tiempo para que el calor penetre hasta el interior del producto, y esa a temperatura se quemaría. PENETRACION DEL CALOR. Para saber cuánto tiempo se ha de someter a un alimento al calor, se estudia la velocidad de penetración del calor del producto en su envase. Ej. Hay microorganismos que aguantan a 105 ºC y tenemos que saber cuál es la parte del envase que tarda más en alcanzar esa temperatura, para ello emplearemos termopares. Todo esto va a ser función de la forma del envase y del alimento que haya dentro. Los envases en los que el calor se transmite por conducción el punto de calentamiento más tardío está casi en el centro geométrico del envase. La conducción, como forma única de transmisión del calor se va a producir en alimentos sólidos ya que el calor se transmite de partícula a partícula, lo cual lo hace más lento y necesita de un incremento (gradiente) de temperatura entre las partículas para que se lleve a cabo. También va a depender de las características de los alimentos. En el resto de casos se va a producir una combinación de conducción y de convección (transmisión de calor por corrientes que se originan en el interior del envase debido al cambio de densidad de los líquidos al calentarse). Cuanto más liquido exista mayor transmisión por convección va a haber. Hay otros métodos de transmisión del calor como son las radiaciones, microondas, láser, infrarrojos... FUENTES Y MÉTODOS DE APLICACIÓN DEL CALOR. Van a existir varios métodos pero el principal criterio de selección es el del coste, también está el de la seguridad de las instalaciones, el riesgo de contaminación de los alimentos y los costes de mantenimiento. Normalmente, lo que más se usa es gas y/o combustibles líquidos debido a que la electricidad es bastante más cara. La electricidad tiene las ventajas de la seguridad y del control de los procesos. Como combustibles sólidos se emplean la antracita y la madera, también se emplean residuos agrícolas aunque en menor proporción. Los métodos de calentamiento pueden ser: Directos. 4

5 El calor produce productos de combustión en contacto con los alimentos (carne a la parrilla, o en el proceso de tostado de las galletas, en el que los quemadores están en contacto con las galletas, por ej.) En estos métodos la transmisión del calor es más segura y proporciona una serie de características determinadas, pero el producto puede verse contaminado por partículas extrañas. Lo más empleado es el gas porque se quema prácticamente todo él sin dejar apenas residuos, lo que no sucede con combustibles sólidos o líquidos. Indirectos. Se van a emplear intercambiadores de calor. Se genera calor en un punto externo al área de procesado con un primer intercambiador de calor y después, en un segundo intercambiador de calor, se calienta el producto. Se podrán emplear también resistencias eléctricas o Infrarrojos. EFECTOS DEL CALOR SOBRE LOS MICROORGANISMOS El calor desnaturaliza las proteínas y las enzimas que son vitales para el control del metabolismo de los microorganismos por lo que acaban muriendo. El que se necesite una mayor o menor tiempo para destruir los microorganismos depende de su concentración (su contaminación). Su disminución se realiza de forma exponencial. Curva de Destrucción Térmica, TDT: Es la curva que nos refleja el tiempo D necesario para destruir el 90% de los microorganismos existentes en un alimento. Un valor grande de D supone una gran resistencia al calor. A temperaturas cada vez mayores, el tiempo de destrucción disminuye. Si enfrentamos D con la temperatura obtenemos el valor de Z, incremento de la temperatura necesario para disminuir 10 veces el valor de D (es decir, el tiempo preciso para minorar la carga de microorganismos en un 90 %): Para caracterizar la resistencia de un microorganismo o de una enzima se van a emplear los valores de Z y de D. FACTORES QUE DETERMINAN LA RESISTENCIA AL CALOR DE UN MICROORGANISMO. Tipo de organismo (Termófilo, Mesófilo o Sicrófilo). Las condiciones en laboratorio y en la industria van a ser las mismas en cuanto a la condición del organismo. Factores de incubación y crecimiento del microorganismo. Las condiciones en laboratorio y en la industria van a ser distintas en cuanto a esos factores del medio en el que se van a encontrar. Condiciones durante el tratamiento térmico (ph). Las condiciones en laboratorio y en la industria van a ser distintas en cuanto a esos factores del medio en el que se van a encontrar. Por ej. Las bacterias como el clostridium, salmonela... van a soportar peor los medios ácidos y las levaduras los aguantan mejor. 5

6 Actividad del agua (humedad de tratamiento). El calor húmedo normalmente es más efectivo que el calor seco. Composición del alimento. La presencia de grasas, proteínas, coloides y sacarosa va a aumentar la resistencia de los microorganismos a la destrucción (aunque en el caso de la sacarosa, una alta concentración tiene la propiedad de absorber agua restando actividad del agua a los organismos) Hay algunos enzimas muy resistentes a ph ácidos (en frutas por ejemplo), por lo que habrá que determinar si van a afectar a los alimentos o bien no merecerá la pena aplicar más calor o más tiempo de aplicación para destruirlos. En función de la resistencia aplicaremos el tratamiento correspondiente, en la práctica se cogen muestras de los diferentes microorganismos y realizamos pruebas con ellas para ver cuanto tiempo resisten los patógenos más resistentes. Si logramos eliminarlos, habremos eliminado también a todos los demás (menos resistentes). Los componentes aromáticos, las vitaminas y los pigmentos, en un tratamiento térmico, siguen las mismas pautas que los microorganismos pero sus valores de D y de Z son más altos; entonces lo ideal será aplicar altas temperaturas en poco tiempo. A partir de las curvas TDT, podremos elegir la combinación Temperatura/Tiempo óptimos (los que supongan menor coste). Esta será la base de los procesos de UHT y HTST. En los alimentos van a existir cambios nutricionales en proteínas, grasas, almidón, aunque a veces pueden llegar a ser beneficiosos (las proteínas coagulan gelatinizando o gelificando algunos productos, otras veces se destruyen componentes antinutricionales). TEMA 3: ESCALDADO Y PASTEURIZACIÓN. ESCALDADO. Es un tratamiento térmico empleado para la destrucción de la actividad enzimática. Se emplea en verduras y frutas como paso previo a otros procesos: no constituye un único método de conservación si no que es más un pretratamiento entre la materia prima y las operaciones posteriores. Suele ser previo a esterilizaciones, congelación y deshidratación. En alguna otra industria, patatas fritas, también hay escaldado pero su función en este caso es la de facilitar la labor de pelado (diferente a la de disminuir la actividad enzimática). En algún caso se suele combinar con el pelado o limpieza del producto, no siempre se puede, así se ahorra espacio y energía. OBJETIVOS DEL ESCALDADO. El escaldado se lleva a cabo porque hay procesos en los cuales las temperaturas que se alcanzan son insuficientes para inactivar las enzimas. Si no las destruimos se van a producir alteraciones en los productos. En el caso de las conservas sí se alcanzan estas temperaturas y las enzimas quedan inactivadas. Es en el final de los procesos donde los alimentos pueden quedar alterados y, por tanto, la inactivación deberá realizarse durante el procesado. 6

7 Lo que nos marca la inactivación son los valores D y T. Las enzimas más peligrosas son las lipoxigenasas, polifenoloxidasas, poligalacturonasas, florofilcasas. Lo normal es tomar como referencia a la enzima más resistente al calor; una vez eliminada ésta tendremos la seguridad de haber destruido al resto. Lo que también se puede hacer es medir el valor de las catalasas y peroxidasas, que son más resistentes al calor que los microorganismos y más fácilmente identificables. Las funciones del escaldado también son las de: Reducir el número de microorganismos en la superficie del alimento (así el tratamiento posterior no va a ser tan fuerte). Ablandamiento de tejidos. En unos casos va a ser beneficioso (carnes, guisantes...), pero en otros casos cambia las características del alimento. Facilita el llenado de los envases. Elimina aire en los espacios intercelulares. TIPOS DE ESCALDADO Escaldadores de Vapor. El alimento pasa a través de una atmósfera de vapor saturado. Retiene mejor los nutrientes. La forma más sencilla es una cinta transportadora por la que traslada el alimento y por encima hay vapor saturado. El tiempo se regula controlando la velocidad de la cinta; las dimensiones normales suelen ser 15 m de largo, 1,5 m de ancho y unos 2 m de alto. Suelen ir cerrados para que no haya pérdidas de vapor ni haya chorro energético. No es conveniente que haya mucho vapor. Lo ideal es que tanto la salida como la entrada se lleve a cabo a través de válvulas hidrostáticas. Suelen incorporar equipos para reciclar el vapor. Tienen el problema de que el calentamiento de las distintas capas del alimento no es uniforme, como hay que buscar una combinación de tiempo y temperatura para inactivar las enzimas, algunas partes van a quedar más recalentadas lo que supone una pérdida de características del alimento. Para evitar este efecto indeseable se puede aplicar el método IOB, el cual consiste en realizar el escaldado en 2 etapas, en la primera se calienta una capa muy fina y se mantiene a temperatura constante durante un tiempo; en la segunda fase ese calor va a llegar a todo el alimento produciendo la inactivación total. Además, se va a conseguir una reducción de los costes energéticos (se pierde una décima parte del vapor), también se reducen las pérdidas de nutrientes porque el proceso seca el producto y al aplicar vapor se recupera la humedad por absorción (un 5% más que con el método inicial). El equipo necesario suele constar de una cinta elevadora para entrar en la primera fase, el calor se mantiene mientras se mueve con cintas transportadoras y por último, para dirigirse al enfriamiento se emplea otra cinta elevadora. Posee una capacidad de unos 4500 Kg/h. Su retención de nutrientes es mejor (medida en función de la retención de ácido ascórbico) alcanzando el 75 85% de ácido ascórbico. Sistema de Lecho Fluidizado. Consta de una cinta o de una malla perforada en el seno de una mezcla de fluido y vapor que consigue que el producto sobrenade y a la vez se le vaya calentando. La corriente de calor fluye de forma uniforme y continuo. La duración del tratamiento es menor y mucho más uniforme porque las partículas van separadas, se mueven y rotan independientemente por lo que el calor accede a ellas rápidamente. Además, el producto se va 7

8 mezclando y homogeneizando. El volumen de efluentes (gases) y agua residual es menor, tendremos menores pérdidas de vitaminas, elementos termolábiles, etc. No se suele emplear en industria porque es un sistema caro, tanto el equipo como el coste de realizar el escaldado. Escaldadores de Agua Caliente. El alimento pasa por un baño de agua caliente ( ºC) durante un tiempo determinado, después del calentamiento el producto se enfría. Se van a perder nutrientes solubles aunque a cambio los productos van a ganar peso. Ambos métodos (el de vapor y el de agua) necesitan de instalaciones muy sencillas y bastante baratas. Hay una serie de tendencias a la reducción del consumo de energía, reducción de pérdidas de componentes solubles, de volumen del producto y de producción de fluente; se deberán respetar las medidas higiénicas. El sistema más común es el llamado de Bobina, de Tambor o de Cilindro. El sistema consiste en un tambor rotatorio, perforado y parcialmente sumergido. El tiempo de tratamiento lo determina la velocidad de rotación (ver fig. inferior). También existen otros sistemas como el escaldador de Tubo, que consiste en una tubería metálica que contiene el alimento en movimiento y el agua caliente pasa por ella y en el mismo sentido (lo arrastra). El tiempo de tratamiento será función de la longitud del tubo y de la velocidad de arrastre del agua. El espacio que ocupan es menor que otros tipos de escaldadores y tienen una alta capacidad (para el espacio que ocupan). Su inconveniente estriba en que son algo más caros y su utilidad se basa también en la adaptación del alimento al roce con las paredes. Otro método (también empleado en escaldadores de vapor) es el IOB; se le aplica al alimento un precalentamiento, después el escaldado y por último un enfriado. El tiempo de tratamiento disminuye, también el coste energético, las pérdidas de calidad y la emisión de efluentes. El agua caliente produce turbulencias que pueden provocar daños. El calentamiento en este sistema se va a producir en un lugar estanco (sin movimiento, luego se reducen los daños). Para conseguir el precalentamiento y el enfriamiento se emplean intercambiadores de calor con reciclado del flujo de calor: se va a aprovechar el mismo flujo de agua para calentar y para enfriar. El rendimiento es mucho mayor que el escaldado tradicional (16 20 Kg producto/kg vapor frente a 0,25 0,50 Kg producto/kg vapor). El último sistema que se va a mencionar es el sistema Contracorriente, es difícil verlo en la industria porque es muy caro debido a que es necesario impulsar el agua en sentido contrario al del alimento. Es un sistema rápido y uniforme. EFECTOS SOBRE LOS NUTRIENTES En todos los tratamientos térmicos van a existir pérdidas de elementos (los más termolábiles). Se van a desnaturalizar con el calor al igual que las vitaminas, proteínas, etc., sin embargo, el escaldado es un proceso tan suave que las pérdidas van a ser mínimas; lo que nos interesará es reducir los elementos solubles que se pierden (vitaminas solubles, sales, almidón...). Se perderán más o menos en función del producto, de la preparación del alimento (cortado o entero) ya que perderá más cuanto mayor sea la relación Superficie/Volumen. El proceso de escaldado que se le aplique también influirá en las pérdidas (cada uno es diferente), del tiempo y la temperatura empleados, del método de 8

9 enfriamiento (es distinto si se hace con agua fría o con aire, etc.) Para conocer cuál es la pérdida de nutrientes se hace un análisis de ácido ascórbico, vitamina C, que es sensible al calor y nos indica fácilmente la pérdida. El escaldado tiene la ventaja de que algunas veces mejora el color del producto porque el agua limpia y elimina los restos de la superficie haciendo cambiar el índice de refracción de la luz y consiguiendo un brillo más intenso y una mejor presencia. Sin embargo, va a tener el inconveniente de que se produce una pérdida de pigmentos en función del tratamiento y la temperatura, siendo los productos verdes los que más se resienten. Para minorar la pérdida se emplea el carbonato de Sodio o el óxido de Calcio que protegen la clorofila si se adicionan al agua de escaldado. Las patatas suelen sufrir un pardeamiento enzimático (debido a las polifenoloxidadasas), lo que se suele hacer es mantener al alimento en una salmuera antes del escaldado, teniendo mucho cuidado de no pasarnos con la concentración de la sal (son bajas concentraciones) para no generar sabores extraños. Para reducir la pérdida de sabor se recomienda tratamientos cortos. La textura sufre cambios, se ablanda, lo cual es beneficioso cuando se llenan envases aunque no lo es tanto para otros procesos. Las pérdidas de textura se reducen con el empleo de cloruro de Calcio, que junto a las pectinas espesantes del producto (frutas principalmente) dan lugar al pectato cálcico proporcionándole firmeza y estabilidad al producto. PASTEURIZACIÓN. Es un tratamiento térmico relativamente suave (a temperatura inferior a los100 ºC). Lo que se va a conseguir es un aumento de la vida útil del producto (varios días para la leche y hasta en varios meses para las frutas). Hay inactivación enzimática, destrucción de microorganismos (mohos, bacterias no esporuladas); hay pérdidas nutricionales y sensoriales. Lo que determina la intensidad del tratamiento y la vida útil del alimento es su acidez (ph). En productos con ph > 4,5 (la leche) será necesario destruir las bacterias patógenas. En productos con ph < 4,5 será necesario destruir la actividad enzimática y todos los microorganismos que afectan a la calidad del alimento. La intensidad del tratamiento será la necesaria para la destrucción de los patógenos, por lo cual tendremos que emplear los valores de termorresistencia de los microorganismos más resistentes al calor. En la industria lo que se hace es practicar distintas pruebas para averiguar las temperaturas y los tiempos requeridos para la eliminación. Por ej: En leche cruda. Hay una enzima (fosfatasa alcalina) que está siempre presente en la leche y que posee unos valores de resistencia térmica similar al de los patógenos más resistentes. Si conseguimos hacer desaparecer a la fosfatasa (mediante la aplicación de calor durante un tiempo) habremos conseguido también destruir a los patógenos. Huevo pasterizado. En este caso la enzima que se puede medir es la amilasa y su actividad. Esta enzima posee una resistencia similar a la de la salmonela. La pasterización se empleará en algunos productos en los que un tratamiento térmico más severo produciría daños organolépticos graves (en el foie grass, latas de jamón cocido...). Será conveniente guardarlos en la 9

10 nevera ya que no habremos terminado con todos los microorganismos, es una semiconserva. Esta técnica se emplea cuando se desea la destrucción de alguna especie patógena en especial por su peligrosidad, o cuando queremos favorecer a unos organismos frente a otros. En los ejemplos anteriores, se emplearía para destruir los bacilos tuberculosos en la leche y los de la salmonela en los huevos, también para la fabricación de yogures, quesos, vinos (los mostos no se suelen pasterizar salvo para obtener vinos homogéneos al emplear cepas de levaduras determinadas). También se emplea en productos en los que sus características físico químicas (ph) no permiten tratamientos más fuertes (frutas, zumos, mermeladas...) En general va a ser necesario combinar la pasterización con otras técnicas: Envasado, con cierre hermético y/o aséptico. Refrigeración, en la leche pasterizada. Acidificación, se disminuye el ph para impedir la proliferación de microorganismos. Se suele aplicar un tratamiento de fermentos lácticos para que el mismo producto vaya desarrollando los ácidos. Azúcar, para la fabricación de frutas confitadas, leche condensada, mermeladas... (se disminuye la actividad del agua). Salado, se emplea sal común o bien nitritos (en carnes). EQUIPOS PARA LA PASTERIZACIÓN. Existen dos tipos de equipos en función del estado en que se encuentre el alimento: envasado y sin envasar. Todos los alimentos se pueden pasterizar dentro del envase pero hay alguno que también se le puede pasterizar antes, son los productos líquidos (leche, zumos, cerveza...) y los productos viscosos (mermelada, huevo...). Se suele preferir hacerlo antes de envasar porque es más fácil aplicar el tratamiento, un HTST, los alimentos conservan mejor sus características organolépticas. También es más adecuado en envases grandes, el calor tardaría mucho en alcanzar el interior del envase. Pasterización de productos Envasados. En Continuo. El producto es conducido por cintas transportadoras que lo introducen en túneles de tratamiento; estos túneles están divididos en tres zonas (calentamiento, pasterización y refrigeración), en todas ellas la variación de temperatura progresa de forma muy gradual gracias a unas duchas o atomizadores. Esto es importante porque los envases suelen ser de vidrio y si el cambio de temperatura es muy brusco pueden estallar. La diferencia máxima entre la temperatura del envase de vidrio y la de calentamiento no debe superar los 20 ºC, y con la de enfriamiento, 10 ºC. El agua se suele recircular para aprovechar mejor la energía (el agua empleada para enfriar se calienta en contacto con los envases y después es redirigida hacia la zona de calentamiento). En el enfriamiento se trata de disminuir la temperatura hasta los 40 ºC, así conseguimos evitar corrosiones internas en envases metálicos al evaporarse el agua, también para poder poner las etiquetas (es una temperatura relativamente fría). No sólo se puede hacer el tratamiento con agua sino también con vapor al que vayamos dando un aumento gradual de temperatura (es más rápido), sin embargo, la fase de enfriamiento se sigue haciendo con agua fría 10

11 (por inmersión o con duchas de agua) En Discontinuo. b.1. Baño María. En la industria se puede ajustar perfectamente tanto los tiempos como las temperaturas de tratamiento. b.2. Con Aire Caliente Lo que se emplea son estufas de aire caliente, empleado para productos que no resisten la inmersión en agua. Pasterización de productos No Envasados. Se realiza en intercambiadores de calor (de placas o tubulares); en el caso de productos viscosos se emplean intercambiadores tubulares mayor sección para disminuir el rozamiento; en el caso de productos viscosos y pegajosos se emplean intercambiadores tubulares de superficie rascada. El huevo líquido tiene el inconveniente de que si nos pasamos de temperatura la clara coagula. Para evitarlo hay que controlar las temperaturas de forma muy precisa (aproximadamente de 50ºC), sin embargo, para acabar con los microorganismos se le deben aplicar temperaturas más altas; la manera en que se consiguen esas temperaturas es emplear intercambiadores de calor tubulares ondulados que producen turbulencias que nos permiten subir la temperatura. El realizar una desaireación de los productos suele ser bueno para disminuir el riesgo de oxidaciones (se atomizan en una cámara de vacío). Después se les debe envasar en envasado aséptico (esterilizado). EFECTOS SOBRE LOS ALIMENTOS. Zumos de frutas. Deterioro del color producido por el pardeamiento enzimático; hay polifenoloxidasas que destruyen el color por oxidación, podremos desairear el producto antes de pasterizar. Pérdida de componentes volátiles (bajo punto de evaporación). Para evitarlo, lo que se hace es extraer antes los aromas (por destilación), procesar el producto y al final volverlos a añadir. Leche. Cambio de color, el cual no es efecto de la pasterización si no debido a la homogeneización asociada a la pasterización. Variación del sabor, lo hace más suave. No hay pérdidas importantes de elementos nutritivos; lo que más se pierde son carotenos, vitamina C y aproximadamente el 5% de las proteínas séricas. La mayoría de las pérdidas se producen por oxidación, por lo que una desaireación previa reduciría el efecto de pérdida. TEMA 4: ESTERILIZACIÓN. Es un proceso en el que se calienta a una temperatura y tiempo lo suficientemente altos como para que se consiga una total desactivación enzimática y destrucción total de microorganismos. Se obtienen productos con vida útil muy prolongada, superior a 6 meses en general. Al ser un tratamiento fuerte vamos a afectar a sus características nutricionales y organolépticas. La 11

12 investigación actual se encamina a la disminución de las pérdidas de características originales (aumento de la temperatura y disminución del tiempo). ESTERILIZACIÓN DE PRODUCTOS ENVASADOS. La temperatura y tiempo de tratamiento serán función de la resistencia térmica de los microorganismos, de la velocidad de penetración del calor, de las condiciones de calentamiento, el ph del medio, el tamaño del envase y del estado físico del alimento. La resistencia al calor de los microorganismos viene determinada principalmente por el ph del alimento. ph > 4,5 alimento de acidez baja. 3,7 < ph <4,5 alimento de acidez intermedia. ph < 3,7 alimento ácido. En cada uno de estos grupos existen unos microorganismos determinados que poseen una mayor resistencia. En el grupo (I) destaca el Chlostridium botulinum, produce el botulismo y crece en condiciones anaerobias. Como mínimo habrá que destruir a éste (de los más termorresistentes). El tratamiento se hará a una temperatura ligeramente superior a la de destrucción de éste (por si queda alguno más resistente). En el grupo (II), al disminuir la acidez, la resistencia es menor. En este grupo se encuentran los mohos, levaduras y enzimas. En el grupo (III) lo que solemos hacer es ir a desactivar las enzimas; bastará con tratamientos suaves. También dependerá de la carga microbiana que porte el producto, ya que no hay que olvidar que el tratamiento que es efectivo en laboratorio puede no serlo en la industria, será necesario, por tanto, que los productos o las materias primas lleguen con la menor carga microbiana posible. Esto se puede conseguir con un escaldado previo y con unas buenas practicas de procesado y operación. Para conocer la evolución de los productos contaminados, con pruebas de corta duración, lo que se suele hacer es almacenar los productos en condiciones muy adversas. RESISTENCIA A LA PENETRACIÓN DEL CALOR. El coeficiente de transmisión de los envases suele ser alto (no son aislantes) y no representan grandes limitaciones en el tiempo de proceso. Influye más el tipo de alimento, la transmisión por convección es más rápida que la de conducción. Será mejor en líquidos o en productos particulados como los guisantes que en bloques sólidos. Los productos viscosos, cuanto más fluidos sean menos les costará calentarse. El tamaño del envase también influye porque la relación superficie de calentamiento/volumen a calentar es menor. Tarda más en calentarse y en llegar el calor al centro del recipiente. Si el envase es agitado se van a facilitar las corrientes de convección y el calentamiento será más rápido (solo para alimentos líquidos o viscosos). Cuanto mayor sea el gradiente de temperatura entre el producto y la zona de procesado, mayor es la rapidez. Va a influir la forma del envase siendo los alargados los que más facilitan la transmisión. El material no influye demasiado en la transmisión, el metal es buen conductor, el vidrio y el plástico son 12

13 similares pero de algo peor transmisión. EVACUACION. Consiste en la eliminación del aire de la cabeza del envase antes del sellado o cierre. Vamos a minorar los riesgos de oxidaciones y de corrosión; al subir la temperatura en el interior del envase desciende la presión ejercida por el aire. Hay varios métodos: Llenado en caliente. Al llenar los envases todavía calientes se van a emitir vapores que arrastran el oxigeno y después se cierran. Llenado en frío. Cuando los envases llegan fríos al cerrado, lo que se puede hacer es calentarlos hasta los ºC para crear vapores de arrastre y posteriormente se cierran. Extracción en vacío. Se hace el vacío en la cabeza del envase con una bomba de vacío, después se cierra. Corriente de vapor. Se proyecta un chorro de vapor sobre la zona de cerrado consiguiendo el arrastre del aire. Este se suele emplear para líquidos porque su superficie es muy lisa y el aire se arrastra fácilmente Es conveniente aplicar un pretratamiento porque al estar ya caliente el producto, el tiempo de tratamiento se reduce. EL CERRADO. Es conveniente que sea hermético. Hay varios tipos de envases: Hojalata. Aluminio. Vidrio. Se emplea para conservas, la tapa suele ser de otro material, normalmente metálico. Plásticos rígidos. Se emplean para tarrinas, postres lácteos, bolsas flexibles. Lo más común son latas y los envases de vidrio. Muchos de los materiales plásticos no resisten las altas temperaturas y se funden. El proceso de calentamiento se puede realizar de varias formas, una de las más empleadas es el uso de vapor saturado, que depende del calor latente de vaporización. El vapor saturado se encuentra en contacto con las paredes de los botes, allí se condensa transfiriendo el calor al interior de las paredes. El vapor saturado se encuentra justo en el punto de condensación, por debajo de esta temperatura tenemos agua, pero si seguimos calentando tendremos vapor a mayores temperaturas. H2O 100ºC vapor + agua (se sigue calentando) vapor sobrecalentado (se deja enfriar) vapor saturado (calentamiento) vapor recalentado. El mejor vapor es el saturado, el sobrecalentado no va a condensar tanto vapor y la transmisión de calor es 13

14 menos eficiente. El vapor saturado lo podemos emplear tanto en continuo como en discontinuo, Discontinuo. Es el caso del autoclave, se introducen en él las latas de forma vertical u horizontal. Continuo. Las latas entran por una lado y van saliendo por el otro de forma continuada, los autoclaves poseen aperturas y puertas especiales que mantienen constante la temperatura cuando las latas van saliendo. Pueden funcionar con vapor saturado con agua, se les puede aplicar aire en sobrepresión y a veces se puede emplear mezclas de vapor + agua. En ambos métodos será importante que no quede aire en la lata y se consiga una buena distribución del vapor. En caso de mezclas, la densidad del aire y la del vapor, a veces, es diferente, el calentamiento que se produce es diferente lo cual es dañino y para evitarlo se homogeneizan los gases. Los continuos tienen más ventajas porque se controla mejor, los alimentos son más uniformes, el calentamiento del envase es más gradual, los problemas de abombamiento son menores. Sin embargo, el mayor inconveniente es que son muy caros. Autoclaves. Tienen que estar construidos de manera que se permita la eliminación del aire en el producto, esto se hace con vapor. Las líneas de salida se sitúan por el lado contrario al del vapor. Se debe evitar que las latas queden sumergidas en el agua de condensación porque en el interior del agua no se va a producir una eficiente transmisión de calor. Para evitarlo se emplean cestas suspendidas en las que el agua siempre está por debajo de ellas. Una vez esterilizados los envases hay que enfriarlos con agua, el vapor existente se condensa provocando un vacío que hay que contrarrestar con la introducción de aire a presión. Cuando el alimento ha llegado a los 100 ºC, la presión disminuye y se puede disminuir la sobrepresión de aire, podemos también enfriar hasta los 40 ºC. La humedad que queda se seca para evitar corrosiones. Las temperaturas más convenientes rondan los ºC. Agua caliente. Se usa envases de vidrio y envases plásticos; el vidrio tiene menor conductividad térmica que el metal y, por tanto, el tiempo de procesado será mayor. Además, a temperaturas muy altas, los envases pueden estallar. Lo podemos arreglar con tratamientos más suaves como un baño María progresivo. Bolsas flexibles, son polímeros (más flexibles), por lo tanto hay un ahorro energético. Se suelen procesar horizontalmente y el grosor del alimento es más uniforme. Calentamiento por llama. Se realiza a presión atmosférica y en platos giratorios, las temperaturas que se alcanzan son de ºC. Son temperaturas mucho mayores y se consiguen velocidades de penetración más altas; los tiempos de tratamiento son mucho menores al igual que las pérdidas, además, se ahorra energía. No hace falta emplear salmueras por lo que tenemos un ahorro añadido por la reducción de azúcar o de sal empleado y una minoración del % en los costes de transporte. 14

15 ESTERILIZACIÓN DE PRODUCTOS NO ENVASADOS. Tanto los líquidos como los productos viscosos daban muchos problemas de esterilización en los envases (baja velocidad de penetración del calor, pérdidas nutricionales y organolépticas, baja productividad...), todos esos problemas se resolvieron al aplicar la esterilización antes del envasado (el envasado posterior debe ser aséptico). Los tiempos se hicieron más cortos y las temperaturas más altas, las distancias que el producto debía recorrer se volvieron más cortas: es la base de los sistemas UHT; el tratamiento es tan rápido que sus resultados se pueden asemejar a los de la congelación y a los de la irradiación. Los alimentos tienen una vida útil más larga sin necesidad de frigorífico. Estos procesos están tan automatizados que las pérdidas de energía son mínimas y se consigue una alta productividad. Los inconvenientes más importantes son el elevado coste de los equipos (son difíciles de amortizar porque los productos fabricados no poseen alto valor añadido) y la complejidad de una planta de esterilizado (tanto los envases como el interior de la maquinaria deben ser asépticos). El proceso de UHT se aplica con los mismos criterios que con la esterilización, sin embargo, la velocidad de tratamiento es mayor, con la consecuente minoración de las pérdidas de nutrientes. En este proceso de UHT nos vamos a fijar especialmente en la destrucción de las enzimas porque a esas altas temperaturas las enzimas aguantan más que los microorganismos. La destrucción de los microorganismos se va a producir en la etapa final del calentamiento Proceso. El líquido se calienta en un intercambiador de calor, en capas finas de líquido y con un fuerte control de tiempos y temperaturas. Después el líquido se enfría, bien en otro intercambiador o bien en una cámara de vacío (se enfría mucho más rápido y se desairea el producto, lo cual puede interesar en caso de posibilidad de oxidaciones porque aumentan los costes). El envasado se suele hacer en tetrabrick, que tiene mayores ventajas sobre otros tipos de envases (costes de almacén, transporte, etc.), es totalmente impermeable multicapa, y aséptico se le esteriliza con agua oxigenada. Las maquinas van a mantener su limpieza con filtros de aire y con luz UV. El mayor problema lo presentan los alimentos sólidos y las piezas grandes; esto es debido a que no se consiguen formar las mismas turbulencias que en líquidos para transmitir la convección. La misma generación de turbulencias puede llegar a dañar el producto y, además, se ensucian las maquinas. Otro problema que aparece es la sobrecocción de las superficies, quedando el interior intacto. Las piezas grandes no entran fácilmente por las conducciones son finas o las placas estrechas. El proceso va a depender del tipo de alimento, de la tendencia a formar capas adheridas a las superficies, de la sofisticación del proceso (con mayores o menores controles) y por último pero uno de los más influyentes el coste. Características comunes a todos los sistemas UHT. Todos trabajan a temperaturas mayores a los 132 ºC ( ºC). Se pone en contacto con un volumen pequeño de producto una gran superficie de contacto para la transferencia del calor. Se mantiene un régimen turbulento al atravesar las conducciones. Necesidad de bombas para impulsar el líquido, reparto homogéneo del producto por la superficie de intercambio. 15

16 Todos los sistemas, sobre todo las superficies de calentamiento, deben estar perfectamente limpios. TIPOS DE UHT. Calentamiento directo. Inyección de vapor, Uperisación El vapor se introduce a presión en el producto líquido, el cual está ya precalentado (65 75 ºC). En décimas de segundo se alcanzan temperaturas de ºC los cuales se mantienen durante un pequeño periodo de tiempo. Una vez eliminados los microorganismos, el líquido se enfría rápidamente en cámaras de vacío hasta los 70ºC, en estas cámaras hay sistemas de eliminación del vapor condensado y de componentes volátiles, de esta manera se consigue que la humedad de salida sea la misma que entrada del producto. Ventajas: Tanto el calentamiento como el enfriamiento son muy rápidos, las pérdidas nutricionales y organolépticas son muy bajas. Inconvenientes: En el enfriamiento es fácil perder sustancias volátiles. Esterilizar al vapor es un proceso caro, sólo es adecuado para productos de baja viscosidad. El control de las condiciones del proceso no es completo, en el interior de los equipos existen zonas con muy diferentes presiones, va a costar mucho mantener el equipo en la zona de presión baja. A pesar de las pérdidas se obtiene un producto de alta calidad. Infusión de vapor. El producto líquido y precalentado, una vez atomizado, forma una película que va cayendo hacia una cámara donde se encuentra el vapor a presión baja, luego se produce un calentamiento muy rápido hasta los ºC que se mantiene 3 segundos. Al final se enfría en cámaras de vacío hasta los ºC. El calor que se gana sirve para calentar el producto inicial. Ventajas: Al ser un proceso rápido hay una alta retención de nutrientes y de productos termolábiles. El control de la producción es mejor. Se adapta a alimentos más viscosos y, además, no hay riesgos de sobrecalentamiento. Inconvenientes: Los atomizadores pueden dar problemas de bloqueos y en algunos casos hay separación de componentes del producto. Calentamiento indirecto. Son más frecuentes porque son más baratos, más versátiles y las condiciones se adaptan mejor. Intercambiadores de Placas. Las temperaturas y las presiones son más altas, los aparatos tienen ondulaciones para aumentar la turbulencia. 16

17 Dentro de las placas fluye el líquido calefactor. Ventajas: Es un equipo relativamente barato, ocupa poco espacio, con un bajo consumo de agua, bajo consumo energético, la velocidad de producción es flexible porque podemos poner varias placas. Los aparatos son de fácil inspección. Inconvenientes: Las juntas no aguantan presiones muy elevadas y son sensibles a las altas temperaturas por lo que hay que reemplazarlas a menudo; las placas son muy finas y los productos no pueden ir a velocidades superiores a 2 m/s (se pueden producir sobrecalentamientos y depósitos de los productos sobre las placas, lo que supone un coste añadido). Los líquidos viscosos transitan difícilmente, hay que hacer una esterilización previa de todo el conjunto. Intercambiadores Tubulares. El líquido circula por una tubería la cual está calentada por el flujo caliente de otra tubería circundante a la primera de esta manera se aumenta la superficie de intercambio calórico: Ventajas: La tubería es continua luego se puede procesar en continuo, la asepsia es más fácil de conseguir porque la limpieza es más sencilla. Son admisibles altas presiones, mucho mayores que las que soportarían los intercambiadores de calor de placas. Se facilita la formación de turbulencias y se evitan incrustaciones en las paredes. Inconvenientes: La inspección de las superficies interiores es complicada, no podemos emplearlos para fluidos viscosos (sólo para los de baja viscosidad). Si hay algún fallo en el sistema es necesario pararlo por completo. Intercambiadores tubulares de Superficie rascada. Es un sistema similar al anterior pero con la particularidad de que en el interior del tubo hay un rotor con una o varias palas rascadoras. Su presencia evita el inconveniente de incrustaciones en las paredes que aparecen al tratar productos viscosos. Se suele emplear para yogures con trozos de fruta Inconveniente: Es mucho más caro que los tubulares normales Intercambiadores Júpiter o intercambiadores de doble cono. Su aplicación del calor se puede hacer de forma directa e indirecta, consiste en un depósito cónico con camisa (calentamiento directo) que se combina con un tratamiento de inyección (indirecto). Es el más adecuado cuando existen partículas grandes (como en las salsas) ya que trata los sólidos y los líquidos por separado. Se llena el depósito y se elimina el aire en las camisas. Se calienta tanto la camisa como el interior del 17

18 recipiente (se emplea vapor) hasta alcanzar los 85 90ºC. Una vez alcanzados, se introduce un líquido de cocción en la cuba, la cual va a girar lentamente para no estropear el producto. Deja de entrar el vapor (el calentamiento se detiene) y empieza la fase de enfriamiento: el líquido de cocción pasa a un depósito a parte y el líquido que tenían los sólidos se puede usar como subproducto (los sólidos que quedan se les termina de enfriar haciendo pasar por ellos una corriente de agua fría) o bien incorporárselo para mezclarlos con el giro de la cuba hasta homogeneidad. Después se los lleva a una zona aséptica y se envasan. Otros. Prácticamente todos ellos se emplean muy poco de forma industrial. Microondas. Calentamiento por inducción. Calentamiento por IR. Calentamiento Óhmnico. Lo que se hace es pasar una corriente eléctrica por los alimentos, los cuales oponen resistencia a su paso y se produce un calentamiento. Se establecen en lugares que no sean conductores de electricidad para evitar pérdidas. El calentamiento el bastante rápido y uniforme. Se usa poco. EFECTOS SOBRE LOS ALIMENTOS. El primer efecto que se produce es sobre el color. Para los diferentes tipos de alimentos. En carnes: Van a tener tratamiento en envase (latas), no se les va a poder aplicar UHT. Poseen hemoxihemioglobina (pigmento rojo) la cual pasa a meta hemioglobina (color marrón pardo). Además, también se producen reacciones de Maillard (pardeamientos). Existe caramelización de los azúcares (colores marronáceos, casi negro). Estos cambios de color están admitidos por la legislación sólo para la venta de carne cocida. A veces se les añade nitritos y nitratos de Sodio para minorar el riesgo de aparición del Chlostridium botulinum y ayudan a mantener el color rojo. En frutas y verduras: La clorofila pasa a feofitina que tiene mucho menos color (hay una pérdida de color). Los carotenoides pasan a hepóxidos y los antocianos pasan a pigmentos marrones. Las latas con el tiempo pueden llegar a aportar partículas de hierro o de estaño los cuales pueden alterar el color. Al líquido de gobierno se le puede añadir algún tipo de sal (ácido cítrico, E.D.E.T.A.) o algún colorante artificial admitido (no es lo más normal en el caso de zumos de frutas). En la leche: Van a existir cambios de color, sobre todo al caramelizar los azúcares, hay reacciones de Maillard (pardeamientos). Al homogeneizar la leche las partículas de caseína se hacen mucho menores haciendo que suba el índice de refracción de la luz dando la impresión de tener un color más blanco. Si se les hubiera aplicado UHT. 18

19 El efecto del UHT sobre el sabor se dejaría notar en las reacciones de Maillard y en la caramelización de los azúcares (no se producen). Para poderlo aplicar a las carnes antes se han de reducir a pastas de carne. El segundo efecto que se produce es sobre el sabor y el aroma. Para los diferentes tipos de alimentos. En carnes: El calor degrada los compuestos de la carne al producirse reacciones de pirolisis (desaminaciones, descarboxilaciones de aminoácidos, oxidaciones y descarboxilaciones de lípidos y reacciones de Maillard). Los productos resultantes de estas reacciones dan lugar a más de 600 tipos distintos de saborizantes. En frutas y verduras: Hay una pérdida de compuestos volátiles (mucho más en frutas que en verduras). En la leche: Se obtienen sabores a cocido; al desnaturalizarse los productos se forma hidróxido de azufre, lactonas y metil cetonas, sustancias de característico sabor a cocido. Si se les hubiera aplicado UHT. De haberse aplicado a las carnes, el sabor natural se consigue mantener mucho mejor. Esta particularidad del UHT se puede aplicar al resto de los productos. El tercer efecto que se produce es sobre la textura. Para los diferentes tipos de alimentos. En carnes: Los cambios en la textura se deben a la coagulación de las proteínas en el interior del músculo; la carne reduce su capacidad de retención de agua, se encoge y se vuelve más rígida. También se puede producir un ablandamiento de la misma por la hidrólisis del colágeno (pasa a convertirse en gelatina y el reparto de grasas se extiende a toda la pieza). Esto se produce, por ejemplo, en el jamón cocido, que es un tipo de carne mucho más blando que un jamón curado. Para disminuir estos efectos sobre la textura se emplean polifosfatos (aditivo) En frutas y verduras: La rigidez en estos productos es debida a las pectinas, a las hemicelulasas y en algunos casos al almidón. Los cambios en la textura se producen al hidrolizarse las pectinas (se pierde capacidad espesante y rigidizante), el almidón con el calor se gelatiniza (disminuye el espesor) y las hemicelulasas se disuelven. Todo ello da lugar a un ablandamiento; para reducirlo se pueden adicionar sales de calcio para que reaccionen con las pectinas dando lugar a pectatos de calcio (insolubles) y así no sean tan sensibles a los tratamientos térmicos. La adición se puede realizar en el líquido de escaldado o en el líquido de gobierno del producto (salmuera). Para cada producto se emplea una sal distinta (tomate CaCl, fresascaoh, etc.) En la leche: 19

20 Hay pequeños cambios de viscosidad por alteración de la caseina (tiene tendencia a coagular). Si se les hubiera aplicado UHT. Todos estos cambios hubieran sido menores. El cuarto efecto que se produce es sobre el valor nutricional. Para los diferentes tipos de alimentos. En carnes: Se van a producir hidrólisis de hidratos de carbono, de lípidos, etc. Aunque van a seguir estando disponibles para el consumo (en moléculas menores), luego en realidad no hay pérdidas. En cuanto a proteínas, el problema es mayor (sobre todo en carnes), también hay pérdidas de aminoácidos (10 20%), dando lugar a un descenso en la calidad de las proteínas del 6 9%. Las pérdidas más significativas son las de las vitaminas, tiamina: 50 75%, Ácido Pantoténico: 20 35%. En frutas y verduras: Lo más importante también es la pérdida de vitaminas (las hidrosolubles porque pasan al líquido de gobierno o el de escaldado). Si se quedan en el de gobierno, podremos consumirlo y así reducir la pérdida en esas vitaminas. La soja es un caso opuesto a esto, ya que su valor nutritivo aumenta por el tratamiento calórico porque destruye el inhibidor de la tripsina, facilitando su consumo y aprovechamiento. En la leche: No hay cambios significativos. Si se les hubiera aplicado UHT. Todos estos cambios hubieran sido mucho menores, las cuales se limitan a vitaminas termolábiles (sobre todo las del grupo B: piridoxina, tiamina). TEMA 5: EXTRUSIÓN. Es un sistema en el que se van a combinar bastantes operaciones distintas (mezclado, amasado, formado cortado y en algunos casos el secado) Un extrusor consiste en una bomba de tornillo o en un tornillo sinfín para el mezclado, en el que los productos se comprimen para dar lugar a una masa semisólida, la cual es forzada a salir por una pequeña abertura para darle forma. Posteriormente es cortada para darle su tamaño definitivo. Durante este proceso, la masa se calienta dando lugar al efecto conocido como: cocción extrusión, extrusión cocción o bien extrusión en caliente. Es un proceso bastante moderno y que esta en continua evolución. El objetivo de la extrusión no sólo va a ser el de alargar su vida útil (como en los procesos vistos en los otros temas), si no que gracias a él podemos llegar a fabricar productos nuevos al cambiar los ingredientes y variando la forma (temperatura, tiempo, presión...) de extrusión. 20

TECNOLOGIA EN EL PROCESAMENTO DE LOS ALIMENTOS

TECNOLOGIA EN EL PROCESAMENTO DE LOS ALIMENTOS TECNOLOGIA EN EL PROCESAMENTO DE LOS ALIMENTOS MÉTODOS DE CONSERVACIÓN FÍSICA 1.- Conservación de Alimentos por Frío -Refrigeración -Congelación 2.- Conservación de Alimentos por Calor - Pasteurización

Más detalles

ANEJO 2: PROCESO DE ELABORACIÓN

ANEJO 2: PROCESO DE ELABORACIÓN ANEJO 2: PROCESO DE ELABORACIÓN ANEJO 2: PROCESO DE ELABORACIÓN. 1.. 2. Descripción del proceso. 2.1. Fase 1: Elaboración de la mermelada. 2.1.1. Mezcla de ingredientes. 2.1.2. Cocido primera etapa. 2.1.3.

Más detalles

INTERCAMBIADORES DE CALOR. Mg. Amancio R. Rojas Flores

INTERCAMBIADORES DE CALOR. Mg. Amancio R. Rojas Flores INTERCAMBIADORES DE CALOR Mg. Amancio R. Rojas Flores INTRODUCCIÓN Los intercambiadores de calor son aparatos que facilitan el intercambio de calor entre dos fluidos que se encuentran a temperaturas diferentes

Más detalles

página 66 Diagrama de flujo. Elaboración de quesos frescos y quesos curados

página 66 Diagrama de flujo. Elaboración de quesos frescos y quesos curados página 66 Diagrama de flujo. Elaboración de quesos frescos y quesos curados descripción de los procesos de la línea de elaboración de quesos frescos y quesos curados Recogida de la leche En la recogida

Más detalles

LIMPIEZA Y DESINFECCIÓN EN LA INDUSTRIA LÁCTEA

LIMPIEZA Y DESINFECCIÓN EN LA INDUSTRIA LÁCTEA LIMPIEZA Y EN LA INDUSTRIA LÁCTEA LD EN LAS INDUSTRIAS DE ALIMENTOS La sanitización/higienización es un concepto general que comprende la creación y mantenimiento de las condiciones óptimas de higiene

Más detalles

CALENTAMIENTO DE AGUA CALIENTE SANITARIA

CALENTAMIENTO DE AGUA CALIENTE SANITARIA CALENTAMIENTO DE AGUA CALIENTE SANITARIA De todas las formas de captación térmica de la energía solar, las que han adquirido un desarrollo comercial en España han sido los sistemas para su utilización

Más detalles

Centro de Investigaciones de Tecnología Pesquera y Alimentos Regionales (INTI - CITEP - Centro Regional Sur)

Centro de Investigaciones de Tecnología Pesquera y Alimentos Regionales (INTI - CITEP - Centro Regional Sur) Ing. Alicia S. Ciarlo Ing. Alejandro C. Booman Centro de Investigaciones de Tecnología Pesquera y Alimentos Regionales (INTI - CITEP - Centro Regional Sur) La mitad de la producción mundial de alimentos

Más detalles

ALI: 004 Fecha: 08 Julio 2011 AREA DE NEGOCIO ALIMENTO DEL CAMPO A LA MESA

ALI: 004 Fecha: 08 Julio 2011 AREA DE NEGOCIO ALIMENTO DEL CAMPO A LA MESA ALI: 004 Fecha: 08 Julio 2011 AREA DE NEGOCIO ALIMENTO DEL CAMPO A LA MESA El uso de gases y las tendencias en las tecnologías para la producción de alimentos Cada día las personas esperan consumir alimentos

Más detalles

Ciencias Naturales 5º Primaria Tema 7: La materia

Ciencias Naturales 5º Primaria Tema 7: La materia 1. La materia que nos rodea Propiedades generales de la materia Los objetos materiales tienes en común dos propiedades, que se llaman propiedades generales de la materia: Poseen masa. La masa es la cantidad

Más detalles

FISICA Y QUÍMICA 4º ESO 1.- TRABAJO MECÁNICO.

FISICA Y QUÍMICA 4º ESO 1.- TRABAJO MECÁNICO. 1.- TRABAJO MECÁNICO. Si a alguien que sostiene un objeto sin moverse le preguntas si hace trabajo, probablemente te responderá que sí. Sin embargo, desde el punto de vista de la Física, no realiza trabajo;

Más detalles

Contenidos Didácticos

Contenidos Didácticos INDICE --------------------------------------------------------------------------------------------------------------------------------------------- 1 FUERZA...3 2 TRABAJO...5 3 POTENCIA...6 4 ENERGÍA...7

Más detalles

UNIDAD 6.- NEUMÁTICA.

UNIDAD 6.- NEUMÁTICA. UNIDAD 6.- NEUMÁTICA. 1.-ELEMENTOS DE UN CIRCUITO NEUMÁTICO. El aire comprimido se puede utilizar de dos maneras distintas: Como elemento de mando y control: permitiendo que se abran o cierren determinadas

Más detalles

Recursos asociados a Sopa de letras

Recursos asociados a Sopa de letras El voluntariado y el ecologismo Acceder a las instrucciones del juego Recursos asociados a Sopa de letras Identificar conceptos relacionados con problemas medioambientales. Afianzar los conocimientos de

Más detalles

EVAPORACIÓN DE ALIMENTOS

EVAPORACIÓN DE ALIMENTOS EVAPORACIÓN DE ALIMENTOS La evaporación es el método por el cuál se elimina una parte del agua contenida en un alimento fluido, mediante evaporación de la misma (ebullición) con objeto de obtener un producto

Más detalles

MANUAL DE BUENAS PRÁCTICAS DE MANIPULACION DE ALIMENTOS

MANUAL DE BUENAS PRÁCTICAS DE MANIPULACION DE ALIMENTOS - 1 - C.A.L.E. S.I.E. MANUAL DE BUENAS PRÁCTICAS DE MANIPULACION DE ALIMENTOS DEPARTAMENTO DE INVESTIGACIÓN Y DESARROLLO SERVICIO DE INTENDENCIA DEL EJERCITO 1. OBJETO: Este documento presenta la información

Más detalles

TRABAJO PRACTICO ESTERILIZACION

TRABAJO PRACTICO ESTERILIZACION TRABAJO PRACTICO ESTERILIZACION Introducción La esterilización es un proceso de suma importancia para la industria de las fermentaciones. Para comenzar la explicación de este tema es conveniente dejar

Más detalles

Food Processing Equipment FREIDORA CONTINUA

Food Processing Equipment FREIDORA CONTINUA Food Processing Equipment FREIDORA CONTINUA NEAEN MasterFry NEAEN MasterFry es una freidora diseñada para freír usando una inmersión total en aceite. Gracias a la doble rejilla, también puede utilizar

Más detalles

Elementos de Física - Aplicaciones ENERGÍA. Taller Vertical 3 de Matemática y Física Aplicadas MASSUCCO ARRARÁS MARAÑON DI LEO

Elementos de Física - Aplicaciones ENERGÍA. Taller Vertical 3 de Matemática y Física Aplicadas MASSUCCO ARRARÁS MARAÑON DI LEO Elementos de Física - Aplicaciones ENERGÍA Taller Vertical 3 de Matemática y Física Aplicadas MASSUCCO ARRARÁS MARAÑON DI LEO Energía La energía es una magnitud física que está asociada a la capacidad

Más detalles

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA PROGRAMA DE INGENIERIA DE ALIMENTOS 211612 TRANSFERENCIA DE MASA ACTIVIDAD 11 RECONOCIMIENTO UNIDAD 3 BOGOTA D.C. Extracción líquido - líquido La extracción líquido-líquido,

Más detalles

CAMBIO DE FASE : VAPORIZACIÓN

CAMBIO DE FASE : VAPORIZACIÓN CAMBIO DE FASE : VAPORIZACIÓN Un líquido no tiene que ser calentado a su punto de ebullición antes de que pueda convertirse en un gas. El agua, por ejemplo, se evapora de un envase abierto en la temperatura

Más detalles

Tratamiento Biológico de Aguas Residuales: Uso de Bacterias Benéficas

Tratamiento Biológico de Aguas Residuales: Uso de Bacterias Benéficas Tratamiento Biológico de Aguas Residuales: Uso de Bacterias Benéficas Las aguas negras La naturaleza procesa la contaminación mediante procesos cíclicos (geoquímicos), pero actualmente le resultan insuficientes

Más detalles

El tiempo de precocinado depende del tamaño y la variedad del atún.

El tiempo de precocinado depende del tamaño y la variedad del atún. 23 Pre-cocinado Los coches llenos con atún ingresan a los precocinadores, donde se someten a un proceso de cocción a una temperatura entre 102 y 104 C. El tiempo de precocinado depende del tamaño y la

Más detalles

PROCESOS DE SEPARACIÓN II EVAPORACIÓN

PROCESOS DE SEPARACIÓN II EVAPORACIÓN PROCESOS DE SEPARACIÓN II EVAPORACIÓN Factores de proceso Las propiedades físicas y químicas de la solución que se está concentrando y del vapor que se separa tienen un efecto considerable sobre el tipo

Más detalles

1El fuego y el calor. S u m a r i o. 1.1. El tetraedro del fuego. 1.2. Reacciones químicas. 1.3. Transmisión del calor

1El fuego y el calor. S u m a r i o. 1.1. El tetraedro del fuego. 1.2. Reacciones químicas. 1.3. Transmisión del calor 1El fuego y el calor S u m a r i o 1.1. El tetraedro del fuego 1.2. Reacciones químicas 1.3. Transmisión del calor INVESTIGACIÓN DE INCENDIOS EN VEHÍCULOS 5 Capítulo 1 Desde el punto de vista de la investigación

Más detalles

TEMA 5: APLICACIONES DEL EFECTO TÉRMICO

TEMA 5: APLICACIONES DEL EFECTO TÉRMICO Elementos de caldeo TEMA 5: APLICACIONES DEL EFECTO TÉRMICO Son resistencias preparadas para transformar la energía eléctrica en calor (Figura). Se utilizan para la fabricación de estufas, placas de cocina,

Más detalles

Tema 17 Deformación y falla de los materiales polímeros.

Tema 17 Deformación y falla de los materiales polímeros. Tema 17 Deformación y falla de los materiales polímeros. Las propiedades mecánicas de los materiales polímeros se especifican con muchos de los mismos parámetros usados en los metales. Se utiliza la prueba

Más detalles

Somos una empresa alemana de origen danés líder en la fabricación y aplicación de

Somos una empresa alemana de origen danés líder en la fabricación y aplicación de Somos una empresa alemana de origen danés líder en la fabricación y aplicación de productos de energía solar en el mercado europeo, gracias a nuestra inversión en i+d+i y nuestra excelente gestión operativa.

Más detalles

ENERGÍA ELÉCTRICA. Central Eólica

ENERGÍA ELÉCTRICA. Central Eólica ENERGÍA ELÉCTRICA. Central Eólica La energía eólica es la energía obtenida por el viento, es decir, la energía cinética obtenida por las corrientes de aire y transformada en energía eléctrica mediante

Más detalles

TALLER DE ENVASES. Objetivos:

TALLER DE ENVASES. Objetivos: Objetivos: TALLER DE ENVASES Habituar a los alumnos a realizar elecciones adecuadas de los productos, considerando que no se compran solamente los productos objeto de consumo, sino también el producto

Más detalles

Los negros de humo para cementos, hormigones y morteros.

Los negros de humo para cementos, hormigones y morteros. Los negros de humo para cementos, hormigones y morteros. Los pigmentos negros de óxido de hierro son los más utilizados para colorear cementos, morteros y hormigones. Estos, al igual que ocurre con los

Más detalles

Química, desarrollo histórico y relación con otras ciencias

Química, desarrollo histórico y relación con otras ciencias Química, desarrollo histórico y relación con otras ciencias La definición de química hace una división entre la época antigua y la moderna; en la primera los procesos químicos eran realizados por artesanos

Más detalles

1. Definición. 2. Proceso Productivo

1. Definición. 2. Proceso Productivo SECADO SOLAR 1. Definición El secado mediante una corriente de aire, donde se aprovecha la radiación solar como fuente de energía, es uno de los tratamientos más antiguos. Se conoce como deshidratación

Más detalles

MÓDULO: GESTIÓN DE RESIDUOS TEMA: DESMINERALIZACIÓN

MÓDULO: GESTIÓN DE RESIDUOS TEMA: DESMINERALIZACIÓN MÓDULO: GESTIÓN DE RESIDUOS TEMA: DESMINERALIZACIÓN DOCUMENTACIÓN ELABORADA POR: NIEVES CIFUENTES MASTER EN INGENIERIÁ MEDIOAMBIENTAL Y GESTIÓN DEL AGUA ÍNDICE 1. INTRODUCCIÓN 2. INTERCAMBIO IÓNICO 3.

Más detalles

EVAPORADORES Y CONDENSADORES

EVAPORADORES Y CONDENSADORES AMBOS SON LOS ELEMENTOS DONDE SE PRODUCE EL INTERCAMBIO DE CALOR: EVAPORADOR: SE GANA CALOR A BAJA TEMPERATURA, GENERANDO EFECTO DE REFRIGERACIÓN MEDIANTE LA EVAPORACIÓN DEL REFRIGERANTE A BAJA PRESIÓN

Más detalles

LA ENERGÍA Y SU TRANSFORMACIÓN

LA ENERGÍA Y SU TRANSFORMACIÓN 1) Qué es la energía? Es la capacidad que tiene un cuerpo para realizar un trabajo 2) En qué se mide la energía? La energía se mide en Julios (J) 3) Cuáles son las formas de energía? Energía química, Energía

Más detalles

UNIVERSIDAD AUTONOMA DE CHIHUAHUA

UNIVERSIDAD AUTONOMA DE CHIHUAHUA UNIVERSIDAD AUTONOMA DE CHIHUAHUA FACULTAD DE CIENCIAS QUIMICAS OPERACIONES UNITARIAS ll Ensayo Integrantes: Areli Prieto Velo 232644 Juan Carlos Calderón Villa 232654 Víctor Gutiérrez 245369 Fernando

Más detalles

envases para alimentación.

envases para alimentación. VALIDACIÓN PROCESOS TÉRMICOS Y REQUISITOS TÉCNICOS PARA LA EXPORTACIÓN A EEUU. 9.- Manipulación ió de envases para alimentación. Tras le consecución del cierre hermético es preciso que se mantenga en el

Más detalles

1. LA NUTRICIÓN Y LA SALUD La nutrición es un factor clave para las personas porque...

1. LA NUTRICIÓN Y LA SALUD La nutrición es un factor clave para las personas porque... NUTRICIÓN, SALUD Y ACTIVIDAD FÍSICA ESQUEMA 1. LA NUTRICIÓN Y LA SALUD 2. LOS PRINCIPIOS INMEDIATOS 3. LA FUNCIÓN ENERGÉTICA DE LOS ALIMENTOS 4. HÁBITOS DE ALIMENTACIÓN Y SALUD 1. LA NUTRICIÓN Y LA SALUD

Más detalles

Disco de Maxwel. Disco de Maxwel

Disco de Maxwel. Disco de Maxwel M E C Á N I C A Disco de Maxwel Disco de Maxwel M E C Á N I C A Desde el comienzo de su existencia, el ser humano ha utilizado la energía para subsistir. El descubrimiento del fuego proporcionó al hombre

Más detalles

CAPITULO 4 FLUIDIZACIÓN EMPLEANDO VAPOR SOBRECALENTADO. Potter [10], ha demostrado en una planta piloto que materiales sensibles a la

CAPITULO 4 FLUIDIZACIÓN EMPLEANDO VAPOR SOBRECALENTADO. Potter [10], ha demostrado en una planta piloto que materiales sensibles a la 34 CAPITULO 4 FLUIDIZACIÓN EMPLEANDO VAPOR SOBRECALENTADO 4.1 Lecho fluidizado con vapor sobrecalentado Potter [10], ha demostrado en una planta piloto que materiales sensibles a la temperatura pueden

Más detalles

BIOMOLÉCULAS: PROTEÍNAS

BIOMOLÉCULAS: PROTEÍNAS FICHA PARA EL DOCENTE Objetivos Introducir al alumno en los conceptos de aminoácidos y proteínas. Detallar los diferentes tipos de aminoácidos, sus funciones e importancia. Discutir nociones básicas acerca

Más detalles

UNIDAD 3. MATERIALES MATERIALES MATERIA PRIMA, MATERIAL Y PRODUCTO TECNOLÓGICO CLASIFICACIÓN MATERIALES PROPIEDADES DE LOS MATERIALES

UNIDAD 3. MATERIALES MATERIALES MATERIA PRIMA, MATERIAL Y PRODUCTO TECNOLÓGICO CLASIFICACIÓN MATERIALES PROPIEDADES DE LOS MATERIALES UNIDAD 3. MATERIALES MATERIALES MATERIA PRIMA, MATERIAL Y PRODUCTO TECNOLÓGICO CLASIFICACIÓN MATERIALES PROPIEDADES DE LOS MATERIALES DEPARTAMENTO TECNOLOGÍA IES AVENIDA DE LOS TOREROS UD. 3: MATERIALES

Más detalles

Sistema formado por varias substancias en el que a simple vista se distinguen los diferentes componentes.

Sistema formado por varias substancias en el que a simple vista se distinguen los diferentes componentes. PRINCIPIOS BASICOS Sistema homogéneo : ( DISOLUCIONES ) Sistema integrado por varias substancias no distinguibles a simple vista, pero que se pueden separar por procedimientos físicos. por Ejem. : cambios

Más detalles

Fermentación de Cacao

Fermentación de Cacao Fermentación de Cacao La fermentación del cacao elimina los restos de pulpa pegados al grano, mata el germen dentro del grano y lo más importante inicia el desarrollo del aroma, sabor y color de la almendra

Más detalles

TRABAJO POTENCIA Y ENERGÍA

TRABAJO POTENCIA Y ENERGÍA TRABAJO POTENCIA Y ENERGÍA TRABAJO, POTENCIA Y ENERGÍA Todos habitualmente utilizamos palabras como trabajo, potencia o energía. En esta unidad precisaremos su significado en el contexto de la física;

Más detalles

AQUA-TERMO DE QUERETARO TEL. 4422825481 aquatermo.qro@gmail.com DISTRIBUIDOR AUTORIZADO

AQUA-TERMO DE QUERETARO TEL. 4422825481 aquatermo.qro@gmail.com DISTRIBUIDOR AUTORIZADO SUNSHINE SOLAR ES UNA EMPRESA DEDICADA 100% A LA FABRICACION DE CALENTADORES SOLARES EN MÉXICO, CON PLANTA EN JALISCO APOYANDO EL DESARROLLO DE NUESTRO PAÍS Y PREOCUPADA POR EL MEDIO AMBIENTE, PROMUEVE

Más detalles

SECADO DE EMBUTIDOS. es una fuente propicia para el desarrollo de bacterias y mohos.

SECADO DE EMBUTIDOS. es una fuente propicia para el desarrollo de bacterias y mohos. SECADO DE EMBUTIDOS Imtech DryGenic ayuda a los fabricantes con procesos de secado de embutidos a obtener embutidos de mayor calidad, en un entorno libre de bacterias, limpio y a una temperatura y humedad

Más detalles

COMPOSTAJE Y RECUPERACION DE MATERIALES A PARTIR DE RESIDUOS SOLIDOS URBANOS. Ventajas y desventajas

COMPOSTAJE Y RECUPERACION DE MATERIALES A PARTIR DE RESIDUOS SOLIDOS URBANOS. Ventajas y desventajas FUNDACION NEXUS CIENCIAS SOCIALES MEDIO AMBIENTE SALUD COMPOSTAJE Y RECUPERACION DE MATERIALES A PARTIR DE RESIDUOS SOLIDOS URBANOS. Ventajas y desventajas Buenos Aires, julio 2010 Av. SANTA FE 1845 7º

Más detalles

ANEJO Nº 3: ANÁLISIS MULTICRITERIO PARA LA ELECCIÓN DE ENVASE

ANEJO Nº 3: ANÁLISIS MULTICRITERIO PARA LA ELECCIÓN DE ENVASE ANEJO Nº 3: ANÁLISIS MULTICRITERIO PARA LA ELECCIÓN DE ENVASE ÍNDICE 1. INTRODUCCION... 45 2. METODOLOGÍA... 45 3. ANALISIS MULTICRITERIO: TIPO DE ENVASE... 45 3.1. Alternativas generadas... 45 3.2. Criterios

Más detalles

Análisis de Ciclo de Vida de una lata de aluminio

Análisis de Ciclo de Vida de una lata de aluminio Análisis de Ciclo de Vida de una lata de aluminio 1. FASE 1: DEFINICIÓN DE OBJETIVOS Y ALCANCE OBJETIVOS DEL ANÁLISIS El tema a tratar es hacer el análisis del ciclo de vida de una lata de aluminio, para

Más detalles

Aísla tu hogar del frío

Aísla tu hogar del frío Aísla tu hogar del frío La mayor parte del consumo energético en España se produce en los hogares. Es mayor en los meses de invierno e implica un gran consumo en calefacción para mantener una temperatura

Más detalles

VII Curso de Diálisis Peritoneal para Enfermería Nefrológica de Andalucía. CONECTOLOGÍA Y AVANCES EN DIÁLISIS PERITONEAL. D. Manuel S.

VII Curso de Diálisis Peritoneal para Enfermería Nefrológica de Andalucía. CONECTOLOGÍA Y AVANCES EN DIÁLISIS PERITONEAL. D. Manuel S. CONECTOLOGÍA Y AVANCES EN DIÁLISIS PERITONEAL D. Manuel S. Aguilar Amores Fresenius Medical Care CONECTOLOGÍA La peritonitis sigue siendo la complicación más importante en Diálisis Peritoneal y puede tener

Más detalles

PARTE DE PRENSA. Alimentos seguros 1

PARTE DE PRENSA. Alimentos seguros 1 PARTE DE PRENSA Alimentos seguros 1 Lavar, pelar, hervir y a comer tranquilos! Las bacterias también pueden contaminar y multiplicarse en los alimentos crudos. Por eso, es importante tener en cuenta algunas

Más detalles

Calentadores Solares

Calentadores Solares Calentadores Solares BENEFICIOS Usted ha adquirido un Calentador Solar. A partir de hoy empezará a ahorrar dinero y apoyará a la conservación del medio ambiente. Nuestro calentador funciona con los rayos

Más detalles

LÍNEAS DEL DIAGRAMA DE MOLLIER

LÍNEAS DEL DIAGRAMA DE MOLLIER DIAGRAMA DE MOLLIER El refrigerante cambia de estado a lo largo del ciclo frigorífico como hemos visto en el capítulo anterior. Representaremos sobre el diagrama de p-h las distintas transformaciones que

Más detalles

P9: ENSAYO DE VACÍO Y CORTOCIRCUITO DEL TRANSFORMADOR MONOFÁSICO FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA

P9: ENSAYO DE VACÍO Y CORTOCIRCUITO DEL TRANSFORMADOR MONOFÁSICO FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA INDUSTRIAL (BILBAO) Departamento de Ingeniería Eléctrica INDUSTRI INGENIARITZA TEKNIKORAKO UNIBERTSITATE-ESKOLA (BILBO) Ingeniaritza Elektriko Saila ALUMNO P9:

Más detalles

ALTERACIÓN DE LOS ALIMENTOS

ALTERACIÓN DE LOS ALIMENTOS ALTERACIÓN DE LOS ALIMENTOS Introducción Un alimento está alterado cuando en él se presentan cambios que limitan su aprovechamiento. El alimento alterado tiene modificadas sus características organolépticas

Más detalles

Las sustancias puras son los elementos y los compuestos.

Las sustancias puras son los elementos y los compuestos. Las sustancias puras son los elementos y los compuestos. Un elemento es una sustancia pura porque todas las partículas que lo forman son iguales y tiene unas propiedades características. Ejemplo: el oxígeno,

Más detalles

2.3 SISTEMAS HOMOGÉNEOS.

2.3 SISTEMAS HOMOGÉNEOS. 2.3 SISTEMAS HOMOGÉNEOS. 2.3.1 DISOLUCIONES. Vemos que muchos cuerpos y sistemas materiales son heterogéneos y podemos observar que están formados por varias sustancias. En otros no podemos ver que haya

Más detalles

ESTUDIO DE DIFERENTES FORMAS DE OBTENER ENERGÍA ELÉCTRICA

ESTUDIO DE DIFERENTES FORMAS DE OBTENER ENERGÍA ELÉCTRICA ESTUDIO DE DIFERENTES FORMAS DE OBTENER ENERGÍA ELÉCTRICA Producción de energía eléctrica La energía eléctrica se produce a través de unos aparatos llamados generadores o alternadores. Un generador consta,

Más detalles

Ahorro de electricidad en los hogares

Ahorro de electricidad en los hogares Ahorro de electricidad en los hogares CÓMO PODEMOS REDUCIR NUESTRO CONSUMO? El plan energético horizonte 2010 prevé diferentes actuaciones para fomentar el ahorrro y la eficiencia energética. Estas actuaciones

Más detalles

EL OZONO EN EL AIRE ACONDICIONADO

EL OZONO EN EL AIRE ACONDICIONADO EL OZONO EN EL AIRE ACONDICIONADO De todos es conocido que la respiración es un proceso de combustión lenta, que tiene lugar en el interior del organismo y que origina, como las combustiones ordinarias,

Más detalles

Mantenimiento y uso calderas de biomasa Daniel Solé Joan Ribas

Mantenimiento y uso calderas de biomasa Daniel Solé Joan Ribas Mantenimiento y uso calderas Daniel Solé Joan Ribas Se pueden identificar como handicaps principales en el uso de calderas, los siguientes: Posibles bloqueos y otras incidencias en los sistemas de transporte

Más detalles

La energía y sus transformaciones

La energía y sus transformaciones La energía y sus transformaciones Índice 1 Definición de energía 2 Energías renovables y no renovables 2.1 Energías no renovables 2.2 Energías renovables 3 Transformaciones energéticas 4 Conservación de

Más detalles

Al aplicar las técnicas de ahorro de combustible permite obtener los siguientes beneficios:

Al aplicar las técnicas de ahorro de combustible permite obtener los siguientes beneficios: MANUAL DE CAPACITACIÓN EN CONDUCCIÓN EFICIENTE INTRODUCCIÓN Señor Conductor: Este manual esta dedicado a usted CONDUCTOR PROFESIONAL!, en cuyas capaces y hábiles manos descansa la responsabilidad final

Más detalles

[EJERCICIOS CAMBIOS DE ESTADO]

[EJERCICIOS CAMBIOS DE ESTADO] 37. Completa las siguientes frases de la teoría cinética. a. Todas las partículas están en continuo movimiento, que es más rápido si aumentamos la temperatura. b. Entre las partículas existen fuerzas de

Más detalles

Compresión y distribución de aire comprimido 1

Compresión y distribución de aire comprimido 1 Compresión y distribución de aire comprimido 1 1 Compresores Para que los elementos neumáticos de trabajo sean operativos, precisan ser alimentados con aire a presión. Los compresores son máquinas encargadas

Más detalles

THE PARTNER FOR PROFIT

THE PARTNER FOR PROFIT grading - packing - processing OvoPro PASTEURIZACIÓN THE PARTNER FOR PROFIT Pasteurización Para conservar cualquier producto alimentario el mayor tiempo posible, es evidente que se deben eliminar todos

Más detalles

Transformación de calor en trabajo: el motor de Stirling

Transformación de calor en trabajo: el motor de Stirling Práctica Nº 1 ransformación de calor en trabajo: el motor de Stirling 1. Conceptos implicados Primera y segunda ley de la termodinámica, calor, trabajo, máquinas térmicas, transformación de la energía.

Más detalles

PUENTES TÉRMICOS. En el Apéndice A del HE1 se clasifican los puentes térmicos más comunes en la edificación:

PUENTES TÉRMICOS. En el Apéndice A del HE1 se clasifican los puentes térmicos más comunes en la edificación: PUENTES TÉRMICOS Definición Los puentes térmicos son zonas de la envolvente térmica donde hay una variación en la uniformidad de la construcción, produciéndose una minoración de la resistencia térmica

Más detalles

El valor energético de los alimentos

El valor energético de los alimentos El valor energético de los alimentos http://www2.uned.es/pea-nutricion-y-dietetica- I/guia/guia_nutricion/el_valor_energetico.htm?ca=n0 El valor energético o valor calórico de un alimento es proporcional

Más detalles

LA ENERGÍA. La energía es una propiedad asociada a los objetos y sustancias y se manifiesta en las transformaciones que ocurren en la naturaleza.

LA ENERGÍA. La energía es una propiedad asociada a los objetos y sustancias y se manifiesta en las transformaciones que ocurren en la naturaleza. Objetivos: Unidad II: La energía Conocer qué es la energía Distinguir las distintas formas de energía Comprender las transformaciones de la energía Distinguir entre conservación y degradación de la energía

Más detalles

Tema 4 Tratamientos físico-químicos EUETI Escola Universitaria de Enxeñería Técnica Industrial

Tema 4 Tratamientos físico-químicos EUETI Escola Universitaria de Enxeñería Técnica Industrial Tratamiento de Residuos Tema 4 Tratamientos físico-químicos EUETI Escola Universitaria de Enxeñería Técnica Industrial Tecnología disponible para el tratamiento de residuos Técnicas mecánicas Son aquellas

Más detalles

MANUAL DE PROCEDIMIENTO PARA LA INSTALACION Y CONTROL DE ECO-CAR

MANUAL DE PROCEDIMIENTO PARA LA INSTALACION Y CONTROL DE ECO-CAR MANUAL DE PROCEDIMIENTO PARA LA INSTALACION Y CONTROL DE ECO-CAR A/ INSTALACION. Para una óptima instalación del dispositivo Eco-car se deben observar las siguientes pautas: 1.- El dispositivo debe estar

Más detalles

HOJA INFORMATIVA DE HORTICULTURA

HOJA INFORMATIVA DE HORTICULTURA HOJA INFORMATIVA DE HORTICULTURA COSECHA Y POST-COSECHA: Importancia y fundamentos Alejandro R. Puerta Ing. Agr. Agosto 2002 La cosecha y post - cosecha es una etapa de fundamental importancia en el proceso

Más detalles

DISIPADORES: DISIPACIÓN STOCK O DE FÁBRICA

DISIPADORES: DISIPACIÓN STOCK O DE FÁBRICA DISIPADORES: Disipador de Calor: Es una estructura metálica (por lo general de aluminio) que va montado encima del Microprocesador para ayudarlo a liberar el calor. FanCooler: También conocidos como Electro

Más detalles

D E S C R I P C I O N

D E S C R I P C I O N SISTEMA DE REFRIGERACIÓN CON CO 2 COMO FLUIDO SECUNDARIO D E S C R I P C I O N OBJETO DE LA INVENCIÓN La presente invención se refiere a un sistema de refrigeración con CO 2 como fluido secundario que

Más detalles

LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO

LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO 1. Trabajo mecánico y energía. El trabajo, tal y como se define físicamente, es una magnitud diferente de lo que se entiende sensorialmente por trabajo. Trabajo

Más detalles

UIT-T L.4 SECTOR DE NORMALIZACIÓN DE LAS TELECOMUNICACIONES DE LA UIT

UIT-T L.4 SECTOR DE NORMALIZACIÓN DE LAS TELECOMUNICACIONES DE LA UIT UNIÓN INTERNACIONAL DE TELECOMUNICACIONES UIT-T L.4 SECTOR DE NORMALIZACIÓN DE LAS TELECOMUNICACIONES DE LA UIT CONSTRUCCIÓN, INSTALACIÓN Y PROTECCIÓN DE LOS CABLES Y OTROS ELEMENTOS DE PLANTA EXTERIOR

Más detalles

Grupo Nodrissa. Marta Bacardit Abellán EXTRACCIÓN, ALMACENAMIENTO Y CONSERVACIÓN DE LA LECHE MATERNA

Grupo Nodrissa. Marta Bacardit Abellán EXTRACCIÓN, ALMACENAMIENTO Y CONSERVACIÓN DE LA LECHE MATERNA Grupo Nodrissa. Marta Bacardit Abellán EXTRACCIÓN, ALMACENAMIENTO Y CONSERVACIÓN DE LA LECHE MATERNA 1. Extracción de la leche materna Motivos de extracción: Incorporación al trabajo. Para estimular la

Más detalles

LABORATORIO DE QUÍMIA FACULTAD DE FARMACIA DESTILACIÓN

LABORATORIO DE QUÍMIA FACULTAD DE FARMACIA DESTILACIÓN LABORATORIO DE QUÍMIA FACULTAD DE FARMACIA DESTILACIÓN 1. Introducción La destilación es un proceso mediante el cual un líquido se calienta hasta hacerlo pasar a estado gaseoso. A continuación, los vapores

Más detalles

Unidad Didáctica 6: El Individuo y el Medio Ambiente

Unidad Didáctica 6: El Individuo y el Medio Ambiente Unidad Didáctica 6: El Individuo y el Medio Ambiente Fuente:www.flickr.com autor: labicicletaverde 1 OBJETIVOS - Practicar la Regla de las 4 R - Reflexionar sobre cómo nuestra actividad en el trabajo,

Más detalles

RESUMEN La industria alimentaria, en respuesta a la demanda por parte de los consumidores de alimentos naturales, frescos y libres de conservantes

RESUMEN La industria alimentaria, en respuesta a la demanda por parte de los consumidores de alimentos naturales, frescos y libres de conservantes RESUMEN La industria alimentaria, en respuesta a la demanda por parte de los consumidores de alimentos naturales, frescos y libres de conservantes químicos, ha desarrollado tecnologías de conservación

Más detalles

Manual para la máquina para hacer yogur Yoferm

Manual para la máquina para hacer yogur Yoferm Manual para la máquina para hacer yogur Yoferm Traducido por www.cocinista.es Leer bien las instrucciones antes de usar este aparato. Está máquina sólo debe usarse en un entorno doméstico. Partes de la

Más detalles

Tecnologia del arequipe

Tecnologia del arequipe Tecnologia del arequipe Definición del producto Es el producto higienizado obtenido por la concentración térmica de una mezcla de leche y azúcares.. Resol 2310/86 Característica fisicoquimicas Sólidos

Más detalles

2.3 EQUIPOS PARA MEDIR LA HUMEDAD DEL SUELO

2.3 EQUIPOS PARA MEDIR LA HUMEDAD DEL SUELO 39 2.3 EQUIPOS PARA MEDIR LA HUMEDAD DEL SUELO 2.3.1 Generalidades La cantidad de agua en el suelo es expresada por el porcentaje de humedad del suelo. La necesidad de riego, así como la de drenaje, se

Más detalles

CARAMELOS, CHOCOLATE Y CONFITERÍA

CARAMELOS, CHOCOLATE Y CONFITERÍA CARAMELOS, CHOCOLATE Y CONFITERÍA Los deshumidificadores Imtech DryGenic son la opción más escogida para conservar los índices de producción y asegurar una alta calidad mediante grandes procesos de fabricación

Más detalles

GUÍA TÉCNICA PARA LA DEFINICIÓN DE COMPROMISOS DE CALIDAD Y SUS INDICADORES

GUÍA TÉCNICA PARA LA DEFINICIÓN DE COMPROMISOS DE CALIDAD Y SUS INDICADORES GUÍA TÉCNICA PARA LA DEFINICIÓN DE COMPROMISOS DE CALIDAD Y SUS INDICADORES Tema: Cartas de Servicios Primera versión: 2008 Datos de contacto: Evaluación y Calidad. Gobierno de Navarra. evaluacionycalidad@navarra.es

Más detalles

Condensación y ebullición ING Roxsana Romero Ariza Junio 2013

Condensación y ebullición ING Roxsana Romero Ariza Junio 2013 Condensación y ebullición ING Roxsana Romero Ariza Junio 2013 EBULLICIÓN La transferencia de calor a un líquido en ebullición es muy importante en la evaporación y destilación, así como en otros tipos

Más detalles

LA ESTRATEGIA NACIONAL DE BOSQUES Y CAMBIO CLIMÁTICO

LA ESTRATEGIA NACIONAL DE BOSQUES Y CAMBIO CLIMÁTICO LA ESTRATEGIA NACIONAL DE BOSQUES Y CAMBIO CLIMÁTICO LA ESTRATEGIA NACIONAL DE BOSQUES Y CAMBIO CLIMÁTICO En palabras simples, el Cambio Climático es la modificación del clima que actualmente ocurre en

Más detalles

SISTEMAS DE CALENTAMIENTO SOLAR EN EDIFICIOS

SISTEMAS DE CALENTAMIENTO SOLAR EN EDIFICIOS SISTEMAS DE CALENTAMIENTO SOLAR EN EDIFICIOS Ing. Nestor Quadri El aprovechamiento térmico de la energía solar está generando una nueva actitud de los profesionales hacia el diseño de vivienda solares,

Más detalles

FUERZA. POTENCIA Definición Es el trabajo realizado en la unidad de tiempo (t) P = W / t

FUERZA. POTENCIA Definición Es el trabajo realizado en la unidad de tiempo (t) P = W / t CONCEPTOS BÁSICOS FUERZA Definición Es toda causa capaz de producir o modificar el estado de reposo o de movimiento de un cuerpo o de provocarle una deformación Unidad de medida La unidad de medida en

Más detalles

MEDIDA DEL CALOR ESPECÍFICO

MEDIDA DEL CALOR ESPECÍFICO Laboratorio de Física General Primer Curso (Termodinámica) MEDIDA DEL CALOR ESPECÍFICO Fecha: 07/02/05 1. Objetivo de la práctica Familiarizarse con las medidas calorimétricas mediante la medida del calor

Más detalles

QDS Qué debería saber? Sistemas de extinción de incendios. ESPUMA

QDS Qué debería saber? Sistemas de extinción de incendios. ESPUMA QDS Qué debería saber? Sistemas de extinción de incendios. ESPUMA QDS. Sistemas de extinción de incendios. ESPUMA Los sistemas de extinción por espuma son uno de los sistemas más eficaces para la extinción

Más detalles

CALENTAMIENTO DE LOS CONDUCTORES

CALENTAMIENTO DE LOS CONDUCTORES ELECTROTÈCNIA E3d3.doc Pàgina 1 de 5 CALENTAMIENTO DE LOS CONDUCTORES Uno de los efectos perjudiciales del efecto Joule es el calentamiento que se produce en los conductores eléctricos cuando son recorridos

Más detalles

DEFINICIÓN DE RECICLAJE DE RESIDUOS:

DEFINICIÓN DE RECICLAJE DE RESIDUOS: DEFINICIÓN DE RECICLAJE DE RESIDUOS: En general, se entiende el termino reciclar como sinónimo de recolectar materiales para volverlos a utilizar. Sin embargo, la recolección es sólo el principio del proceso

Más detalles

LA IMPORTANCIA DE CONTROLAR LAS PÉRDIDAS DE ENERGÍA EN LAS EMPRESAS DISTRIBUIDORAS

LA IMPORTANCIA DE CONTROLAR LAS PÉRDIDAS DE ENERGÍA EN LAS EMPRESAS DISTRIBUIDORAS LA IMPORTANCIA DE CONTROLAR LAS PÉRDIDAS DE ENERGÍA EN LAS EMPRESAS DISTRIBUIDORAS Objetivo El presente informe se ha escrito con la finalidad de establecer un marco objetivo como punto de partida para

Más detalles

Requisitos del semillero

Requisitos del semillero Requisitos del semillero La tarea de la cama de siembra es proporcionar a la semilla las condiciones idóneas para una germinación rápida y uniforme. Esto requiere agua, aire, calor y un ambiente libre

Más detalles

Informe de rendimiento de los generadores de vapor en XXX, S.A.

Informe de rendimiento de los generadores de vapor en XXX, S.A. Informe de rendimiento de los generadores de vapor en XXX, S.A. Objetivo El presente informe tiene por objeto analizar y evaluar el funcionamiento de las calderas de vapor instaladas en XXX, S.A. y sus

Más detalles

ASPECTOS GENERALES PARA LA SOLUCIÓN DE PROBLEMAS RELACIONADOS CON LA CONDUCCIÓN TRANSITORIA.

ASPECTOS GENERALES PARA LA SOLUCIÓN DE PROBLEMAS RELACIONADOS CON LA CONDUCCIÓN TRANSITORIA. CONDUCCIÓN TRANSITORIA Aquí encontrarás Los métodos gráficos y el análisis teórico necesario para resolver problemas relacionados con la transferencia de calor por conducción en estado transitorio a través

Más detalles