Tecnología eléctrica. 2º Edición ampliada y revisada. Ramón Mª Mujal Rosas

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tecnología eléctrica. 2º Edición ampliada y revisada. Ramón Mª Mujal Rosas"

Transcripción

1 Tecnología eléctrica º Edición ampliada y revisada Ramón Mª Mujal Rosas

2 Prólogo 7 Prólogo La idea de crear un libro que abarque, aunque de forma general, la mayor parte de la electricidad, surgió ante la necesidad de disponer de un material de estudio apto para las nuevas carreras de Ingeniería de Segundo Ciclo, orientadas a estudiantes con poca disponibilidad de tiempo, o con dificultades para la asistencia regular a las facultades. Por ello, el enfoque dado a esta obra ha sido autodidáctico, con abundancia de explicaciones y ejemplos, que permitan una comprensión rápida, autónoma y eficaz de los temas, a veces complejos, que conforman esta disciplina. Aparte, con la inclusión de numerosos casos prácticos totalmente resueltos, se facilita el aprendizaje, la comprensión y la consolidación de los conceptos teóricos dados. Esta es la segunda edición, de una obra eminentemente práctica, sin más pretensiones que las de ofrecer, en un sólo libro, los aspectos teóricos y prácticos más importantes que rigen, tanto la técnica, como la seguridad, la economía, o las posibilidades futuras (ventajas e inconvenientes) que la electricidad lleva consigo. La obra ha sido estructurada cinco bloques, con un total de trece capítulos ó temas bien diferenciados. El primer bloque (capítulo primero) es una globalización de la electricidad, siendo su comprensión de vital importancia para el seguimiento del resto de los capítulos del libro. Concretamente, el primer capítulo es una introducción al mundo de la electricidad. En él se exponen los principios históricos, así como los motivos que han permitido una evolución tan rápida como la que ha experimentado ésta energía. Seguidamente, y de forma muy superficial, se detallan todas las operaciones que se efectúan con esta energía, que incluyen, desde su generación y transporte, hasta su consumo final. El segundo bloque está formado por los capítulos segundo, tercero y cuarto. Estos capítulos están dedicados a la explicación de los parámetros eléctricos (resistencia e inductancia, en el capítulo segundo; capacidad y conductancia, en el capítulo tercero; y métodos de cálculo de las líneas de transporte de energía eléctrica, en el capítulo cuarto); Estos capítulos, son de suma importancia, ya que permiten la comprensión de algunas de las magnitudes y de los efectos eléctricos más importantes (intensidad, tensión, resistencia, potencia, efectos: corona, aislador y pelicular; filtros, rectificadores, limitadores, etc.). El tercer bloque está formado por los capítulos quinto, sexto y séptimo. El primero de ellos trata de los riesgos eléctricos que entraña la electricidad, detallándose las variables que más influyen en un

3 8 Tecnología eléctrica contacto eléctrico. Una vez conocidos los riesgos eléctricos, el capítulo sexto, nos propone los sistemas de protección más empleados, así como los criterios que definen su correcta elección para cada caso concreto. Finalmente, se dedica un capítulo completo (el séptimo), a la protección de los sistemas mediante la puesta a tierra de las instalaciones, dada la importancia que éste método ofrece, tanto para la seguridad de las personas como de las instalaciones. El cuarto bloque está formado por los capítulos octavo y noveno y es quizás el bloque menos definido, ya que engloba diversos temas del mundo eléctrico. Concretamente el capítulo octavo versa sobre las máquinas eléctricas; indicándose los principios de funcionamiento de las citadas máquinas y profundizándose en la más típica de ellas, el transformador, del cual se realiza un estudio muy completo. El capítulo noveno, versa sobre la regulación de la tensión y la pérdida de potencia en las líneas de transporte de energía eléctrica. Éste es un capítulo muy completo e importante, ya que permite la total resolución de problemas eléctricos reales contemplando desde su generación y transporte hasta su recepción en los puntos de consumo. En este capítulo, conviven las demostraciones teóricas con ejemplos totalmente resueltos que permiten una mejor asimilación dada la complejidad del tema. El quinto bloque esta formado por dos capítulos dedicados a la generación de la energía eléctrica. Así el capítulo décimo versa sobre las energías renovables más utilizadas ó con más posibilidades de futuro (eólica, solar, biomasa, geotérmica, marina, etc.). Para cada tipo de energía se detallan sus antecedentes, las técnicas empleadas, su situación actual, sus repercusiones medioambientales, así como las ventajas, inconvenientes y perspectivas de futuro que éstas ofrecen. Por su parte el capítulo decimoprimero esta dedicado a las centrales convencionales (térmicas, nucleares e hidroeléctricas), fuentes que por el momento producen la mayor parte de la energía que consumimos, a la espera que las energías renovables puedan asumir una parte importante de esta aportación. En este capítulo se realiza un estudio detallado de las mismas, incidiendo muy particularmente, tanto en su modo de funcionamiento, como en el de los problemas medioambientales a ellas asociados. El sexto bloque y último, esta dedicado al estudio económico de los sistemas de potencia. El bloque esta formado por los capítulos decimosegundo y decimotercero. Concretamente el capítulo decimosegundo versa sobre las tarifas eléctricas y en él podemos encontrar temas como los tipos de tarifas, complementos y bonificaciones, elección del tipo de suministro para cada caso y situación, así como unos problemas resueltos finales, a modo de ejemplo, que nos permitirán asimilar los conocimientos teóricos aprendidos. Finalmente, el capítulo decimotercero, es un compendio del funcionamiento económico de los sistemas de potencia. En este capítulo podremos encontrar temas como el despacho económico, el control automático de generación y la programación a corto, medio y largo plazo de las infraestructuras. Asimismo, se explicarán diversas técnicas para la producción y transporte de la electricidad con la seguridad, calidad y máxima eficiencia económica que exigen los tiempos actuales. Finalmente unos anexos dedicados a las fórmulas, tablas, gráficos y esquemas necesarios tanto para un conocimiento general de la materia, como para la correcta resolución de los problemas, se adjuntan al final del libro. No quisiera terminar esta introducción, sin agradecer a todos los que de alguna forma han ayudado en la confección de este libro, mediante sus observaciones, rectificaciones, ó consejos, siempre de gran utilidad y en especial a mi familia por la paciencia y comprensión mostrada. A todos ellos mi más sincera gratitud. El autor Terrassa, mayo de 003

4 Índice 9 Índice I La electricidad: conceptos previos... 3 La electricidad. Historia de la electricidad Cronología histórica de la electricidad Estructura de un sistema eléctrico Suministros eléctricos....5 Parámetros eléctricos característicos Tensiones más frecuentes utilizadas en España Elementos constitutivos de los sistemas de potencia Generación de energía eléctrica Cuestiones y problemas II Parámetros eléctricos y cálculo de líneas eléctricas Parámetros eléctricos longitudinales. (Resistencia e inductancia). Aspectos generales Resistencia. Conductores. Efectos pelicular y proximidad Inductancia. Campo magnético. Cálculo de la inductancia Cuestiones y problemas Parámetros eléctricos transversales. (Capacidad y conductancia) 3. Capacidad. Efecto Ferranti. Cálculo de la capacidad Conductancia. Efectos corona y aislador Problema resuelto del cálculo de los efectos corona y aislador Cuestiones y problemas... 93

5 0 Tecnología eléctrica 4 Cálculo de líneas eléctricas 4. Introducción Conceptos previos Diagramas Tipos de parámetros Cálculo de líneas. Métodos de las constantes, en "T" y en "Π" Problema resuelto de cálculo de líneas eléctricas por todos los métodos Cuestiones y problemas...30 III Riesgos eléctricos y protección de sistemas de potencia Riesgos eléctricos 5. Introducción Primeros auxilios en un accidente de origen eléctrico Efectos de la corriente eléctrica sobre el organismo humano La electricidad estática Tipos de accidentes eléctricos Cuestiones y problemas Protección de los sistemas eléctricos 6. Protección de los sistemas eléctricos. Sobrecargas, cortocircuitos, defectos a tierra Coordinación de los sistemas de protección. Selectividad eléctrica Tipos de contactos eléctricos Técnicas de seguridad contra los contactos eléctricos Cuestiones y problemas Puesta a tierra 7. Introducción Definición de puesta a tierra Partes de que consta una puesta a tierra Resistencia de paso a tierra Elementos que se deben conectar a la puesta a tierra Tensión de paso y tensión de contacto Cálculo de la puesta a tierra Medición de la puesta a tierra Emplazamiento y mantenimiento de la puesta a tierra Revisión de las tomas a tierra Cuestiones y problemas... 7

6 Índice IV Máquinas eléctricas y regulación de la tensión en los sistemas de potencia Transformadores 8. Introducción Consideraciones generales Principio de funcionamiento del transformador ideal y real Circuito equivalente de un transformador Ensayos del transformador. Ensayos de cortocircuito y de vacío Caída de tensión en un transformador Cuestiones y problemas Regulación de la tensión en líneas aéreas 9. Introducción Cálculo de las condiciones eléctricas en una línea de energía eléctrica Cálculo aproximado de la caída de tensión en una línea corta Flujo de potencia en una línea eléctrica aérea Regulación de la tensión en líneas eléctricas Cálculo de la potencia reactiva de compensación en paralelo Problema resuelto de regulación de la tensión en las líneas eléctricas Cuestiones y problemas...98 V Generación de la energía eléctrica Energías renovables 0. Introducción Energía eólica Energía solar. Energía fototérmica y fotovoltaica Energía de la biomasa Energía geotérmica Energía del mar, Maremotriz, de las corriente marinas.y de las olas Minicentrales eléctricas y centrales de bombeo Conclusiones Cuestiones y problemas Centrales eléctricas convencionales. Tipos de centrales eléctricas Las centrales eléctricas en España Las centrales hidroeléctricas Las centrales termoeléctricas clásicas Las centrales nucleares Cuestiones y problemas... 37

7 Tecnología eléctrica VI Funcionamiento económico de los sistemas de potencia Tarifas eléctricas. Introducción Tarifas eléctricas. La factura eléctrica (BOE 3//0) Clasificación de las tarifas Liberalización del sector eléctrico Comercialización de la energía eléctrica Impuesto sobre la electricidad Bajada de las tarifas Problemas resueltos sobre diversos tipos de tarifas Cuestiones y problemas Despacho económico 3. Introducción al despacho económico Control de un sistema de potencia Funcionamiento económico de las centrales eléctricas Control automático de la generación Funcionamiento económico de los sistemas de potencia Cuestiones y problemas Anexos I Constantes de magnitudes físicas, terrestres y cuánticas II Resistividad (ρ), coeficiente de temperatura (α), punto de fusión (ºC) y densidad (δ) de diversos materiales y aleaciones III Coeficientes de resistividad de los aislantes IV Magnitudes y unidades magnéticas V Conductores eléctricos VI Conductancia. Autoinducción y susceptancia VII Método de las constantes auxiliares VIII Método del circuito equivalente en "T" y en "Π" IX Fórmulas para el cálculo de líneas eléctricas X Resumen de fórmulas de líneas eléctricas Bibliografía

8 I La electricidad: conceptos previos 3 I La electricidad: conceptos previos Presentación Con éste primer módulo, formado por el capítulo de introducción, se pretende que el lector entre en contacto con el mundo eléctrico haciendo un recorrido histórico desde sus inicios hasta su situación actual. Así, al principio se realiza un repaso a la historia de la electricidad: los primeros descubrimientos, los científicos, la evolución de la electricidad, los problemas a los que se enfrentaron los primeros productores de energía, el rápido progreso alcanzado por esta energía o su situación actual serán tratados en un primer apartado. Seguidamente se expondrán los diversos métodos para la generación, transporte y consumo de esta energía, haciendo hincapié en las diversas estructuras de los sistemas de potencia, las tensiones y frecuencias normalizadas, los tipos de suministros o las ventajas e inconvenientes que presentan los dos sistemas mayoritarios de generación: alterna y continua. Asimismo se introducirán las principales máquinas eléctricas, como el generador, el motor o el transformador, las cuales serán tratadas en profundidad en capítulos posteriores, pero será en este primer capítulo donde cada máquina se situará dentro del conjunto de componentes que forma un sistema de potencia. Una vez definido el suministro mayoritario en la actualidad: la corriente alterna, se realizará un repaso a los parámetros o características principales que definen esta energía. Así, frecuencia, periodo, energía, potencia, valores máximos, mínimos o eficaces, tensiones más usuales, transformación o formas de conexión de las bobinas (estrella o triángulo) serán objeto de estudio en este apartado. Finalmente, se realizará una introducción a los diversos sistemas de generación de energía eléctrica: los sistemas convencionales y los sistemas de energías renovables. Cada una de estas energías dispondrá de un capítulo específico en la obra, pero de forma resumida, en este primer capítulo, se darán las razones que aconsejan la utilización de cada tipo de energía considerando sus ventajas e inconvenientes. La importancia de este capítulo radica en situar a los lectores en un mismo nivel de partida, con unos conocimientos que, aunque básicos, les permitan estar familiarizados con los aspectos técnicos generales, nomenclatura y forma de exposición utilizada en esta obra. También puede servir este capítulo como resumen de los temas que el lector va a encontrarse a lo largo del libro. En definitiva, se pretende preparar al lector para asimilar de forma cómoda y rápida los siguientes capítulos bastante más técnicos y específicos.

9 4 Tecnología eléctrica Unas cuestiones y ejercicios al final del capítulo permiten al lector evaluar su nivel de asimilación de la materia, aparte de resultar una forma rápida de repasar, a posteriori, cualquier duda o concepto sobre la materia estudiada. Contenidos Capítulo I: La electricidad. Consideraciones generales Objetivos La electricidad. Consideraciones generales Introducir al alumno en el mundo eléctrico. Conocer la cronología histórica de la electricidad. Conocer la estructura de una red básica eléctrica. Comparar los tipos de suministros eléctricos, razonando las ventajas e inconvenientes de cada uno de ellos. Conocer las magnitudes eléctricas características. Frecuencia, intensidad, tensión, potencia, energía, transformación, valores máximos, instantáneos y eficaces, etc. Conocer las tensiones utilizadas más usuales, así como la agrupación que de ellas se realiza en diversos niveles o grupos de tensión. Adquirir los conceptos básicos de la generación de energía eléctrica mediante el empleo de las energías convencionales. Adquirir los conceptos básicos de la generación energética mediante el empleo de las energías renovables (eólicas, solares, de biomasa, geotérmicas, de origen marino, etc.)

10 La electricidad 5 La electricidad. Historia de la electricidad Las propiedades eléctricas o electroestáticas de ciertos materiales eran ya conocidas por las civilizaciones antiguas. Hacia el año 600 a.c., el filósofo y científico Thales de Mileto había comprobado que si se frotaba el ámbar, éste atraía hacia sí objetos más livianos. Se creía que la electricidad residía en el objeto frotado. De ahí que el término electricidad provenga del vocablo griego elecktron, que significa ámbar. En los dominios de la antigua Roma ya se explotaba un mineral que también poseía la propiedad de atraer a ciertos materiales (los metálicos), este mineral recibía el nombre de magnetita, mineral muy apreciado en la antigüedad precisamente por sus particulares características. Pero no fue hasta la época del Renacimiento cuando comenzaron los primeros estudios metodológicos, en los cuales la electricidad estuvo íntimamente relacionada con el magnetismo. Antes del año 800, el estudio de los fenómenos eléctricos y magnéticos sólo interesó a unos cuantos científicos, como W. Gilbert, C. A. de Coulomb, L. Galvani, Otto Von Guericke, Benjamín Franklin, o Alessandro Volta. Algunos otros hicieron importantes contribuciones al aún insuficiente y fragmentado conocimiento de la electricidad, pero en aquel tiempo no se conocían todavía sus aplicaciones y los estudios sólo fueron motivados por una simple curiosidad intelectual. La población iluminaba sus hogares con velas, lámparas alimentadas con aceite de ballena y petróleo, y la potencia motriz era suministrada generalmente por personas o animales de tracción. El inglés William Gilbert comprobó que algunas sustancias se comportaban como el ámbar y cuando eran frotadas atraían objetos livianos, mientras que otras no ejercían ninguna atracción. A las primeras, entre las que ubicó al cristal, al azufre y la resina, las llamó eléctricas, mientras que a las segundas, como el cobre o la plata, aneléctricas. A principios del siglo XIX, el conde Alessandro Volta construyó una pila galvánica. Colocó capas de cinc, papel y cobre, y descubrió que si se unía la base de cinc con la última capa de cobre, el resultado era una corriente eléctrica que fluía por el hilo de la unión. Este sencillo aparato fue el prototipo de las pilas eléctricas, de los acumuladores y de toda corriente eléctrica producida hasta la aparición de la dinamo. Mientras tanto, George Simon Ohm sentó las bases del estudio de la circulación de las cargas eléctricas en el interior de materias conductoras, postulando su ley, en la cual se relacionaba la resistencia con la intensidad y la tensión, es decir, tres de las cuatro magnitudes más importantes de la electricidad. En 89, Hans Cristian Oersted descubrió que una aguja magnética colgada de un hilo se apartaba de su posición inicial cuando pasaba próxima a ella una corriente eléctrica, y postuló que las corrientes

11 6 Tecnología eléctrica eléctricas producían un efecto magnético. De esta simple observación salió la tecnología del telégrafo eléctrico. Sobre esta base, André Marie Ampère dedujo que las corrientes eléctricas debían comportarse del mismo modo que los imanes. El descubrimiento de Ampère llevó a Michael Faraday a suponer que una corriente que circulara cerca de un circuito induciría otra corriente en él. El resultado de su experimento fue que esto sólo sucedía al comenzar y cesar de fluir la corriente en el primer circuito. Sustituyó la corriente por un imán y encontró que su movimiento en la proximidad del circuito inducía en éste una corriente. De forma que pudo comprobar que el trabajo mecánico empleado en mover un imán podía transformarse en corriente eléctrica. Hacia mediados del siglo XIX se estableció la distinción entre materiales aislantes y conductores. Los aislantes eran aquellos a los que Gilbert había considerado eléctricos, en tanto que los conductores eran los aneléctricos. Esto permitió que se construyera el primer almacenador rudimentario: estaba formado por dos placas conductoras que tenían una lámina aislante entre ellas. Fue conocido como botella de Leyden, en honor a la ciudad donde se realizo el inventó. Durante este mismo periodo ocurrieron impresionantes avances en la compresión de los fenómenos eléctricos y magnéticos. Humphrey Davy, André Marie Ampere, G.S. Ohm y Karl Gauss realizaron importantes descubrimientos, pero el descubrimiento que llegó a ser fundamental para elevar el concepto de la electricidad como un fenómeno científico interesante a una gran tecnología con implicaciones sociales de grandes alcances se logró de forma independiente por los investigadores Michael Faraday y Joseph Henry. Ampère y otros ya habían observado que los campos magnéticos eran generados por corrientes eléctricas; sin embargo, ninguno había descubierto cómo se podían obtener corrientes eléctricas a partir de campos magnéticos. Faraday trabajó en ello de 8 a 83, logrando el éxito al formular la ley que lleva su nombre. Posteriormente construyó una máquina generadora de voltaje según los principios de inducción magnética. Se tenía ahora una fuente de electricidad que rivalizaba (y excedía en mucho) las posibilidades de la pila voltaica y las botellas de Leyden. James Prescott Joule, descubrió a qué eran debidas las pérdidas de energía. Mediante la ley de Joule, enunciada en 84, según la cual la cantidad de calor desprendido por un conductor al paso de una corriente eléctrica es directamente proporcional al cuadrado de la intensidad de la corriente, a la resistencia de dicho conductor y al tiempo durante el cual circula dicha corriente, según la expresión: Q= ki Rt, donde k es una constante de proporcionalidad que depende del sistema de unidades utilizado. Varios investigadores, incluyendo Carl Siemens, Wheatstone, Varley, Gramme, aplicaron los principios de inducción en la construcción de primitivos generadores eléctricos en el periodo comprendido entre 840 a 870. Casi al mismo tiempo, un fenómeno descubierto algunos años atrás, atrajo especial atención como una práctica fuente luminosa. Se observó que cuando dos electrodos conducían corriente se mantenían separados, se formaba entre ellos un arco eléctrico de intenso brillo. Los experimentos de Faraday fueron expresados matemáticamente por James Maxwell, quien en 873 presentó sus ecuaciones, que unificaban la descripción de los comportamientos eléctricos y magnéticos y su desplazamiento a través del espacio en forma de ondas. En 878 Thomas Alva Edison comenzó los experimentos que terminarían, un año más tarde, con la invención de la lámpara eléctrica, que universalizaría el uso de la electricidad. Desde que en 880 entró en funcionamiento en Londres la primera central eléctrica destinada a iluminar la ciudad, las aplicaciones de esta forma de energía se extendieron progresivamente. En Buenos Aires, el sistema eléctrico comenzó con la aparición de la Compañía General Eléctrica Ciudad de Buenos Aires, en

12 La electricidad En 88 se instaló el primer sistema para la venta de energía eléctrica para el alumbrado incandescente en EE.UU. El sistema era de corriente continua (DC), de tres cables 0/0 V, y alimentó una carga de lámparas de Edison que tenían un requerimiento total de 30 KW de potencia. Este y otros sistemas avanzados fueron el principio de lo que se convertiría en una de las industrias más grandes del mundo. Entre 800 y 80 se fundaron compañías comerciales de alumbrado con gas, primero en Europa y poco después en Estados unidos. Hubo oposición al alumbrado de gas por su potencia explosiva. Sin embargo, la ventaja básica de más luz a menor precio no podía seguir ocultándose, por lo que se acabó desarrollando la industria durante el siglo XIX, teniendo su punto culminante alrededor de 885. Las antiguas compañías eléctricas se autonombraban compañías de iluminación, ya que el alumbrado constituía su único servicio. Sin embargo, muy pronto se encontró un problema técnico que aún prevalece: la carga que la compañía tenía que satisfacer comenzaba al anochecer, se mantenía casi constante en las primeras horas de la noche, y después caía de forma precipitada a las p.m., aproximadamente, a un 50% o menos. Era evidente que se tenía un complicado sistema, que permanecía ocioso o al menos infrautilizado la mayor parte del tiempo. En este caso, se podrían encontrar otras aplicaciones que ocuparan las etapas de inactividad? Ya se conocía el motor eléctrico, y la existencia de un substituto eléctrico era un incentivo para su mejoramiento y aceptación comercial. El uso de potencia eléctrica motora llegó a ser popular con rapidez y se le dieron muchas aplicaciones. Debido a sus funciones cada vez más extensas, las compañías comenzaron a nombrarse compañías de luz y fuerza. Surgió otro problema técnico: los incrementos de carga se tradujeron en incremento de corriente, lo que causó caídas de tensión que eran inaceptables si las plantas generadoras estaban ubicadas a grandes distancias de las cargas. El hecho de mantener los generadores cerca de las cargas llegó a ser cada vez más difícil, ya que los lugares adecuados para la generación frecuentemente no estaban disponibles. Se sabía que la potencia eléctrica era proporcional al producto del voltaje y la corriente. Es decir, se obtendría menor corriente a mayor voltaje. Desgraciadamente, no era deseable un voltaje más alto desde cualquiera de los dos puntos de vista. El tecnológico y la seguridad del cliente. Lo que se requería era transmitir la potencia a un voltaje más alto a través de grandes distancias, y después cambiarlo a valores menores en los sitios de carga. La clave era diseñar un dispositivo que pudiese transformar niveles de corriente y voltaje de forma fiable y eficiente. En la década de 890, la compañía Westinghouse, recién constituida, experimentó una nueva forma de electricidad, denominada corriente alterna (AC), inspirada en el hecho de que la corriente invierte alternativamente el sentido del flujo en sincronismo con el generador rotatorio. Esta novedad tenía muchas ventajas inherentes; por ejemplo, se eliminaron los problemas de conmutación, propios de los generadores de DC, lo que dio lugar a controversias entre Edison, de la nueva compañía General Electric, y la Westinghouse, para definir si la industria debía establecer normas sobre AC o DC. Finalmente triunfó la corriente alterna, por las siguientes razones: - El transformador de AC podía satisfacer el requerimiento necesario de cambiar fácilmente los niveles de voltaje y corriente. - El generador de AC era más sencillo. - Los motores de AC, sin ser versátiles, eran más sencillos y más baratos. Una vez que se estandarizó la AC, apareció prácticamente el concepto de estación central y desaparecieron los problemas de las cargas lejanas. Este tipo de compañías tuvieron cada vez mayor número de clientes, ya que la mayor parte del incremento de carga se podía manejar sin que hubiera

13 8 Tecnología eléctrica necesidad de incrementar la inversión del capital; se abarató el costo por unidad de energía, lo que atrajo aún más clientes. Las empresas eléctricas locales se extendieron en tal forma que compartieron sus límites. Esta ventaja operativa fue aparente; como las cargas en sistemas adyacentes no necesariamente alcanzaban su máximo al mismo tiempo, por qué no interconectar los sistemas y satisfacer las condiciones de carga pico con la generación de potencia combinada? Ya se conocían estas ventajas de interconectar diferentes lugares generadores y cargas; por tanto, este paso sería una extensión lógica del principio y una mejor utilización del equipo correspondiente. Inmediatamente surgió un problema técnico; en aquel tiempo, estaban en uso muchas frecuencias diferentes incluyendo DC, y AC de 5, 50, 60 5 y 33 Hz (en 900). Como los sistemas interconectados debían operar a la misma frecuencia, se requerían equipos de conversión de frecuencia de alto coste. Fue evidente el incentivo para estandarizar las frecuencias. En aquel tiempo, las unidades generadoras de las cataratas del Niágara y otras instalaciones hidroeléctricas usaban 5 Hz, ya que las hidroturbinas se podían diseñar para operar con mayor rendimiento a estas velocidades mecánicas; este fue un fuerte apoyo para usar esa frecuencia. El problema con 5 Hz radicaba en el hecho de que producía un parpadeo perceptible en las lámparas incandescentes. Eventualmente se adoptó una frecuencia mayor, de 60 Hz, como norma en Estados Unidos, ya que poseía características eléctricas aceptables y porque las turbinas de vapor trabajaban satisfactoriamente a las correspondientes velocidades mecánicas de 3600 y 800 rev / min. El progreso tecnológico en el diseño de aparatos de potencia continuó: cuando una empresa extendía sus sistemas, los nuevos generadores y transformadores comprados eran invariablemente de mayor capacidad y rendimiento. Se desarrollaron mejores lámparas eléctricas, proporcionando al cliente más luz por unidad de energía. Con la constante baja en el coste de la energía, la selección de motores eléctricos como propulsores mecánicos llegó a ser muy popular para toda clase de aplicaciones. Por todo lo expuesto, la electricidad constituye, hoy por hoy, una de las manifestaciones energéticas más difundidas, tanto por su facilidad de generación, transporte y consumo como por sus numerosas aplicaciones y conversión en otras formas de energía (mecánica y térmica, principalmente). No obstante, no está todo solucionado en el campo eléctrico. Actualmente el gran problema que se plantea es la imposibilidad de almacenar energía eléctrica en su forma alterna no existiendo métodos realmente eficaces para conseguirlo de forma definitiva y en grandes cantidades. Un sistema eléctrico, es un sistema capaz de generar, transportar y consumir energía eléctrica. Por ejemplo, una linterna, con su batería (generador), sus hilos (transporte), y su bombilla (carga), constituye un ejemplo sencillo de sistema eléctrico. Un sistema eléctrico de potencia es un sistema con generación, transporte y consumo de energía eléctrica, pero en grandes cantidades (millones de vatios), a grandes distancias (cientos de km), y con grandes consumos (millones de vatios). Actualmente los grandes sistemas eléctricos son las redes de interconexión más importantes que se conocen, ya que llegan prácticamente a todos los confines del mundo.. Cronología histórica de la electricidad A continuación se exponen algunas fechas y nombres relevantes que han contribuido al desarrollo y evolución de la electricidad a lo largo de la historia.

14 La electricidad AC: Tales de Mileto ( a.c.) descubre que si se frota el ámbar, éste atrae a los objetos más livianos : Alessandro Volta (745-87) descubre la pila eléctrica. - 89: Hans Oersted (777-85) descubre el efecto magnético de la corriente eléctrica, probando que la electricidad puede producir magnetismo. - 8: Michael Faraday (79-867) describe el principio de la dinamo. - 87: André Marie Ampère ( ) descubre las leyes que relacionan la fuerza magnética con la corriente eléctrica. - 87: George Ohm ( ) establece la ley de la resistencia eléctrica. - 83: Michael Faraday descubre la inducción electromagnética, confirmando así que el magnetismo puede producir electricidad : Thomas Alva Edison inventa la lámpara eléctrica : En Londres comienza a funcionar la primera central eléctrica destinada a iluminar una ciudad : Se inicia el sistema de iluminación eléctrico en la ciudad de Buenos Aires : Heike Kammerlingh Onnes (853-96) descubre el principio de la superconducción..3 Estructura de un sistema eléctrico Son todos los componentes, máquinas y sistemas necesarios para garantizar un suministro de energía eléctrica, en un área concreta, con seguridad y calidad. Dependiendo de la energía que se quiera transformar en electricidad, será necesario aplicar una determinada acción. Se podrá disponer de electricidad por los siguientes procedimientos: Tabla. Forma de obtención de diversos tipos de energía Energía Mecánica Mecánica Química Magnética Luminosa Calórica Acción Frotamiento Presión Química Magnetismo Luz Calor De todos las energías enunciadas anteriormente, la más empleada para producir electricidad en grandes cantidades es la magnética. Su producción se basa en el hecho de que, al mover un conductor (material con gran movilidad de electrones) en presencia de un imán (campo magnético), en el conductor se produce un movimiento ordenado de electrones, como consecuencia de las fuerzas de atracción y repulsión originadas por el campo magnético. En esta forma de producción de electricidad se basa el funcionamiento de los alternadores, motores y dinamos. Alternador: dispositivo capaz de transformar el movimiento rotativo en electricidad. (Produce Corriente Alterna.) Motor: Dispositivo capaz de transformar la electricidad en movimiento rotatorio.

15 0 Tecnología eléctrica Dinamo: Dispositivo capaz de transformar el movimiento rotativo en electricidad. (Produce Corriente Continua.) Turbina: Dispositivo mecánico que transforma, la energía cinética de un fluido, en movimiento rotativo y viceversa. Cualquier central eléctrica, basa su producción de electricidad en el giro de turbinas unidas a ejes de alternadores. Este giro se producirá por la caída de agua (central hidroeléctrica) o por el empuje de vapor de agua a presión. En función del origen del calor utilizado para producir vapor, podemos clasificar las centrales como: Térmicas: Queman combustibles fósiles (sólidos, líquidos o gases). Nucleares: Emplea combustibles atómicos (fisión nuclear). Geotérmicas: Utilizan el calor del interior de la Tierra. Solares: Utilizan el calor del Sol. Otras: Cualquier forma de producción de calor. Cabe mencionar el aumento de los parques eólicos y de las restantes energías renovables. En los parques eólicos se emplean gran cantidad de aerogeneradores. Estos son pequeños alternadores cuyo giro se consigue mediante aspas movidas por la fuerza del viento..3. Obtención de energía eléctrica mediante el aprovechamiento del agua Para exponer los componentes y máquinas que intervienen en la generación de la energía eléctrica realizaremos una hipotética instalación eléctrica aprovechando la energía potencial de un lago de montaña. El aprovechamiento de los lagos de montaña es uno de los sistemas menos utilizados, tanto por su escaso potencial energético como por la dificultad de su aprovechamiento racional, ya que para poder ser utilizados como almacenes de agua, los lagos tienen que disponer de un aporte del líquido elemento que los mantenga a un nivel aceptable sin demasiadas variaciones anuales. Este aporte puede provenir de la fusión de las nieves, corrientes subterráneas, ríos, etc. pero en cualquier caso deberá garantizar que el nivel de las aguas permanezca prácticamente constante, aun con el aprovechamiento hidroeléctrico que de él se quiera realizar. Supongamos que disponemos de esta reserva natural de agua, y que la intervención hidroeléctrica a que se le someterá no interfiera en sus condiciones medioambientales; si se cumplen estos requisitos, estaremos en condiciones de iniciar su aprovechamiento. El proceso pasará por transformar la energía potencial de que las aguas disponen (debido a la altura topográfica en la que están situadas respecto al valle) en energía cinética (agua con velocidad), útil para generar un giro en los alabes de las turbinas. Para ello se canalizan las aguas del lago mediante tuberías adecuadas, las cuales aprovechando el desnivel geográfico entre el lago y el valle impulsarán agua a velocidad y presión adecuadas para accionar las paletas de las turbinas que se encontrarán en el fondo del valle.

16 La electricidad Los componentes y máquinas serán por tanto: Tubería El agua obtenida del lago la canalizamos mediante una tubería en pendiente. La energía potencial, Ep = m g h, que teníamos al inicio, la transformamos mediante su velocidad en energía cinética, Ec = g v. Turbina En la turbina la energía se transforma en energía mecánica mediante el giro de su eje central. Es necesario disponer de agua a una presión y velocidad determinadas para poder girar el eje de la turbina. Estas condiciones de presión y velocidad dependerán del tipo de turbina utilizada (Pelton, Francis, Kaplan). Alternador El alternador, al estar conectado con el eje de la turbina, consigue el giro de su rotor, que unido a la influencia de las bobinas del estátor genera energía eléctrica. Un alternador es un generador asíncrono capaz de transformar la energía mecánica en corriente eléctrica alterna. Los alternadores basan su funcionamiento en el fenómeno de inducción magnética: una dinamo excitatriz suministra corriente al devanado inductor del rotor, el cual crea un campo magnético; el estátor forma el circuito inducido, en donde se crea la corriente alterna, proporcional a la velocidad angular del rotor. La energía mecánica que provoca el movimiento del rotor puede proceder de una turbina hidráulica o de vapor, de un motor de explosión o de cualquier otra fuente externa. Los alternadores se denominan monofásicos o polifásicos (generalmente son trifásicos) según el número de fases de la corriente alterna producida. Transformador El transformador es un elemento eléctrico basado en el fenómeno de inducción mutua y destinado para transformar la tensión de una corriente alterna, pero conservando la potencia y la frecuencia. Para existir transporte de energía eléctrica es necesario disponer de una intensidad muy baja. Hay dos tipos de transformadores. El transformador elevador, que aumenta la tensión y baja la intensidad con potencia constante (al inicio de las líneas eléctricas), y el transformador reductor, que reduce la tensión y aumenta la intensidad con potencia constante (al final de las líneas). Motor Finalmente esta energía deberá ser aprovechada por medio de motores u otras máquinas que nos permitan transformar la energía eléctrica en movimiento u otra forma determinada de energía.

17 Tecnología eléctrica A modo de esquema vemos los componentes representados en la siguiente figura: Lago Salto de agua Turbina Alternador TR Transporte TR Fig.. Distribución de componentes en un sistema de potencia convencional Transformador Motor Transformador FFig.. Distribución de componentes en un sistema de potencia convencional Fig.. Distribución de componentes en un sistema de potencia convencional.4 Suministros eléctricos Ya hemos visto con un ejemplo sencillo cómo generar y transformar la energía eléctrica. Pero para su correcta utilización es necesario realizar un transporte, ya que los centros de producción suelen estar alejados de los centros de consumo. Este transporte puede realizarse de dos grandes formas: mediante la utilización de la energía eléctrica en su forma de continua (DC), o mediante la utilización de la energía eléctrica en su forma de alterna (AC). Corriente continua: En cada instante los electrones circulan en la misma cantidad y sentido. Es el tipo de corriente generada por un pila o una batería. Se utiliza para suministros a grandes distancias y grandes potencias, pero resulta más costoso que la alterna, ya que estos suministros deberán reunir unos requisitos para poder ser efectivos. La energía en continua se puede almacenar. Corriente alterna: Dependiendo del instante, los electrones circularán en un sentido o en otro, siendo también variable su cantidad. Es el tipo de corriente más empleada, siendo la que se dispone en cualquier enchufe eléctrico de una vivienda. Es la corriente que más utilizamos, llegando su uso al 99% del total de energía actual. Existen dos variantes, la corriente alterna monofásica (para bajas potencias), y la corriente alterna trifásica, que es la mas utilizada..4. Ventajas e inconvenientes de los suministros en alterna o continua Actualmente, como se ha indicado, más del 99% de los suministros se realizan mediante el empleo de la corriente eléctrica en su modalidad alterna trifásica, aun teniendo el grave problema de su imposibilidad de almacenamiento, mayor peligrosidad en caso de accidente, peor control y regulación de las máquinas eléctricas y dificultad de cálculo. Pero la gran ventaja que representa su facilidad de transformación mediante el empleo de transformadores, le da una ventaja enorme a la hora del transporte respecto a su rival, la energía continua. La siguiente tabla resume, de forma más clara estas diferencias entre los suministros en continua y en alterna, dándose de esta última sus dos versiones, monofásica y trifásica.

18 La electricidad 3 Tabla. Ventajas e inconvenientes de los diversos tipos de suministro de energía eléctrica Sistema Ventajas Desventajas Corriente continua Corriente alterna monofásica Corriente alterna trifásica. Distribución con dos o un solo conductor, utilizando la tierra como conductor de retorno.. Mejor utilización de los aparatos, que pueden soportar una tensión más elevada. 3. Control simple y flexible de las máquinas eléctricas. 4. Cálculos mucho más simples, al no depender del tiempo. 5. Posibilidad de almacenamiento de esta energía en grandes cantidades. 6. Resulta cuatro veces menos peligrosa que la corriente alterna.. Distribución con dos o un solo conductor.. Facilidad de interrupción de la corriente. 3. Facilidad de transformación, para adaptar el nivel de tensión. Permite crear un campo magnético giratorio.. La potencia eléctrica generada o transportada en régimen permanente es constante. 3. Permite el empleo de la tensión fase-fase o de la tensión fase-neutro. 4. La potencia transportada representa el triple de la transportada en monofásico. 5. El uso de transformadores permite elevar la tensión para realizar el transporte a grandes distancias.. Imposibilidad de empleo de transformadores, lo que dificulta el cambio de nivel de tensión.. La interrupción de corriente continua presenta más problemas que la de corriente alterna. 3. La circulación de corriente continua por tierra provoca corrosión galvánica en objetos enterrados.. Una corriente monofásica no permite crear un campo magnético giratorio.. La potencia generada o transportada en régimen permanente no es constante. 3. El par de una máquina rotativa no es unidireccional. 4. La regulación de máquinas rotativas es difícil. 5. La potencia AC monofásica es /3 potencia AC trifásica.. Distribución con tres o más conductores.. La interrupción de corriente requiere tres interruptores (uno en cada fase). 3. La regulación de velocidad de máquinas rotativas no es tan simple como en las de corriente continua. 4. Más peligrosa que la corriente continua. 5. Más dificultad a la hora de realizar cálculos..5 Parámetros eléctricos característicos Una vez se ha definido que el suministro mayoritario se realiza en la actualidad mediante el empleo de la corriente alterna, es necesario conocer algunos de sus parámetros o características que lo definen. Las más importantes son: frecuencia, periodo, energía o potencia, tensiones más usuales, transformación y formas de conexión. Veamos una síntesis básica de las más importantes.

19 4 Tecnología eléctrica.5. Frecuencia y periodo Por tensión alterna se entiende, en general, una tensión eléctrica cuya magnitud y sentido están sometidos a variaciones que dependen del tiempo. En la mayoría de los casos prácticos, estas variaciones se producen de forma periódica, es decir, se repiten para cada espacio igual de tiempo, las mismas magnitudes y los mismos sentidos. Estos espacios de tiempos iguales reciben el nombre de periodos, T. La tensión generada transcurre en el tiempo según una función seno. T= periodo (sg) F= frecuencia (Hz) f = T = sg = Hz (herzios) Energía E = f k Siendo k = constante de Planck. Esto nos indica que las ondas con mayor frecuencia darán más energía que las que tengan periodos más largos (frecuencias menores). Longitud de onda λ = c f Siendo c = la constante de la velocidad de la luz; ( km/s). Fig.. Forma característica de la evolución temporal de una magnitud eléctrica alterna Resumiendo, la frecuencia es la inversa del periodo; la longitud de onda es proporcional al periodo e inversamente proporcional a la frecuencia, y la energía es proporcional a la frecuencia. La mayoría de los países utilizan una frecuencia de 50 Hz, es decir, el periodo se realiza 50 veces por segundo. Países como Canadá, EEUU, Japón, o Brasil, utilizan una frecuencia de 60 Hz. A 60 Hz con el mismo componente o máquina, se obtienen valores de potencia superiores debido a su mayor frecuencia. Entonces por qué no todos los países adoptan los 60 Hz, o aún mejor, 00 Hz, 000 Hz, o Hz, si a más frecuencia más energía? La respuesta es simple; al aumentar la frecuencia también aumenta su reactancia inductiva (X L =w L) y por tanto aumenta el consumo, bajando el

20 La electricidad 5 rendimiento. El rendimiento óptimo se obtiene alrededor de los 50 Hz, siendo a esta frecuencia donde las máquinas trabajan en condiciones económicas. Frecuencias mayores se aplican cuando con poco peso se deben conseguir potencias elevadas, sin importar mucho el consumo; un ejemplo lo constituyen los aparatos destinados al transporte aéreo, donde priva el peso sobre el consumo. Fig..3 Relación entre el rendimiento y la variación de la frecuencia en corriente alterna.5. Amplitud Representa el valor máximo de la función seno. Como es independiente del tiempo, se le designa con una letra mayúscula. Es por otra parte la mitad del valor pico a pico o extremo..5.3 Ángulo de fase ϕ Es el formado entre un punto 0 (t = 0) fijado arbitrariamente y el pase por cero hacia el sentido positivo de la función seno. Equivale al desplazamiento entre fases o desfase de la función seno considerada respecto a otra con origen en el punto 0 y tomada como curva de referencia..5.4 Valores de las magnitudes alternas Junto a estas tres magnitudes características, amplitud, frecuencia y ángulo de fase, hay que tener en cuenta los siguientes valores: Valor eficaz de una magnitud alterna: La mayoría de los instrumentos de medida que se utilizan no pueden captar un valor especial instantáneo, como es el máximo, sino un valor medio, llamado eficaz. Su magnitud se deduce considerando la potencia de la corriente alterna, y comparándola con la de la corriente continua. Valor medio aritmético: Si se mide una magnitud alterna con un instrumento de medida dotado de rectificador de corriente, la lectura obtenida corresponde a la media aritmética de todos los valores instantáneos. Las tres magnitudes: valor máximo, valor eficaz y valor medio aritmético, no guardan una relación fija entre sí, sino que ésta depende de la forma de la curva de que se trate. Los instrumentos de medida que se contrastan para una forma de curva determinada indican valores erróneos si la magnitud de medida se aparta de dicha curva.

21 6 Tecnología eléctrica.5.5 Conexión de bobinas Entendemos por bobina al conjunto de espiras de hilo conductor arrolladas al aire o sobre un núcleo de material ferromagnético, empleado para obtener campos magnéticos o para intercalar una inducción en un circuito. La bobina de inducción es un aparato eléctrico que permite obtener corrientes de alto voltaje a partir de una corriente continua de baja tensión. Si tratamos de corrientes alternas trifásicas, como su nombre indica, serán necesarias tres bobinas, una para cada fase. Como cada bobina dispone de dos terminales, en total significarán seis terminales o puntos de conexión. La unión de estos terminales se puede realizar de varias formas, siendo dos las más empleadas en la actualidad: la conexión en estrella y la conexión en triángulo. Conexión en estrella Si los devanados de fase de un generador o consumidor se conectan, de modo que los finales de los devanados se unan en un punto común y los comienzos de éstos sean conectados a los conductores de la línea, tal conexión se llama conexión en estrella y se designa con el símbolo Y. Los puntos en los cuales están unidos los terminales de los devanados de fase del generador o del consumidor se denominan correspondientemente puntos neutros del generador (0) y del consumidor (0 ). Ambos puntos 0 y 0 están unidos con un conductor que se denomina conductor neutro o hilo central. Los otros tres conductores del sistema trifásico que van del generador al consumidor se denominan conductores de la línea. De este modo, el generador está unido con el consumidor mediante cuatro conductores. Por eso, dicho sistema se denomina sistema tetrafilar de corriente trifásica. En un sistema de corriente trifásica equilibrado, el papel de conductor de vuelta lo ejecutan tres conductores del sistema, ya que al estar desfasados entre ellos 0º se anulan mutuamente, mientras que en un sistema trifásico desequilibrado de cuatro conductores el retorno se producirá a través del conductor neutro. Durante el servicio, por el conductor neutro pasa una corriente igual a la suma geométrica de tres corrientes: I A, I B, e I C, es decir, I 0 = I A + I B + I C, que es cero en un sistema equilibrado. Las tensiones medidas entre los comienzos de las fases del generador o consumidor y el punto neutro o conductor neutro se llaman tensiones de fase y se designan con V A, V B, V C o en forma general con V f. A menudo se establecen de antemano magnitudes de las f.e.m. de los devanados de fase del generador, designándose éstas con E A, E B, E C, o E f,. si despreciamos las resistencias de los devanados del generador, se puede escribir: E A = V A; E B = V B ; E C = V C ; E f = V f. Las tensiones medidas entre los comienzos de las fases A y B, B y C, C y A del generador o consumidor se llaman tensiones compuestas y se designan con U AB, U BC, U CA o, en forma general, con U Comp. El valor instantáneo de la tensión compuesta es igual a la diferencia entre los valores instantáneos de las tensiones de fase correspondientes. En la conexión en estrella la tensión compuesta es 3 veces mayor que la de fase. Es decir: U l = 3 U f

22 La electricidad 7 La corriente que pasa por un devanado de fase del generador o consumidor se llama corriente de fase y se designa en forma general con I f. La corriente que pasa por un conductor de la línea se llama corriente de la línea y se designa en forma general con I l. En el caso de la conexión en estrella, la corriente de la línea es igual a la de la fase, o sea, I l = f El punto neutro de la estrella del consumidor puede estar en el interior del triángulo de tensiones compuestas, coincidir con uno de sus vértices, encontrarse en uno de sus lados y en algunos casos estar fuera del triángulo. Conexión en triángulo Los generadores o consumidores de corriente trifásica pueden conectarse no sólo en estrella, sino también en triángulo. Reuniendo por pares los conductores de un sistema independiente hexafilar y uniendo las fases, pasamos a un sistema trifásico trifilar conectado en triángulo. La conexión en triángulo se ejecuta de modo que al comienzo de la fase A se conecta el extremo final de la fase B. El comienzo de esta fase B se conecta al final de la fase C, uniéndose finalmente en inicio de la fase C, con el inicio de las fase A. Los puntos de unión de las fases sirven para conectar los conductores de la línea. Si los devanados del generador están conectados en triángulo, cada devanado de fase crea tensión compuesta. El consumidor conectado en triángulo tiene la tensión compuesta conectada a los bornes de la resistencia de fase. Por consiguiente, en caso de conexión en triángulo, la tensión de fase es igual a la compuesta: U Comp = V f. La dependencia entre las corrientes de fase y de la línea, en el caso de conexión en triángulo es: 3 I l = I f cos 30º. Puesto que: cos 30º =, entonces: 3 I l = I f = 3 I f Por consiguiente, en el caso de carga equilibrada y conectada en triángulo, la corriente de la línea es 3 veces mayor que la de fase. A modo simplificado el dibujo de los tipos de conexiones de bobinas son: I. Conexión en estrella Conexión en triángulo Fig..4 Diversos tipos de conexionado. Estrella y triángulo

Introducción ELECTROTECNIA

Introducción ELECTROTECNIA Introducción Podríamos definir la Electrotecnia como la técnica de la electricidad ; desde esta perspectiva la Electrotecnia abarca un extenso campo que puede comprender desde la producción, transporte,

Más detalles

Temas de electricidad II

Temas de electricidad II Temas de electricidad II CAMBIANDO MATERIALES Ahora volvemos al circuito patrón ya usado. Tal como se indica en la figura, conecte un hilo de cobre y luego uno de níquel-cromo. Qué ocurre con el brillo

Más detalles

El motor eléctrico. Física. Liceo integrado de zipaquira MOTOR ELECTRICO

El motor eléctrico. Física. Liceo integrado de zipaquira MOTOR ELECTRICO El motor eléctrico Física Liceo integrado de zipaquira MOTOR ELECTRICO Motores y generadores eléctricos, grupo de aparatos que se utilizan para convertir la energía mecánica en eléctrica, o a la inversa,

Más detalles

Electricidad y electrónica - Diplomado

Electricidad y electrónica - Diplomado CONOCIMIENTOS DE CONCEPTOS Y PRINCIPIOS Circuitos Eléctricos: principios, conceptos, tipos, características Unidades Básicas de los circuitos eléctricos: conceptos, tipos, características Leyes fundamentales

Más detalles

ELECTRICIDAD BÁSICA EN REPARACIÓN DE AUTOMÓVILES

ELECTRICIDAD BÁSICA EN REPARACIÓN DE AUTOMÓVILES ELECTRICIDAD BÁSICA EN REPARACIÓN DE AUTOMÓVILES 1) CONCEPTOS BÁSICOS DE ELECTRICIDAD 1.1 TEORÍA ELECTRÓNICA Los físicos distinguen cuatro diferentes tipos de fuerzas que son comunes en todo el Universo.

Más detalles

SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética.

SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. A diferencia de los sistemas monofásicos de C.A., estudiados hasta ahora, que utilizan dos conductores

Más detalles

En la 3ª entrega de este trabajo nos centraremos en la relación entre magnitudes eléctricas, hecho que explica la famosa Ley de Ohm.

En la 3ª entrega de este trabajo nos centraremos en la relación entre magnitudes eléctricas, hecho que explica la famosa Ley de Ohm. 3º parte En la 3ª entrega de este trabajo nos centraremos en la relación entre magnitudes eléctricas, hecho que explica la famosa Ley de Ohm. ELEMENTOS DEL CIRCUITO ELÉCTRICO Para poder relacionar las

Más detalles

Corriente continua y corriente alterna

Corriente continua y corriente alterna Electricidad ENTREGA 1 Corriente continua y corriente alterna Elaborado por Jonathan Caballero La corriente o intensidad eléctrica es el flujo de carga por unidad de tiempo que recorre un material. Se

Más detalles

P9: ENSAYO DE VACÍO Y CORTOCIRCUITO DEL TRANSFORMADOR MONOFÁSICO FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA

P9: ENSAYO DE VACÍO Y CORTOCIRCUITO DEL TRANSFORMADOR MONOFÁSICO FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA INDUSTRIAL (BILBAO) Departamento de Ingeniería Eléctrica INDUSTRI INGENIARITZA TEKNIKORAKO UNIBERTSITATE-ESKOLA (BILBO) Ingeniaritza Elektriko Saila ALUMNO P9:

Más detalles

ENERGÍA ELÉCTRICA. Central Eólica

ENERGÍA ELÉCTRICA. Central Eólica ENERGÍA ELÉCTRICA. Central Eólica La energía eólica es la energía obtenida por el viento, es decir, la energía cinética obtenida por las corrientes de aire y transformada en energía eléctrica mediante

Más detalles

TRABAJO POTENCIA Y ENERGÍA

TRABAJO POTENCIA Y ENERGÍA TRABAJO POTENCIA Y ENERGÍA TRABAJO, POTENCIA Y ENERGÍA Todos habitualmente utilizamos palabras como trabajo, potencia o energía. En esta unidad precisaremos su significado en el contexto de la física;

Más detalles

Unidad Didáctica. Transformadores Trifásicos

Unidad Didáctica. Transformadores Trifásicos Unidad Didáctica Transformadores Trifásicos Programa de Formación Abierta y Flexible Obra colectiva de FONDO FORMACION Coordinación Diseño y maquetación Servicio de Producción Didáctica de FONDO FORMACION

Más detalles

ESTUDIO DE DIFERENTES FORMAS DE OBTENER ENERGÍA ELÉCTRICA

ESTUDIO DE DIFERENTES FORMAS DE OBTENER ENERGÍA ELÉCTRICA ESTUDIO DE DIFERENTES FORMAS DE OBTENER ENERGÍA ELÉCTRICA Producción de energía eléctrica La energía eléctrica se produce a través de unos aparatos llamados generadores o alternadores. Un generador consta,

Más detalles

TEMA 2. CIRCUITOS ELÉCTRICOS.

TEMA 2. CIRCUITOS ELÉCTRICOS. TEMA 2. CIRCUITOS ELÉCTRICOS. 1. INTRODUCCIÓN. A lo largo del presente tema vamos a estudiar los circuitos eléctricos, para lo cual es necesario recordar una serie de conceptos previos tales como la estructura

Más detalles

TEMA 9 Cicloconvertidores

TEMA 9 Cicloconvertidores TEMA 9 Cicloconvertidores 9.1.- Introducción.... 1 9.2.- Principio de Funcionamiento... 1 9.3.- Montajes utilizados.... 4 9.4.- Estudio de la tensión de salida.... 6 9.5.- Modos de funcionamiento... 7

Más detalles

1. La tarifación eléctrica

1. La tarifación eléctrica 1. La tarifación eléctrica El sistema de tarifas eléctricas es el medio por el que se establece la forma de cobrar a los consumidores el suministro de energía eléctrica en BT y AT. La tarifa eléctrica

Más detalles

Unidad didáctica: Electromagnetismo

Unidad didáctica: Electromagnetismo Unidad didáctica: Electromagnetismo CURSO 3º ESO 1 ÍNDICE Unidad didáctica: Electromagnetismo 1.- Introducción al electromagnetismo. 2.- Aplicaciones del electromagnetismo. 2.1.- Electroimán. 2.2.- Relé.

Más detalles

Conceptos y determinaciones aplicables a transformadores de intensidad

Conceptos y determinaciones aplicables a transformadores de intensidad Definiciones: Error de Calibración de un instrumento o Error de Clase: es el mayor error absoluto que acusa un instrumento en algún punto de la escala Cuando este error se expresa referido al máximo valor

Más detalles

Disco de Maxwel. Disco de Maxwel

Disco de Maxwel. Disco de Maxwel M E C Á N I C A Disco de Maxwel Disco de Maxwel M E C Á N I C A Desde el comienzo de su existencia, el ser humano ha utilizado la energía para subsistir. El descubrimiento del fuego proporcionó al hombre

Más detalles

Máster Universitario en Profesorado

Máster Universitario en Profesorado Máster Universitario en Profesorado Complementos para la formación disciplinar en Tecnología y procesos industriales Aspectos básicos de la Tecnología Eléctrica Contenido (II) SEGUNDA PARTE: corriente

Más detalles

Tema 7. MOTORES ELÉCTRICOS DE CORRIENTE CONTINUA

Tema 7. MOTORES ELÉCTRICOS DE CORRIENTE CONTINUA Tema 7. MOTORES ELÉCTRICOS DE CORRIENTE CONTINUA 1. MAGNETISMO Y ELECTRICIDAD...2 Fuerza electromotriz inducida (Ley de inducción de Faraday)...2 Fuerza electromagnética (2ª Ley de Laplace)...2 2. LAS

Más detalles

Generador Solar de Energía Eléctrica a 200W CAPÍTULO V. Planteamiento del problema, parámetros y diseño fotovoltaico

Generador Solar de Energía Eléctrica a 200W CAPÍTULO V. Planteamiento del problema, parámetros y diseño fotovoltaico CAPÍTULO V Planteamiento del problema, parámetros y diseño fotovoltaico 5.1 Objetivo general El objetivo general de esta tesis es generar energía eléctrica por medio de la luz solar, con la finalidad de

Más detalles

ORIENTACIONES DIDÁCTICAS PARA EL ALUMNADO

ORIENTACIONES DIDÁCTICAS PARA EL ALUMNADO ORIENTACIONES DIDÁCTICAS PARA EL ALUMNADO "Contenido adscrito a la Licéncia "Creative Commons" CC ES en las opciones "Reconocimiento -No Comercial- Compartir Igual". Autor: Ángel Mahiques Benavent ÍNDICE

Más detalles

MEDICIÓN DE ENERGÍA ELÉCTRICA ACTIVA

MEDICIÓN DE ENERGÍA ELÉCTRICA ACTIVA ELT 8.MEDICION DE ENERGIA ELECTRICA ACTIVA.- INTRODUCIÓN MEDICIÓN DE ENERGÍA ELÉCTRICA ACTIVA La medición de energía eléctrica activa se realiza con el medidor de KWH de tipo inducción y con el medidor

Más detalles

Transformador. Transformador

Transformador. Transformador E L E C T R I C I D A D Y M A G N E T I S M O Transformador Transformador ELECTRICIDAD Y MAGNETISMO Bajo ciertas condiciones un campo magnético puede producir una corriente eléctrica. Este fenómeno, conocido

Más detalles

Contenidos Didácticos

Contenidos Didácticos INDICE --------------------------------------------------------------------------------------------------------------------------------------------- 1 FUERZA...3 2 TRABAJO...5 3 POTENCIA...6 4 ENERGÍA...7

Más detalles

Electrón: partícula más pequeña de un átomo, que no se encuentra en el núcleo y que posee carga eléctrica negativa.

Electrón: partícula más pequeña de un átomo, que no se encuentra en el núcleo y que posee carga eléctrica negativa. Electricidad: flujo o corriente de electrones. Electrón: partícula más pequeña de un átomo, que no se encuentra en el núcleo y que posee carga eléctrica negativa. Elementos básicos de un circuito: generador,

Más detalles

Cómo Reducir la Factura de Energía Eléctrica Corrigiendo el Factor de Potencia

Cómo Reducir la Factura de Energía Eléctrica Corrigiendo el Factor de Potencia Cómo Reducir la Factura de Energía Eléctrica Corrigiendo el Factor de Potencia Por Ing. José Luís Ola García ( 1 ) RESUMEN El elevado consumo de la Potencia Reactiva (aumento de la necesidad de magnetizar

Más detalles

Generación de Corriente Alterna

Generación de Corriente Alterna Electricidad Generación de Corriente Alterna Elaborado Por: Germán Fredes / Escuela de Educación Técnica Nº1 Juan XXIII de Marcos Paz Introducción En la actualidad la mayoría de los artefactos que tenemos

Más detalles

TEMA 4: ELECTRICIDAD

TEMA 4: ELECTRICIDAD TEMA 4: ELECTRICIDAD 1. Origen de los fenómenos eléctricos 2. La corriente eléctrica a. Corriente continua b. Corriente alterna 3. Elementos de un circuito a. Generadores b. Receptores c. Conductores d.

Más detalles

Sistema Integrador Ciencia y tecnología CIRCUITOS ELECTRICOS

Sistema Integrador Ciencia y tecnología CIRCUITOS ELECTRICOS Sistema Integrador Ciencia y tecnología CIRCUITOS ELECTRICOS FUNDAMENTOS La electricidad La electricidad es un fenómeno físico cuyo origen se encuentra en las cargas eléctricas y cuya energía se manifiesta

Más detalles

Distribución del consumo de energía por sectores

Distribución del consumo de energía por sectores Guía Práctica para el uso de la Energía Presentación El uso eficiente de la energía eléctrica en los diversos sectores de consumo, es uno de los objetivos más importantes que todo consumidor de Electricidad

Más detalles

9.1 DIELÉCTRICOS 9.1.1 QUÉ SON LOS DIELÉCTRICOS? 9.1.2 RIGIDEZ DIELÉCTRICA

9.1 DIELÉCTRICOS 9.1.1 QUÉ SON LOS DIELÉCTRICOS? 9.1.2 RIGIDEZ DIELÉCTRICA 9 DIELÉCTRICOS 9.1 DIELÉCTRICOS 9.1.1 QUÉ SON LOS DIELÉCTRICOS? Los dieléctricos son materiales, generalmente no metálicos, con una alta resistividad, por lo que la circulación de corriente a través de

Más detalles

LA ENERGÍA Y SU TRANSFORMACIÓN

LA ENERGÍA Y SU TRANSFORMACIÓN 1) Qué es la energía? Es la capacidad que tiene un cuerpo para realizar un trabajo 2) En qué se mide la energía? La energía se mide en Julios (J) 3) Cuáles son las formas de energía? Energía química, Energía

Más detalles

FISICA Y QUÍMICA 4º ESO 1.- TRABAJO MECÁNICO.

FISICA Y QUÍMICA 4º ESO 1.- TRABAJO MECÁNICO. 1.- TRABAJO MECÁNICO. Si a alguien que sostiene un objeto sin moverse le preguntas si hace trabajo, probablemente te responderá que sí. Sin embargo, desde el punto de vista de la Física, no realiza trabajo;

Más detalles

TECNOLOGIA RESUMEN DEL TEMA 3 (NOCIONES DE ELECTRICIDAD Y MAGNETISMO)

TECNOLOGIA RESUMEN DEL TEMA 3 (NOCIONES DE ELECTRICIDAD Y MAGNETISMO) TECNOLOGIA RESUMEN DEL TEMA 3 (NOCIONES DE ELECTRICIDAD Y MAGNETISMO) Existen 2 clases de electrización, la positiva (que se representa con + ), y la negativa (que se representa con - ). Hay una partícula

Más detalles

1. Introducción. Universidad de Cantabria 1-1

1. Introducción. Universidad de Cantabria 1-1 1. Introducción Las empresas de transporte y distribución de energía eléctrica tuvieron que afrontar históricamente el problema que suponía el aumento de la energía reactiva que circulaba por sus líneas.

Más detalles

Conclusiones, aportaciones y sugerencias para futuros trabajos

Conclusiones, aportaciones y sugerencias para futuros trabajos Capítulo 7 Conclusiones, aportaciones y sugerencias para futuros trabajos En este último capítulo se va a realizar una recapitulación de las conclusiones extraídas en cada uno de los capítulos del presente

Más detalles

CENTRALES HIDROELECTRICAS

CENTRALES HIDROELECTRICAS CENTRALES HIDROELECTRICAS Las centrales hidroeléctricas son instalaciones que permiten aprovechar la energía potencial gravitatoria del agua que transportan los ríos en energía eléctrica, utilizando turbinas

Más detalles

CORRIENTES ALTERNAS TRIFASICAS

CORRIENTES ALTERNAS TRIFASICAS 1 CORRIENTES ALTERNAS TRIFASICAS. Sistemas polifásicos. El circuito de c.a. monofásico es adecuado para muchas aplicaciones, pero existen dos campos de la electrotecnia para los cuales no es apropiado:

Más detalles

P5: CORRIENTE ALTERNA MONOFÁSICA II FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA D. FAUSTINO DE LA BODEGA Y BILBAO CURSO 2º GRUPO 01

P5: CORRIENTE ALTERNA MONOFÁSICA II FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA D. FAUSTINO DE LA BODEGA Y BILBAO CURSO 2º GRUPO 01 ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA INDUSTRIAL (BILBAO) Departamento de Ingeniería Eléctrica INDUSTRI INGENIARITZA TEKNIKORAKO UNIBERTSITATE-ESKOLA (BILBO) Ingeniaritza Elektriko Saila ALUMNO P5:

Más detalles

LA ENERGÍA. La energía es una propiedad asociada a los objetos y sustancias y se manifiesta en las transformaciones que ocurren en la naturaleza.

LA ENERGÍA. La energía es una propiedad asociada a los objetos y sustancias y se manifiesta en las transformaciones que ocurren en la naturaleza. Objetivos: Unidad II: La energía Conocer qué es la energía Distinguir las distintas formas de energía Comprender las transformaciones de la energía Distinguir entre conservación y degradación de la energía

Más detalles

Capítulo I. Convertidores de CA-CD y CD-CA

Capítulo I. Convertidores de CA-CD y CD-CA Capítulo I. Convertidores de CA-CD y CD-CA 1.1 Convertidor CA-CD Un convertidor de corriente alterna a corriente directa parte de un rectificador de onda completa. Su carga puede ser puramente resistiva,

Más detalles

ENSAYOS DE IMPULSO DE ORIGEN ATMOSFÉRICO EN TRANSFORMADORES LABORATORIO DE ALTA TENSIÓN FACULTAD DE CIENCIAS EXACTAS FÍSICAS Y NATURALES

ENSAYOS DE IMPULSO DE ORIGEN ATMOSFÉRICO EN TRANSFORMADORES LABORATORIO DE ALTA TENSIÓN FACULTAD DE CIENCIAS EXACTAS FÍSICAS Y NATURALES ENSAYOS DE IMPULSO DE ORIGEN ATMOSFÉRICO EN TRANSFORMADORES LABORATORIO DE ALTA TENSIÓN FACULTAD DE CIENCIAS EXACTAS FÍSICAS Y NATURALES UNIVERSIDAD NACIONAL DE CÓRDOBA 2004 Autores Alberto Torresi-Ex.

Más detalles

EFECTO DE LA AGRESIVIDAD ATMOSFÉRICA EN LA TENACIDAD A FRACTURA DE METALES Y ALEACIONES METÁLICAS

EFECTO DE LA AGRESIVIDAD ATMOSFÉRICA EN LA TENACIDAD A FRACTURA DE METALES Y ALEACIONES METÁLICAS EFECTO DE LA AGRESIVIDAD ATMOSFÉRICA EN LA TENACIDAD A FRACTURA DE METALES Y ALEACIONES METÁLICAS Dentro de la caracterización mecánica de los materiales de ingeniería, la resistencia a la tensión y la

Más detalles

Capítulo 1 Introducción y análisis de sistemas CNC

Capítulo 1 Introducción y análisis de sistemas CNC Capítulo 1 Introducción y análisis de sistemas CNC INTRODUCCIÓN La evolución del control numérico ha producido la introducción del mismo en grandes, medianas, familiares y pequeñas empresas, lo que ha

Más detalles

Medidas de Intensidad

Medidas de Intensidad Unidad Didáctica Medidas de Intensidad Programa de Formación Abierta y Flexible Obra colectiva de FONDO FORMACION Coordinación Diseño y maquetación Servicio de Producción Didáctica de FONDO FORMACION (Dirección

Más detalles

Escuela 4-016 Ing. Marcelo Antonio Arboit - Junín

Escuela 4-016 Ing. Marcelo Antonio Arboit - Junín Un transformador se compone de dos arrollamientos aislados eléctricamente entre sí y devanados sobre un mismo núcleo de hierro. Una corriente alterna que circule por uno de los arrollamientos crea en el

Más detalles

UTILIZACIÓN DE LA TERMOGRAFÍA EN EL MANTENIMIENTO DE PLANTAS FOTOVOLTAICAS

UTILIZACIÓN DE LA TERMOGRAFÍA EN EL MANTENIMIENTO DE PLANTAS FOTOVOLTAICAS UTILIZACIÓN DE LA TERMOGRAFÍA EN EL MANTENIMIENTO DE PLANTAS FOTOVOLTAICAS Por Roberto Poyato Dpto. soporte técnico de Fluke Ibérica Nota Técnica Introducción En la última década, la demanda creciente

Más detalles

LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO

LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO 1. Trabajo mecánico y energía. El trabajo, tal y como se define físicamente, es una magnitud diferente de lo que se entiende sensorialmente por trabajo. Trabajo

Más detalles

Polo positivo: mayor potencial. Polo negativo: menor potencial

Polo positivo: mayor potencial. Polo negativo: menor potencial CORRIENTE ELÉCTRICA Es el flujo de carga a través de un conductor Aunque son los electrones los responsables de la corriente eléctrica, está establecido el tomar la dirección de la corriente eléctrica

Más detalles

Tema : ELECTRÓNICA DIGITAL

Tema : ELECTRÓNICA DIGITAL (La Herradura Granada) Departamento de TECNOLOGÍA Tema : ELECTRÓNICA DIGITAL.- Introducción. 2.- Representación de operadores lógicos. 3.- Álgebra de Boole. 3..- Operadores básicos. 3.2.- Función lógica

Más detalles

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico q 1 q 2 Prof. Félix Aguirre 35 Energía Electrostática Potencial Eléctrico La interacción electrostática es representada muy bien a través de la ley de Coulomb, esto es: mediante fuerzas. Existen, sin embargo,

Más detalles

CAPÍTULO 4. DISEÑO CONCEPTUAL Y DE CONFIGURACIÓN. Figura 4.1.Caja Negra. Generar. Sistema de control. Acumular. Figura 4.2. Diagrama de funciones

CAPÍTULO 4. DISEÑO CONCEPTUAL Y DE CONFIGURACIÓN. Figura 4.1.Caja Negra. Generar. Sistema de control. Acumular. Figura 4.2. Diagrama de funciones CAPÍTULO 4 37 CAPÍTULO 4. DISEÑO CONCEPTUAL Y DE CONFIGURACIÓN Para diseñar el SGE, lo primero que se necesita es plantear diferentes formas en las que se pueda resolver el problema para finalmente decidir

Más detalles

Información importante. 1. El potencial eléctrico. Preuniversitario Solidario. 1.1. Superficies equipotenciales.

Información importante. 1. El potencial eléctrico. Preuniversitario Solidario. 1.1. Superficies equipotenciales. 1.1 Superficies equipotenciales. Preuniversitario Solidario Información importante. Aprendizajes esperados: Es guía constituye una herramienta que usted debe manejar para poder comprender los conceptos

Más detalles

TEMA 2: CIRCUITOS ELÉCTRICOS: CIRCUITOS SERIE, PARALELO Y MIXTOS. CÁLCULO DE MAGNITUDES EN UN CIRCUITO.

TEMA 2: CIRCUITOS ELÉCTRICOS: CIRCUITOS SERIE, PARALELO Y MIXTOS. CÁLCULO DE MAGNITUDES EN UN CIRCUITO. CPI Antonio Orza Couto 3º ESO TECNOLOGÍA TEMA-2 ELECTRICIDAD: CIRCUITOS TEMA 2: CIRCUITOS ELÉCTRICOS: CIRCUITOS SERIE, PARALELO Y MIXTOS. CÁLCULO DE MAGNITUDES EN UN CIRCUITO. 1. CIRCUITO ELÉCTRICO Definición

Más detalles

INGENIERIA DE LA ENERGIA HIDRAULICA. Mg. ARRF 1

INGENIERIA DE LA ENERGIA HIDRAULICA. Mg. ARRF 1 INGENIERIA DE LA ENERGIA HIDRAULICA Mg. ARRF 1 La disponibilidad de la energía ha sido siempre esencial para la humanidad que cada vez demanda más recursos energéticos para cubrir sus necesidades de consumo

Más detalles

TRANSFORMADORES EN PARALELO

TRANSFORMADORES EN PARALELO UNIVERIDD DE CNTRI TRNFORMDORE EN PRLELO Miguel ngel Rodríguez Pozueta Condiciones para que varios transformadores se puedan conectar en paralelo Fig. 0: Dos transformadores monofásicos ( y ) conectados

Más detalles

UNIDAD 1 Máquinas eléctricas

UNIDAD 1 Máquinas eléctricas Página1 UNIDAD 1 Máquinas eléctricas 1.1 Introducción MÁQUINA Una máquina es un conjunto de elementos móviles y fijos cuyo funcionamiento posibilita aprovechar, dirigir, regular o transformar energía o

Más detalles

CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION

CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION Como hemos dicho anteriormente, los instrumentos de medición hacen posible la observación de los fenómenos eléctricos y su cuantificación. Ahora

Más detalles

UD 4.-ELECTRICIDAD 1. EL CIRCUITO ELÉCTRICO

UD 4.-ELECTRICIDAD 1. EL CIRCUITO ELÉCTRICO DPTO. TECNOLOGÍA (ES SEFAAD) UD 4.-ELECTCDAD UD 4.- ELECTCDAD. EL CCUTO ELÉCTCO. ELEMENTOS DE UN CCUTO 3. MAGNTUDES ELÉCTCAS 4. LEY DE OHM 5. ASOCACÓN DE ELEMENTOS 6. TPOS DE COENTE 7. ENEGÍA ELÉCTCA.

Más detalles

LOS COMBUSTIBLES FÓSILES

LOS COMBUSTIBLES FÓSILES FÓSILES Educadores Contenidos 1. Recursos Naturales.................................. 1 1.1. Por qué se les llama fósiles?.......................... 2 1.2. Por qué los llamamos combustibles?......................

Más detalles

Nota Técnica Abril 2014

Nota Técnica Abril 2014 LÁMPARAS LED QUE QUEDAN SEMIENCENDIDAS O PARPADEAN: En ocasiones ocurre que al realizar una sustitución en donde antes teníamos una halógena por una lámpara LED, la nueva lámpara se queda semiencendida

Más detalles

LA ENERGIA Y SUS TRANSFORMACIONES

LA ENERGIA Y SUS TRANSFORMACIONES LA ENERGIA Y SUS TRANSFORMACIONES Energía y trabajo La energía es una magnitud física y se define como la capacidad de un cuerpo para realizar un. sobre sí mismo o sobre tras realizar un Pero... Qué es

Más detalles

Preguntas sobre energía 1. Explica el funcionamiento básico de un aerogenerador

Preguntas sobre energía 1. Explica el funcionamiento básico de un aerogenerador Preguntas sobre energía 1 Energía Eólica Explica el funcionamiento básico de un aerogenerador La energía cinética del aire en movimiento proporciona energía mecánica a un rotor (hélice) que, a través de

Más detalles

TEMA V TEORÍA DE CUADRIPOLOS LINEALES. 5.1.-Introducción. 5.2.-Parámetros de Impedancia a circuito abierto.

TEMA V TEORÍA DE CUADRIPOLOS LINEALES. 5.1.-Introducción. 5.2.-Parámetros de Impedancia a circuito abierto. TEMA V TEORÍA DE CUADRIPOLOS LINEALES 5.1.-Introducción. 5.2.-Parámetros de Impedancia a circuito abierto. 5.3.-Parámetros de Admitancia a cortocircuito. 5.4.-Parámetros Híbridos (h, g). 5.5.-Parámetros

Más detalles

Índice 1 NOCIONES BÁSICAS DE FUNCIONAMIENTO 2 COMPONENTES DE UNA INSTALACIÓN SOLAR FOTOVOLTAICA 3 TIPO DE INSTALACIONES

Índice 1 NOCIONES BÁSICAS DE FUNCIONAMIENTO 2 COMPONENTES DE UNA INSTALACIÓN SOLAR FOTOVOLTAICA 3 TIPO DE INSTALACIONES Funcionamiento general de una instalación solar fotovoltaica. Índice 1 NOCIONES BÁSICAS DE FUNCIONAMIENTO 2 COMPONENTES DE UNA INSTALACIÓN SOLAR FOTOVOLTAICA 3 TIPO DE INSTALACIONES 1-.Nociones básicas

Más detalles

INTRODUCCIÓN A LA ELECTRICIDAD

INTRODUCCIÓN A LA ELECTRICIDAD Dpto. Escultura.Facultad de Bellas Artes de Valencia Prof: Moisés Mañas Moimacar@esc.upv.es Todas las cosas están formadas por átomos Todas las cosas están formadas por átomos Protones (carga +) Neutrones

Más detalles

La electricidad parte 2

La electricidad parte 2 La electricidad parte 2 Contenidos 3 4 7 8 9 11 12 14 La electricidad, nuestra gran aliada La corriente eléctrica en acción La obtención de la electricidad Producción masiva de electricidad Una central

Más detalles

Como vemos, para garantizar la realización adecuada del intercambio

Como vemos, para garantizar la realización adecuada del intercambio I.6. Requisitos económicos del mercado Como vemos, para garantizar la realización adecuada del intercambio se requieren una serie de presupuestos. En primer lugar, el requerimiento de una cierta transparencia

Más detalles

PRÁCTICAS DE FUNDAMENTOS FÍSICOS EN LA INGENIERÍA MEDIANTE SOPORTE INFORMÁTICO INTERACTIVO

PRÁCTICAS DE FUNDAMENTOS FÍSICOS EN LA INGENIERÍA MEDIANTE SOPORTE INFORMÁTICO INTERACTIVO PRÁCTICAS DE FUNDAMENTOS FÍSICOS EN LA INGENIERÍA MEDIANTE SOPORTE INFORMÁTICO INTERACTIVO Eduardo García Ortiz, Jesús Cepeda Riaño, Berta Melcón Otero, Mª Isabel Vidal González, Marcos Rodríguez Martínez

Más detalles

Departamento de Tecnología. IES Nuestra Señora de la Almudena Mª Jesús Saiz TEMA 1: LA ENERGÍA Y SU TRANSFORMACIÓN. PRODUCCIÓN DE ENERGÍA ELÉCTRICA

Departamento de Tecnología. IES Nuestra Señora de la Almudena Mª Jesús Saiz TEMA 1: LA ENERGÍA Y SU TRANSFORMACIÓN. PRODUCCIÓN DE ENERGÍA ELÉCTRICA TEMA 1: LA ENERGÍA Y SU TRANSFORMACIÓN. PRODUCCIÓN DE ENERGÍA ELÉCTRICA 1.- Concepto de energía y sus unidades: La energía E es la capacidad de producir trabajo. Y trabajo W es cuando al aplicar una fuerza

Más detalles

Diapositiva 1 Para presentar los semiconductores, es útil empezar revisando los conductores. Hay dos perspectivas desde las que se puede explorar la conducción: 1) podemos centrarnos en los dispositivos

Más detalles

INTRODUCCION AL CONTROL AUTOMATICO DE PROCESOS

INTRODUCCION AL CONTROL AUTOMATICO DE PROCESOS INTRODUCCION AL CONTROL AUTOMATICO DE PROCESOS El control automático de procesos es parte del progreso industrial desarrollado durante lo que ahora se conoce como la segunda revolución industrial. El uso

Más detalles

LA ENERGIA ELECTRICA LA ELECTRICIDAD

LA ENERGIA ELECTRICA LA ELECTRICIDAD LA ENERGIA ELECTRICA En una de las formas de manifestarse la energía. Tiene como cualidades la docilidad en su control, la fácil y limpia transformación de energía en trabajo, y el rápido y eficaz transporte,

Más detalles

3º ESO Tecnologías PRODUCCIÓN DE ENERGÍA ELÉCTRICA PREGUNTAS DE EXAMEN. Curso: Asignatura: Tema:

3º ESO Tecnologías PRODUCCIÓN DE ENERGÍA ELÉCTRICA PREGUNTAS DE EXAMEN. Curso: Asignatura: Tema: Departamento de Tecnología Curso: Asignatura: Tema: I.E.S. BUTARQUE 3º ESO Tecnologías PRODUCCIÓN DE ENERGÍA ELÉCTRICA PREGUNTAS DE EXAMEN 1. Qué es una fuente de energía? a) Un recurso natural. b) Una

Más detalles

LOS EFECTOS DE LOS ARMÓNICOS y SUS SOLUCIONES

LOS EFECTOS DE LOS ARMÓNICOS y SUS SOLUCIONES LOS EFECTOS DE LOS ARMÓNICOS y SUS SOLUCIONES Los armónicos provocan una baja calidad en el suministro de la energía eléctrica Se ha observado un elevado nivel de corrientes armónicas múltiples impares

Más detalles

1 cal = 4,18 J. 1 kwh = 1000 Wh = 1000 W 3600 s/h = 3600 1000 J = 3 6 10 6 J

1 cal = 4,18 J. 1 kwh = 1000 Wh = 1000 W 3600 s/h = 3600 1000 J = 3 6 10 6 J Energía Se define la energía, como la capacidad para realizar un cambio en forma de trabajo. Se mide en el sistema internacional en Julios (J), que se define como el trabajo que realiza una fuerza de 1N

Más detalles

ELEMENTOS ALMACENADORES DE

ELEMENTOS ALMACENADORES DE Capítulo ELEMENTOS ALMACENADORES DE ENERGÍA ELÉCTRICA Portada del Capítulo 5 2CAPÍTULO. ELEMENTOS ALMACENADORES DE ENERGÍA ELÉCTRICA. INTRODUCCIÓN Hasta este capitulo solo se han tratado circuitos resistivos,

Más detalles

8. Resultados de la simulación

8. Resultados de la simulación 8. Resultados de la simulación 8.1. Sin almacenamiento en baterías La primera parte de la simulación de la instalación en HOMER se ha realizado sin la existencia de baterías. Figura 44: Esquema general

Más detalles

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define.

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define. VECTORES El estudio de los vectores es uno de tantos conocimientos de las matemáticas que provienen de la física. En esta ciencia se distingue entre magnitudes escalares y magnitudes vectoriales. Se llaman

Más detalles

4 Teoría de diseño de Experimentos

4 Teoría de diseño de Experimentos 4 Teoría de diseño de Experimentos 4.1 Introducción En los capítulos anteriores se habló de PLC y de ruido, debido a la inquietud por saber si en una instalación eléctrica casera que cuente con el servicio

Más detalles

www.fundibeq.org Además se recomienda su uso como herramienta de trabajo dentro de las actividades habituales de gestión.

www.fundibeq.org Además se recomienda su uso como herramienta de trabajo dentro de las actividades habituales de gestión. HOJAS DE COMPROBACIOÓN Y HOJAS DE RECOGIDA DE DATOS 1.- INTRODUCCIÓN En este documento se describe el proceso de obtención de información a partir de la recogida y análisis de datos, desde el establecimiento

Más detalles

8. Tipos de motores de corriente continua

8. Tipos de motores de corriente continua 8. Tipos de motores de corriente continua Antes de enumerar los diferentes tipos de motores, conviene aclarar un concepto básico que debe conocerse de un motor: el concepto de funcionamiento con carga

Más detalles

Instalaciones de electrificación en viviendas y edificios 1

Instalaciones de electrificación en viviendas y edificios 1 UF0885 Montaje y mantenimiento de instalaciones eléctricas de baja tensión en edificios de viviendas Instalaciones de electrificación en viviendas y edificios 1 Qué? Para realizar un montaje y un mantenimiento

Más detalles

El Futuro de la Computación en la Industria de Generación Eléctrica

El Futuro de la Computación en la Industria de Generación Eléctrica El Futuro de la Computación en la Industria de Generación Eléctrica Retos a los que se enfrenta la industria de generación La industria de generación eléctrica se enfrenta a dos retos muy significativos

Más detalles

ELECTRICIDAD Secundaria

ELECTRICIDAD Secundaria ELECTRICIDAD Secundaria Carga eléctrica. Los átomos que constituyen la materia están formados por otras partículas todavía más pequeñas, llamadas protones, neutrones y electrones. Los protones y los electrones

Más detalles

Instalaciones Aisladas de la Red

Instalaciones Aisladas de la Red Energía Solar Fotovoltaica El método más sencillo para la captación solar es el de la conversión fotovoltaica, que consiste en convertir la energía solar en energía eléctrica por medio de células solares.

Más detalles

PRÁCTICA 1 RED ELÉCTRICA

PRÁCTICA 1 RED ELÉCTRICA PRÁCTICA 1 RED ELÉCTRICA PARTE 1.- MEDIDA DE POTENCIAS EN UN CIRCUITO MONOFÁSICO. CORRECCIÓN DEL FACTOR DE POTENCIA OBJETIVOS - Diferenciar entre los tres tipos de potencia que se ponen en juego en un

Más detalles

Def.: Energía Potencial gravitatoria: la que tiene un cuerpo como consecuencia de su posición en el campo gravitatorio terrestre.

Def.: Energía Potencial gravitatoria: la que tiene un cuerpo como consecuencia de su posición en el campo gravitatorio terrestre. TEMA 5 TRABAJO, ENERGÍA Y POTENCIA Objetivos / Criterios de evaluación O.5.1 Identificar el concepto de trabajo mecánico y sus unidades O.5.2 Conocer el concepto de energía y sus unidades y tipos. O.5.3

Más detalles

Física y Química 4º ESO Apuntes de Dinámica página 1 de 5 CONCEPTO DE ENERGÍA

Física y Química 4º ESO Apuntes de Dinámica página 1 de 5 CONCEPTO DE ENERGÍA Física y Química 4º ESO Apuntes de Dinámica página 1 de 5 CONCEPTO DE ENERGÍA Antes se definía la energía como la capacidad de un cuerpo o sistema para realizar un trabajo. Vamos a ver una explicación

Más detalles

Agentes para la conservación de la energía mecánica

Agentes para la conservación de la energía mecánica Agentes para la conservación de la energía mecánica Para levantar un cuerpo verticalmente a velocidad constante, es necesario que algún agente externo realice trabajo y hemos demostrado que este trabajo

Más detalles

INFORME. Dirección de Negocio Regulado 1. DESCRIPCIÓN DEL PROBLEMA

INFORME. Dirección de Negocio Regulado 1. DESCRIPCIÓN DEL PROBLEMA INFORME ORGANISMO EMISOR: IBERDROLA DISTRIBUCIÓN, S.A.U. PROTECCIONES Y ASISTENCIA TÉCNICA REFERENCIA: SPFV HOJA 1 de 11 Dirección de Negocio Regulado 1. DESCRIPCIÓN DEL PROBLEMA En pruebas de desconexión

Más detalles

UNIDAD DE TRABAJO Nº2. INSTALACIONES DE MEGAFONÍA. UNIDAD DE TRABAJO Nº2.1. Descripción de Componentes. Simbología AURICULARES

UNIDAD DE TRABAJO Nº2. INSTALACIONES DE MEGAFONÍA. UNIDAD DE TRABAJO Nº2.1. Descripción de Componentes. Simbología AURICULARES UNIDAD DE TRABAJO Nº2. INSTALACIONES DE MEGAFONÍA UNIDAD DE TRABAJO Nº2.1. Descripción de Componentes. Simbología 2. Auriculares. Descripción. AURICULARES Son transductores electroacústicos que, al igual

Más detalles

Colegio Alexander von Humboldt - Lima. Tema: La enseñanza de la matemática está en un proceso de cambio

Colegio Alexander von Humboldt - Lima. Tema: La enseñanza de la matemática está en un proceso de cambio Refo 07 2004 15 al 19 de noviembre 2004 Colegio Alexander von Humboldt - Lima Tema: La enseñanza de la matemática está en un proceso de cambio La enseñanza de la matemática debe tener dos objetivos principales:

Más detalles

GUÍA TÉCNICA PARA LA DEFINICIÓN DE COMPROMISOS DE CALIDAD Y SUS INDICADORES

GUÍA TÉCNICA PARA LA DEFINICIÓN DE COMPROMISOS DE CALIDAD Y SUS INDICADORES GUÍA TÉCNICA PARA LA DEFINICIÓN DE COMPROMISOS DE CALIDAD Y SUS INDICADORES Tema: Cartas de Servicios Primera versión: 2008 Datos de contacto: Evaluación y Calidad. Gobierno de Navarra. evaluacionycalidad@navarra.es

Más detalles

4.1. Índice del tema...1 4.2. El Condensador...2 4.2.1. Introducción...2 4.2.2. Potencia...3 4.2.3. Energía...3 4.2.4. Condición de continuidad...

4.1. Índice del tema...1 4.2. El Condensador...2 4.2.1. Introducción...2 4.2.2. Potencia...3 4.2.3. Energía...3 4.2.4. Condición de continuidad... TEMA 4: CAPACITORES E INDUCTORES 4.1. Índice del tema 4.1. Índice del tema...1 4.2. El Condensador...2 4.2.1. Introducción...2 4.2.2. Potencia...3 4.2.3. Energía...3 4.2.4. Condición de continuidad...4

Más detalles

III.Otrasdisposicionesyactos

III.Otrasdisposicionesyactos Página16485/Núm.119 BOLETÍNOFICIALDELARIOJA Miércoles,16deseptiembrede2015 III.Otrasdisposicionesyactos CONSEJERÍADEEDUCACIÓN,FORMACIÓNYEMPLEO Orden7/2015de10deseptiembre,delaConsejeríadeEducación,FormaciónyEmpleoporlaquese

Más detalles

La electricidad. La electricidad se origina por la separación o movimiento de los electrones que forman los átomos.

La electricidad. La electricidad se origina por la separación o movimiento de los electrones que forman los átomos. 1 La electricidad Es el conjunto de fenómenos físicos relacionados con la presencia y flujo de cargas eléctricas. Se manifiesta en una gran variedad de fenómenos como los rayos, la electricidad estática,

Más detalles