Análisis de Arcos Planos Isostáticos

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Análisis de Arcos Planos Isostáticos"

Transcripción

1 Análisis de Arcos Planos Isostáticos Diego Miramontes De León Resumen n este documento se presentarán algunos conceptos simples para E el análisis de arcos isostáticos sujetos a cargas concentradas o distribuidas. Por análisis debe entenderse el resolver el equilibrio y calcular los elementos mecánicos internos como son la fuerza axial N, fuerza cortante V y momento flexionante M a lo largo de la curva que define al arco. En un primer apartado se tratará el arco simplemente apoyado y con apoyos a la misma altura. Enseguida se tratarán arcos tri-articulados con apoyos a diferente altura. 1. Introducción 1.1. Definición Un arco es una estructura que escencialmente se diseña para que desarrolle esfuerzos de compresión a lo largo de su eje curvo, sin embargo, como elemento rígido, la flexión puede provocar tensiones. Es cierto que el trazo del arco influye directamente en la respuesta que pueda ofrecer ante las cargas aplicadas. Para que el arco sea isostático, se requiere que esté simplemente apoyado (figura 1) o que esté tri-articulado (figura ). A diferencia de los cables, en donde hay que determinar la forma que adoptará el cable, en los arcos, la geometría está por lo general completamente definida. El problema, además del equilibrio, es sobre todo el cálculo de los elementos mecánicos. La geometría está dada por el claro L, o distancia horizontal entre los apoyos, la flecha f o distancia vertical desde la horizontal al apoyo más bajo, la clave C, la cual corresponde al punto más alto sobre la curva del arco, 1

2 Figura 1: Arco simplemente apoyado es decir, ésta coincide con la flecha máxima, medida siempre desde el punto de arranque, por último el punto de arranque, quien se considerará como el punto donde se encuentre el apoyo más bajo. En la figura, el círculo sobre el arco representa una articulación. La articulación puede estar en cualquier punto, en este caso se supone localizada a una distancia b desde el apoyo izquierdo. Por último, a la línea que une los apoyos, se le da el nombre de línea de arranque y para arcos con apoyos a diferente altura puede medirse la distancia de la flecha desde ella.. Arco simplemente apoyado En este punto, interesa presentar las expresiones generales para el análisis de un arco con apoyos simples y una sola carga concentrada al centro del claro, como se muestra en la figura 1. También interesa que los apoyos estén a la misma altura, ya que representa un caso de estudio común, sobre todo como primer ejemplo. En este caso particular, no habrá reacción horizontal en ningún extremo y la reacción en cada apoyo vale la mitad de la carga. El equilibrio se resuelve pues por simetría. Fy = 0; R 1 + R = P R 1 = R = P (1)

3 Figura : Arco tri-articulado con cargas concentradas.1. Elementos mecánicos Para obtener la fuerza normal, el cortante y el momento en cualquier punto a lo largo de la curva del arco, conviene hacer uso de la matriz de rotación utilizada en análisis estructural : [R] = cosθ senθ 0 senθ cosθ () Recordando que [R] es ortogonal, será posible pasar de un sistema a otro, de modo que para un punto cualquiera localizado a una distancia (x, y) 3

4 será más sencillo realizar una suma de fuerzas a la izquierda o derecha de ese punto tomando como referencia el sistema de coordenadas global (ver figura 3), para formar el vector : {F } = R x R y M z g (3) Figura 3: Corte del arco en el punto (x, y) En la ecuación 3 R x se refiere a la resultante de la suma de las fuerzas en la dirección X a la izquierda o derecha de la sección localizada en el punto (x, y), R y se refiere a la resultante de la suma de las fuerzas en la dirección Y a la izquierda o derecha de la sección localizada en el punto (x, y) y por último, M z se refiere a la resultante de la suma de los momentos en la dirección Z a la izquierda o derecha de la sección localizada en el punto (x, y). En cada caso debe aplicarse una convención de signos, por ejemplo, N será positiva para tensión, V será positiva si sigue la dirección positiva del eje Y cuando la suma se haga a la izquierda y negativa cuando se haga a la derecha. Para el momento M se considera usualmente como positivo cuando la concavidad quede al exterior de la estructura. En vigas esto significa que la concavidad es contraria a la dirección positiva del eje Y. 4

5 A partir de las ecuaciones y 3 se obtiene : {F } l = [R] {F } g (4) Para el caso particular del arco de la figura 1, el vector de fuerzas global es simplemente : {F } = R x = 0 R y = P M z = P x g (5) Substituyendo este vector en la ecuación 5), se obtendrán directamente los valores de N, V y M. Sin embargo, dado que el ángulo θ varía en cada punto a lo largo del arco, es necesario expresar este cambio en términos de x. Para todo x, la derivada de la función y = f(x) que define la geomtería del arco, dará la pendiente en ese punto, de modo que el ángulo se calcula directamente : N x V x M x = cos(tg 1 ( dy sen(tg 1 ( dy )) dx )) dx sen(tg 1 ( dy )) 0 dx cos(tg 1 ( dy )) 0 dx R x R y M z (6).. Arcos Parábolicos Para aplicar la ecuación 6) a problemas definidos, se considerará que se conoce la distancia horizontal entre los apoyos L y la flecha máxima del arco. Esto implica que la coordenada x será L/ y la flecha será h...1. Arco parabólico de segundo grado Ahora considérese que se quiere probar un arco parabólico de segundo grado, es decir : 5

6 y = f(x) = Kx (7) Debido a la simetría, sólo se analiza la mitad, de modo que el valor de K se obtiene asignado los valores anteriores a x y y : ( ) ( ) L L y = f = h = K (8) De aquí : K = 4h L (9) La función para el arco parabólico es : ( ) 4h y = x (10) L y su derivada es : dy dx = ( ) 8h x (11) L... Arco parabólico de tercer grado Como en el caso anterior, se tendrá : y = f(x) = Kx 3 (1) 6

7 ( ) ( ) L L 3 y = f = h = K (13) De aquí : K = 8h L 3 (14) La función para el arco parabólico es : ( ) 8h y = x 3 (15) L 3 y su derivada es : dy dx = ( ) 4h x (16) L Arco parabólico de cualquier grado El procedimiento descrito antes puede generalizarse para cualquier grado, de modo que se tiene : y = Kx n (17) K = n h L n (18) ( n ) h y = x n (19) L n 7

8 dy dx = ( n n ) h x n 1 (0) L n Las expresiones dadas en este apartado sólo son válidas para arcos simplemente apoyados y con la misma altura de los apoyos, además la geometría debe ser simétrica como la mostrada en la figura 1. Para un caso más general, se analizarán arcos como el mostrado en la figura y para condiciones de carga tanto puntuales como distribuidas en puntos no simétricos. 3. Arcos tri-articulados Como parte de las estructuras isostáticas, es posible encontrar arcos con tres articulaciones, dos de las cuales están en los apoyos y una más en cualquier parte a lo largo de la curva del arco. Es frecuente que esta articulación guarde cierta estética por lo que ese punto arbitrario puede no serlo tanto. En la figura 4 se muestra uno de estos arcos en Puerto Montt, Chile. Además, en las figuras 5, se muestran los detalles de la articulación en uno de los apoyos y en la figura 6 se observa la articulación intermedia Equilibrio de arcos tri-articulados A diferencia de loas arcos simplemente apoyados, en donde el equilibrio exterior es prácticamente similar al de vigas, en los arcos tri-articulados existen cuatro reacciones externas. La articulación intermedia ofrece la ecuación adicional para resolver el equilibrio Arco con carga puntual Se analizará un arco sujeto a una carga concentrada según se muestra en la figura 7. Resolviendo el equilibrio exterior se tiene : Fx = 0; A x B x = 0 (1) 8

9 Figura 4: Arco tri-articulado (Fuente: Omar Tellez Elgueta) Fy = 0; A y B y P = 0 () M A z = 0; B x (h) + B y (L) P (a) = 0 (3) M C z = 0; B x (y c h) + B y (L x c ) = 0 (4) Las ecuaciones 3) y 4) incluyen sólo dos incógnitas (B x y B y ) por lo que pueden resolverse simultáneamente, es decir : 9

10 Figura 5: Apoyo en arco tri-articulado (Fuente: Omar Tellez Elgueta) [ h L (y c h) (L x c ) ] [ Bx B y ] = [ P (a) 0 ] (5) Conocidas B x y B y pueden resolverse 1) y ) para A x y A y. Supóngase que h = 0, es decir, los apoyos están a la misma altura. Entonces de 3) : B y = P a L (6) La ecuación 6) es similar a la reacción de una viga con una carga concentrada a la distancia a del apoyo A. De la ecuación 4) se tendría : 10

11 Figura 6: Articulacio n intermedia en arco tri-articulado (Fuente: propia) Bx = P a (L xc ) L yc (7) Pa yc (8) Si adema s xc = L/ : Bx = Para una serie de cargas concentradas P1, P,...Pn, simplemente se agregarı an a las ecuaciones anteriores Arco con carga distribuida Ahora, se analizara un arco sujeto a una carga distribuida segu n se muestra en la figura 8. Resolviendo el equilibrio exterior se tiene : 11

12 Figura 7: Arco tri-articulado bajo carga concentrada Fx = 0; A x B x = 0 (9) Fy = 0; A y B y wa = 0 (30) M A z = 0; B x (h) + B y (L) wa = 0 (31) M C z = 0; B x (y c h) + B y (L x c ) = 0 (3) 1

13 Figura 8: Arco tri-articulado bajo carga distribuida Debido a la ecuación 31), la solución sólo será válida para a x x c. Además, las ecuaciones 31) y 3) incluyen sólo dos incógnitas (B x y B y ) por lo que pueden resolverse simultáneamente, es decir : [ h L (y c h) (L x c ) ] [ Bx B y ] = [ wa 0 ] (33) Conocidas B x y B y pueden resolverse 9) y 30) para A x y A y. Nuevamente supóngase que h = 0, es decir, los apoyos están a la misma altura. Entonces de 31) : B y = wa L (34) 13

14 La ecuación 34) es similar a la reacción de una viga con una carga distribuida a la distancia a del apoyo A. De la ecuación 9) se tendría : B x = wa (L x c ) L y c (35) Si además x c = L/ : B x = wa 4y c (36) Considerando ahora que la carga va más allá del punto C, sólo se modificará la ecuación 3) : M C z = 0; B x (y c h) + B y (L x c ) w(x x c) = 0 (37) La solución para esta nueva condición es : [ h L (y c h) (L x c ) ] [ Bx B y ] [ = wa w(x x c) ] (38) Si nuevamente se considera que h = 0 se tendrá : B y = wa L (39) B x = [ wa L (L x c) w(x x c) ] 1 y c (40) 14

15 Si además, a = L B y = wl (41) B x = w(l x c) [( L L x )] c 1 yc (4) Más aun, si x c = L/ ; B x = wl 4 L 1 = wl (43) y c 8y c Deben atenderse con cuidado los límites para los cuales las soluciones dadas antes son válidas, ya que de no hacerlo, los resultados serían incorrectos. 4. Comentarios Es conveniente programar las ecuaciones dadas antes para calcular los valores de N, V y M en varios puntos. Debido a la sencillez de las expresiones y a que el cálculo es directo, puede hacerse en una hoja de cálculo, en donde se definan tantos puntos x como se quiera sobre la longitud del claro L. Puede verse que todas las expresiones sólo dependen de x. Los valores obtenidos pueden graficarse aunque no sigan la curva del arco. Aun así serán un referente para comparar el comportamiento ante cada uno de los elementos mecánicos. En forma general, se presentaron las soluciones del equilibrio exterior para un arco tri-articulado para dos casos específicos; bajo carga concentrada y bajo carga distribuida. En el primero, sólo se incluyó una carga, entendiendo que no hay dificutad en agregar tantas otras como se quiera. En el segundo se consideró la posibilidad de que la carga distribuida se aplique hasta el punto donde se encuentra la articulación o que pase de ese punto. En todos los casos expuestos se han agregado algunas condiciones expeciales como el que 15

16 los apoyos estén a la misma altura y/o que la articulación esté al centro del claro. Por último se recuerda que deben observarse detenidamente los límites para los cuales son válidas las soluciones propuestas. Referencias [1] A. Ghali y A.M. Neville (1983), Análisis estructural, Ed. Diana Técnico, 1a. Ed, 809p [] J. L. Meek, (1971), Matrix structural analysis, ISE, McGraw Hill, 481p [3] F. W. Beaufait, (1981), Análisis estructural, PH internacional, 591p [4] D. Miramontes De León, (009), Static Algorithm for Isostatic Trusses, Investigación Científica, Vol 5, No 1, ISSN

CAPÍTULO IV FUERZA CORTANTE Y MOMENTO FLEXIONANTE EN VIGAS

CAPÍTULO IV FUERZA CORTANTE Y MOMENTO FLEXIONANTE EN VIGAS CAPÍTULO IV FUERZA CORTANTE Y MOMENTO FLEXIONANTE EN VIGAS 4.1 CONCEPTOS BÁSICOS Este capítulo explica cómo las diversas fuerzas aplicadas a una viga llegan a producir fuerza cortante y momento flexionante

Más detalles

Curvas en paramétricas y polares

Curvas en paramétricas y polares Capítulo 10 Curvas en paramétricas y polares Introducción Después del estudio detallado de funciones reales de variable real expresadas en forma explícita y con coordenadas cartesianas, que se ha hecho

Más detalles

Figura 1. Viga simplemente apoyada

Figura 1. Viga simplemente apoyada Capítulo ESTABILIDAD E INDETERMINACIÓN. Introducción Durante los primeros cursos de estática, se aplican los principios elementales del equilibrio de sistemas de fuerza [,]. Desde entonces se plantea que

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.5: Aplicaciones de la derivada. Máximos y mínimos (absolutos) de una función. Sea f una función definida en un conjunto I que contiene un punto

Más detalles

TEMA N 2 RECTAS EN EL PLANO

TEMA N 2 RECTAS EN EL PLANO 2.1 Distancia entre dos puntos1 TEMA N 2 RECTAS EN EL PLANO Sean P 1 (x 1, y 1 ) y P 2 (x 2, y 2 ) dos puntos en el plano. La distancia entre los puntos P 1 y P 2 denotada por d = esta dada por: (1) Demostración

Más detalles

CAPÍTULO V 10 EJERCICIOS RESUELTOS

CAPÍTULO V 10 EJERCICIOS RESUELTOS CAPÍTULO V 10 EJERCICIOS RESUELTOS Este último capítulo contiene 10 ejercicios complementarios (propuestos por los alumnos de la asignatura) que permiten poner en práctica los conocimientos adquiridos

Más detalles

Fig. 18. Flexión asimétrica o inclinada de una viga con sección transversal doblemente simétrica

Fig. 18. Flexión asimétrica o inclinada de una viga con sección transversal doblemente simétrica 8. Flexión Asimétrica (Biaxial) de Vigas 8.1 Introducción En esta sección, el análisis de la flexión en elementos-vigas, estudiado en las secciones precedentes, es ampliado a casos más generales. Primero,

Más detalles

VII. ECUACIÓN GENERAL DE SEGUNDO GRADO

VII. ECUACIÓN GENERAL DE SEGUNDO GRADO VII. ECUACIÓN GENERAL DE SEGUNDO GRADO 7.. SECCIONES CÓNICAS Cuando un plano corta a un cono circular recto de dos mantos, la sección que resulta de dicho corte determina ciertas curvas llamadas CÓNICAS.

Más detalles

Aplicaciones de las integrales dobles

Aplicaciones de las integrales dobles Aplicaciones de las integrales dobles Las integrales dobles tienen multiples aplicaciones en física en geometría. A continuación damos una relación de alguna de ellas.. El área de una región plana R en

Más detalles

CURSO: MECÁNICA DE SÓLIDOS II UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA

CURSO: MECÁNICA DE SÓLIDOS II UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA CURSO: MECÁNICA DE SÓLIDOS II PROFESOR: ING. JORGE A. MONTAÑO PISFIL CURSO DE

Más detalles

2. CURVAS PLANAS, ECUACIONES PARAMÉTRICAS Y COORDENADAS POLARES

2. CURVAS PLANAS, ECUACIONES PARAMÉTRICAS Y COORDENADAS POLARES 2. CURVAS PLANAS, ECUACIONES PARAMÉTRICAS Y COORDENADAS POLARES INDICE 2.1. Curvas planas y ecuaciones paramétricas...2 2.2. Ecuaciones paramétricas de algunas curvas y su representación grafica 3 2.3.

Más detalles

Cálculo diferencial DERIVACIÓN

Cálculo diferencial DERIVACIÓN DERIVACIÓN Definición de límite Entorno Definición. Se le llama entorno o vecindad de un punto a en R, al intervalo abierto (a - δ, a + δ ) = {a a - δ < x < a + δ }, en donde δ es semiamplitud a radio

Más detalles

Mecánica Vectorial Cap. 3. Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D.

Mecánica Vectorial Cap. 3. Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D. Mecánica Vectorial Cap. 3 Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D. Cómo tener éxito en Matemáticas? Paso 1: El trabajo duro triunfa sobre el talento natural. Paso 2: Mantenga una mente abierta.

Más detalles

Integrales dobles Guía electrónica de estudio para el estudiante

Integrales dobles Guía electrónica de estudio para el estudiante Integrales dobles Guía electrónica de estudio para el estudiante Dr. M. Ranferí Gutierrez M. matematicaurl@gmail.com Introducción Esta guía electrónica de estudio le ayudará, mediante la utilización de

Más detalles

JUNIO 2010. Opción A. 1 1.- Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola.

JUNIO 2010. Opción A. 1 1.- Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola. Junio 00 (Prueba Específica) JUNIO 00 Opción A.- Dada la parábola y 3 área máima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola., y la recta y 9, hallar las dimensiones

Más detalles

Estática. Resultantes de Sistemas de Fuerzas

Estática. Resultantes de Sistemas de Fuerzas Estática 4 Resultantes de Sistemas de Fuerzas Objetivos Concepto de momento de una fuerza en una y dos dimensiones. Método para encontrar el momento de una fuerza referido a un eje dado. Definir el momento

Más detalles

Calcular el momento en el apoyo central, y dibujar los diagramas de esfuerzos. 6 m

Calcular el momento en el apoyo central, y dibujar los diagramas de esfuerzos. 6 m Elasticidad y Resistencia de Materiales Escuela Politécnica Superior de Jaén UNIVERSIDAD DE JAÉN Departamento de Ingeniería Mecánica y Minera Mecánica de Medios Continuos y Teoría de Estructuras Relación

Más detalles

OBJETIVO: Conocer los diferentes tipos de armaduras existentes y calcular fuerzas resultantes por los métodos de juntas o nudos y secciones.

OBJETIVO: Conocer los diferentes tipos de armaduras existentes y calcular fuerzas resultantes por los métodos de juntas o nudos y secciones. ESTÁTICA Sesión 8 OBJETIVO: Conocer los diferentes tipos de armaduras existentes y calcular fuerzas resultantes por los métodos de juntas o nudos y secciones. 8 ESTRUCTURAS EN EQUILIBRIO 8.1. Armaduras

Más detalles

2. SISTEMAS DE ECUACIONES LINEALES. Introducción

2. SISTEMAS DE ECUACIONES LINEALES. Introducción 2. SISTEMAS DE ECUACIONES LINEALES Introducción El presente curso trata sobre álgebra lineal. Al buscarla palabra lineal en un diccionario se encuentra, entre otras definiciones la siguiente: lineal, perteneciente

Más detalles

APUNTES DE MATEMÁTICAS 1º BACHILLERATO TEMA 5: GEOMETRÍA AFÍN PROBLEMAS MÉTRICOS

APUNTES DE MATEMÁTICAS 1º BACHILLERATO TEMA 5: GEOMETRÍA AFÍN PROBLEMAS MÉTRICOS APUNTES DE MATEMÁTICAS TEMA 5: GEOMETRÍA AFÍN PROBLEMAS MÉTRICOS º BACHILLERATO ÍNDICE. ECUACIONES DE LA RECTA EN EL PLANO.... 4.. SISTEMAS DE REFERENCIA... 4.. COORDENADAS DE UN PUNTO... 4.3. COORDENADAS

Más detalles

MAGNITUD VECTORIAL. Veamos un ejemplo sencillo: Es un segmento de línea recta orientada que sirve para representar a las magnitudes vectoriales.

MAGNITUD VECTORIAL. Veamos un ejemplo sencillo: Es un segmento de línea recta orientada que sirve para representar a las magnitudes vectoriales. Capítulo 3 VECTORES MGNITUD VECTORIL Es aquella magnitud que aparte de conocer su valor numérico y su unidad respectiva, es necesario conocer también la dirección y sentido para que así dicha magnitud

Más detalles

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos: Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián

Más detalles

martilloatomico@gmail.com

martilloatomico@gmail.com Titulo: CENTRO DE GRAVEDAD, CENTRO DE MASA Y CENTROIDE. Año escolar: Estática - Ingeniería Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo

Más detalles

Funciones de varias variables.

Funciones de varias variables. Funciones de varias variables. Definición. Hasta ahora se han estudiado funciones de la forma y = f (x), f :D Estas funciones recibían el nombre de funciones reales de variable real ya que su valor y dependía

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas Observación: La mayoría de estos ejercicios se han propuesto en las pruebas de Selectividad, en los distintos distritos universitarios españoles El precio

Más detalles

CURVAS Y SUPERFICIES DE NIVEL

CURVAS Y SUPERFICIES DE NIVEL CURVAS Y SUPERFICIES DE NIVEL UNIDAD NOMBRE TEMAS 4 Funciones vectorial de varias variables 4.3 Curvas y superficies de nivel. Gráfica de funciones de dos variables Existen varias maneras de visualizar

Más detalles

Tema II: Programación Lineal

Tema II: Programación Lineal Tema II: Programación Lineal Contenido: Solución a problemas de P.L. por el método gráfico. Objetivo: Al finalizar la clase los alumnos deben estar en capacidad de: Representar gráficamente la solución

Más detalles

3. Métodos clásicos de optimización lineal

3. Métodos clásicos de optimización lineal 3. Métodos clásicos de optimización lineal Uso del método Simplex El problema que pretende resolverse es un problema de optimización lineal sujeto a restricciones. Para el modelo construido para el problema

Más detalles

UNIDAD V LA PARÁBOLA

UNIDAD V LA PARÁBOLA UNIDAD LA PARÁBOLA OBJETIO PARTICULAR Al concluir la unidad, el alumno identificará y aplicará las propiedades relacionadas con el lugar geométrico llamado parábola, determinando los distintos parámetros,

Más detalles

El deslizamiento de un tobogán de Acuapolis, tiene la forma de un arco de. hipérbola de ecuación. como se puede apreciar en la figura siguiente:

El deslizamiento de un tobogán de Acuapolis, tiene la forma de un arco de. hipérbola de ecuación. como se puede apreciar en la figura siguiente: altura En la vida cotidiana las rectas tangentes a una curva u objeto podrán observar de muy diferentes maneras, como son el punto de contacto de la rueda de un automóvil, patineta. El deslizamiento de

Más detalles

1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO

1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO 1 1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO Muchos de los fenómenos que se investigan en la geometría utilizan nociones como las de longitud de un vector y ángulo entre vectores. Para introducir estos dos

Más detalles

EJEMPLOS DE CÁLCULO DE ESCALERAS DE HORMIGÓN ARMADO

EJEMPLOS DE CÁLCULO DE ESCALERAS DE HORMIGÓN ARMADO ESTRUCTURAS II FAU-UNNE: Estructura con continuidad estructural. Caso: ESCALERAS 1 EJEMPLOS DE CÁLCULO DE ESCALERAS DE HORMIGÓN ARMADO HIPÓTESIS: Se analiza solamente ESTRUCTURAS PLANAS, el eje tiene continuidad

Más detalles

UNIDAD IV. LEYES DE SENOS Y COSENOS.

UNIDAD IV. LEYES DE SENOS Y COSENOS. UNIDAD IV. LEYES DE SENOS Y COSENOS. OBJETIVO. El estudiante resolverá problemas leyes de senos y cosenos, teóricos o prácticos de distintos ámbitos, mediante la aplicación las leyes y propiedades de Senos

Más detalles

1. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado:

1. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado: CAPÍTULO. GEOMETRÍA AFÍN.. Problemas. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado: a) A(,, ), v = (,, ) ; b) A(0,

Más detalles

Lección 1. Algoritmos y conceptos básicos.

Lección 1. Algoritmos y conceptos básicos. Página 1 de 8 Lección 1. Algoritmos y conceptos básicos. Objetivos. La primera lección del curs está dedicada a repasar los conceptos y algoritmos del álgebra lineal, básicos para el estudio de la geometría

Más detalles

Fuerzas coplanares y no coplanares. Principio de transmisibilidad de las fuerzas

Fuerzas coplanares y no coplanares. Principio de transmisibilidad de las fuerzas 2.ESTÁTICA La palabra estática se deriva del griego statikós que significa inmóvil. En virtud de que la dinámica estudia la causa que originan la causa del reposo o movimiento de los cuerpos, tenemos que

Más detalles

Ec. rectas notables en un triángulo

Ec. rectas notables en un triángulo Ec rectas notables en un triángulo omo recordarás del curso de geometría plana (segundo semestre), las rectas notables de un triángulo son: Medianas: Una mediana es la recta que pasa por el punto medio

Más detalles

1. DIFERENCIABILIDAD EN VARIAS VARIABLES

1. DIFERENCIABILIDAD EN VARIAS VARIABLES 1 1. DIFERENCIABILIDAD EN VARIAS VARIABLES 1.1. DERIVADAS DIRECCIONALES Y PARCIALES Definición 1.1. Sea f : R n R, ā R n y v R n. Se define la derivada direccional de f en ā y en la dirección de v como:

Más detalles

Coordenadas polares en el plano. Coordenadas ciĺındricas y esféricas en el espacio. Coordenadas... Coordenadas... Coordenadas...

Coordenadas polares en el plano. Coordenadas ciĺındricas y esféricas en el espacio. Coordenadas... Coordenadas... Coordenadas... En el estudio de los conjuntos y las funciones es fundamental el sistema que se utilize para representar los puntos. Estamos acostumbrados a utilizar la estructura de afín o de vectorial de R n, utilizando

Más detalles

Universidad Alonso de Ojeda. Facultad de Ingeniería GUIA DE ESTUDIO ALGEBRA LINEAL.

Universidad Alonso de Ojeda. Facultad de Ingeniería GUIA DE ESTUDIO ALGEBRA LINEAL. UNIDAD IV: VECTORES EN R2 Y R3 VECTOR Se puede considerar un vector como un segmento de recta con una flecha en uno de sus extremos. De esta forma lo podemos distinguir por cuatro partes fundamentales:

Más detalles

1 Ecuaciones y propiedades de la recta

1 Ecuaciones y propiedades de la recta Ecuaciones propiedades de la recta Ecuaciones propiedades de la recta En esta sección estudiaremos la caracterización de la recta desde el punto de vista algebraico. A partir del concepto de pendiente

Más detalles

GEOMETRÍA ANALÍTICA DEL PLANO

GEOMETRÍA ANALÍTICA DEL PLANO GEOMETRÍA ANALÍTICA DEL PLANO 1 UNIDAD DIDÁCTICA 5: Geometría analítica del plano 1. ÍNDICE 1. Sistemas de referencia y coordenadas puntuales 2. Distancia entre dos puntos del plano 3. Coordenadas del

Más detalles

U N I V E R S I D A D A L A S P E R U A N A S FACULTAD DE INGENIERÍAS Y ARQUITECTURA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA INDUSTRIAL

U N I V E R S I D A D A L A S P E R U A N A S FACULTAD DE INGENIERÍAS Y ARQUITECTURA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA INDUSTRIAL U N I V E R S I D A D A L A S P E R U A N A S FACULTAD DE INGENIERÍAS Y ARQUITECTURA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA INDUSTRIAL RESISTENCIA DE MATERIALES SILABO I. DATOS GENERALES CODIGO CARRERA

Más detalles

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos: Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián

Más detalles

f (x) (1+[f (x)] 2 ) 3 2 κ(x) =

f (x) (1+[f (x)] 2 ) 3 2 κ(x) = MATEMÁTICAS II - EXAMEN PRIMER PARCIAL - 4/11/11 Grado: Ing. Electrónica Rob. y Mec. Ing. Energía Ing. Organización Ind. Nombre y Apellidos: Ejercicio 1. La curvatura de una función f en un punto x viene

Más detalles

Anexo C. Introducción a las series de potencias. Series de potencias

Anexo C. Introducción a las series de potencias. Series de potencias Anexo C Introducción a las series de potencias Este apéndice tiene como objetivo repasar los conceptos relativos a las series de potencias y al desarrollo de una función ne serie de potencias en torno

Más detalles

TEMA 8 GEOMETRÍA ANALÍTICA

TEMA 8 GEOMETRÍA ANALÍTICA Tema 8 Geometría Analítica Matemáticas 4º ESO TEMA 8 GEOMETRÍA ANALÍTICA RELACIÓN ENTRE PUNTOS DEL PLANO EJERCICIO : Halla el punto medio del segmento de extremos P, y Q4,. Las coordenadas del punto medio,

Más detalles

Anexo 1 ÁLGEBRA I.- Operaciones en las Expresiones Algebraicas II.- Factorización y Operaciones con las Fracciones III.- Funciones y Relaciones

Anexo 1 ÁLGEBRA I.- Operaciones en las Expresiones Algebraicas II.- Factorización y Operaciones con las Fracciones III.- Funciones y Relaciones Anexo 1 ÁLGEBRA I.- Operaciones en las Expresiones Algebraicas 1.- Adición y sustracción 2.- Multiplicación 3.- División 4.- Productos especiales 5.- Triángulo de Pascal II.- Factorización y Operaciones

Más detalles

Ejercicios resueltos de tiro oblicuo

Ejercicios resueltos de tiro oblicuo Ejercicios resueltos de tiro oblicuo 1) Un arquero dispara una flecha cuya velocidad de salida es de 100m/s y forma un ángulo de 30º con la horizontal. Calcula: a) El tiempo que la flecha está en el aire.

Más detalles

LABORATORIO DE MECANICA LEY DE HOOKE

LABORATORIO DE MECANICA LEY DE HOOKE No 6 LABORATORIO DE MECANICA LEY DE HOOKE DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos Objetivo general: Estudiar experimentalmente el comportamiento

Más detalles

CAPITULO 5 LA DETERMINACIÓN DEL INGRESO DE EQUILIBRIO

CAPITULO 5 LA DETERMINACIÓN DEL INGRESO DE EQUILIBRIO Documento elaborado por Jaime Aguilar Moreno Docente área económica Universidad del Valle Sede Buga CAPITULO 5 LA DETERMINACIÓN DEL INGRESO DE EQUILIBRIO OBJETIVO DEL CAPÍTULO Lograr que el estudiante

Más detalles

CAPÍTULO III MOMENTO DE INERCIA EN ÁREAS PLANAS. Este capítulo comprende diversas propiedades geométricas de secciones (para casos

CAPÍTULO III MOMENTO DE INERCIA EN ÁREAS PLANAS. Este capítulo comprende diversas propiedades geométricas de secciones (para casos CAPÍTULO III MOMENTO DE INERCIA EN ÁREAS PLANAS Este capítulo comprende diversas propiedades geométricas de secciones (para casos prácticos, secciones de vigas) siendo la más importante el momento de inercia.

Más detalles

Introducción. El rayo B, tan pronto alcanza el arco PQ, sólo podrá saltar hacia la fase.

Introducción. El rayo B, tan pronto alcanza el arco PQ, sólo podrá saltar hacia la fase. Método simplificado de los dos puntos para evaluar el comportamiento de una línea de transmisión ante descargas atmosféricas Parte I Ingeniero Jairo León García Introducción Los parámetros básicos que

Más detalles

Ecuaciones. 3º de ESO

Ecuaciones. 3º de ESO Ecuaciones 3º de ESO El signo igual El signo igual se utiliza en: Igualdades numéricas: 2 + 3 = 5 Identidades algebraicas: (x + 4) x = x 2 + 4 4x Fórmulas: El área, A,, de un círculo de radio r es: A =

Más detalles

Fuerzas PROBLEMAS DE FÍSICA DE LOS PROCESOS BIOLÓGICOS RELACIÓN 2. Aula Integral de Física de los Procesos Biológicos

Fuerzas PROBLEMAS DE FÍSICA DE LOS PROCESOS BIOLÓGICOS RELACIÓN 2. Aula Integral de Física de los Procesos Biológicos Fuerzas 1. Al igual que las demás fuerzas, las fuerzas gravitatorias se suman vectorialmente. Considerar un cohete que viaja de la Tierra a la Luna a lo largo de una línea recta que une sus centros. (a)

Más detalles

MÉTODO DE LA RIGIDEZ PARA ARMADURAS PLANAS

MÉTODO DE LA RIGIDEZ PARA ARMADURAS PLANAS Instituto Tecnológico de Sonora Ciudad Obregón, Sonora. Análisis Estructural, Plan de Estudios 2009 Ing. Jesús Horacio Zazueta Villaseñor MÉTODO DE LA RIGIDEZ PARA ARMADURAS PLANAS 1 Supuestos para el

Más detalles

3.2 DIVIDIR UN POLINOMIO POR x a. REGLA DE RUFFINI

3.2 DIVIDIR UN POLINOMIO POR x a. REGLA DE RUFFINI TEMA 3 ÁLGEBRA MATEMÁTICAS CCSSI 1º BACH 1 TEMA 3 ÁLGEBRA 3.1 DIVISIÓN DE POLINOMIOS COCIENTE DE MONOMIOS El cociente de un monomio por otro monomio de grado inferior es un nuevo monomio cuyo grado es

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE TRAYECTORIAS

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE TRAYECTORIAS APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE TRAYECTORIAS 5 TRAYECTORIAS DE UN HAZ DE CURVAS: Se dice que una familia de curvas T(,, k) 0 (k una constante arbitraria)

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Selectividad Junio 05 Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES:.- OPTATIVIDAD: El alumno deberá escoger una de

Más detalles

P. A. U. LAS PALMAS 2005

P. A. U. LAS PALMAS 2005 P. A. U. LAS PALMAS 2005 OPCIÓN A: J U N I O 2005 1. Hallar el área encerrada por la gráfica de la función f(x) = x 3 4x 2 + 5x 2 y la rectas y = 0, x = 1 y x = 3. x 3 4x 2 + 5x 2 es una función polinómica

Más detalles

UNIDAD DIDÁCTICA 5: Geometría analítica del plano

UNIDAD DIDÁCTICA 5: Geometría analítica del plano UNIDAD DIDÁCTICA 5: Geometría analítica del plano 1. ÍNDICE 1. Sistemas de referencia y coordenadas puntuales 2. Distancia entre dos puntos del plano 3. Coordenadas del punto medio de un segmento 4. La

Más detalles

Funciones Exponenciales y Logarítmicas

Funciones Exponenciales y Logarítmicas Funciones Exponenciales y Logarítmicas 0.1 Funciones exponenciales Comencemos por analizar la función f definida por f(x) = x. Enumerando coordenadas de varios puntos racionales, esto es de la forma m,

Más detalles

Tema 1. Cálculo diferencial

Tema 1. Cálculo diferencial Tema 1. Cálculo diferencial 1 / 57 Una función es una herramienta mediante la que expresamos la relación entre una causa (variable independiente) y un efecto (variable dependiente). Las funciones nos permiten

Más detalles

FUNCIONES CUADRÁTICAS. PARÁBOLAS

FUNCIONES CUADRÁTICAS. PARÁBOLAS FUNCIONES CUADRÁTICAS. PARÁBOLAS 1. FUNCIONES CUADRÁTICAS Representemos, en función de la longitud de la base (x), el área (y) de todos los rectángulos de perímetro 1 metros. De ellos, cuáles son las medidas

Más detalles

Análisis Estructural - 2009 Trabajo práctico de dinámica estructural: Superposición modal

Análisis Estructural - 2009 Trabajo práctico de dinámica estructural: Superposición modal Análisis Estructural - 9 Enunciado Dada la estructura de la Figura, idealizada mediante un marco con vigas rígidas y columnas inextensibles, sometida a una carga armónica lateral de 8 t, se pide: ) Determinar

Más detalles

1. Sistema de coordenadas polares.

1. Sistema de coordenadas polares. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0.. Sistema de coordenadas polares. En esta sección estudiaremos las coordenadas polares y su relación con las coordenadas cartesianas. Un punto del plano tiene

Más detalles

LA FUNCIÓN LINEAL: Ecuaciones y aplicaciones de la línea recta.

LA FUNCIÓN LINEAL: Ecuaciones y aplicaciones de la línea recta. INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: GEOMETRÍA DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N FECHA

Más detalles

CÁLCULO. Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 3. Curvas en polares.

CÁLCULO. Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 3. Curvas en polares. CÁLCULO Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 3. Curvas en polares. Resumen de la lección. 3.1. Gráficas en coordenadas polares.

Más detalles

Movimientos rígidos. Gonzalo Zubieta Badillo Departamento de Matemática Educativa, Cinvestav

Movimientos rígidos. Gonzalo Zubieta Badillo Departamento de Matemática Educativa, Cinvestav Movimientos rígidos Gonzalo Zubieta Badillo Departamento de Matemática Educativa, Cinvestav Resumen: Los movimientos rígidos son una parte de las transformaciones del plano en si mismo, su estudio tiene

Más detalles

PROBLEMAS DE HOMOTECIAS Y SEMEJANZAS EN EL ESPACIO

PROBLEMAS DE HOMOTECIAS Y SEMEJANZAS EN EL ESPACIO PROBLEMAS DE HOMOTECIAS Y SEMEJANZAS EN EL ESPACIO 82 Sea T una transformación afín definida por sus ecuaciones: = 2+ 2x y ' = 2+ 2y z' = 2+ 2z a) Clasificar T y hallar sus elementos característicos b)

Más detalles

Coordenadas polares. Representación de puntos con coordenadas polares. Por ejemplo

Coordenadas polares. Representación de puntos con coordenadas polares. Por ejemplo Instituto de Matemática Cálculo Integral Profesora Elisabeth Ramos Coordenadas polares El sistema de coordenadas polares es un sistema de coordenadas bidimensional en el cual cada punto o posición del

Más detalles

Clase 9 Sistemas de ecuaciones no lineales

Clase 9 Sistemas de ecuaciones no lineales Clase 9 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo, 2016 con dos incógnitas Un sistema de dos ecuaciones en el que al menos una ecuación es no lineal, se llama

Más detalles

Ejercicios resueltos de trigonometría

Ejercicios resueltos de trigonometría Ejercicios resueltos de trigonometría 1) Convierte las siguientes medidas de grados en radianes: a) 45º b) 60º c) 180º d) 270º e) 30º f) 225º g) 150º h) 135º i) -90º j) 720º 2) Expresa las siguientes razones

Más detalles

14.1 Introducción. 14.2 Caso 1: Area bajo una curva.

14.1 Introducción. 14.2 Caso 1: Area bajo una curva. Temas. Capacidades Calcular áreas de regiones del plano. 14.1 Introducción Area bajo una curva En esta sesión se inicia una revisión de las principales aplicaciones de la integral definida. La primera

Más detalles

FUERZAS DE UN FLUIDO EN REPOSO SOBRE SUPERFICIES PLANAS

FUERZAS DE UN FLUIDO EN REPOSO SOBRE SUPERFICIES PLANAS FUERZAS DE UN FLUIDO EN REPOSO SOBRE SUPERFICIES PLANAS En esta sección consideramos los efectos de la presión de un fluido, que actúa sobre superficies planas (lisas), en aplicaciones como las ilustradas.

Más detalles

Celosía plana. Definición

Celosía plana. Definición Celosías planas Celosía plana. Definición Modelo idealizado de una estructura reticular, formada por barras rectas de canto despreciable frente a su longitud. Barras unidas en sus extremos mediante articulaciones

Más detalles

Diagonalización de matrices.

Diagonalización de matrices. Diagonalización de matrices. 1. Diagonalización de matrices. Definición 1.1 Sea A una matriz cuadrada,, decimos que es un autovalor de A si existe un vector no nulo tal que En esta situación decimos que

Más detalles

Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos:

Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: 1 CONOCIMIENTOS PREVIOS. 1 Logaritmos. 1. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Operaciones básicas con números reales. Propiedades de

Más detalles

UNIDAD II FUNCIONES. Ing. Ronny Altuve Esp.

UNIDAD II FUNCIONES. Ing. Ronny Altuve Esp. República Bolivariana de Venezuela Universidad Alonso de Ojeda Administración Mención Gerencia y Mercadeo UNIDAD II FUNCIONES Ing. Ronny Altuve Esp. Ciudad Ojeda, Septiembre de 2015 Función Universidad

Más detalles

SECCIONES COMPUESTAS

SECCIONES COMPUESTAS SCCONS COMPUSTS. Secciones compuestas por distintos materiales Hay casos en la práctica en los que se emplean vigas formadas por dos o más materiales diferentes. Un ejemplo de esto puede ser el de una

Más detalles

Dicho punto fijo se llama centro, a la distancia de cualquier punto de la circunferencia al centro se acostumbra a llamar radio.

Dicho punto fijo se llama centro, a la distancia de cualquier punto de la circunferencia al centro se acostumbra a llamar radio. GEOMETRIA ANALITICA Capítulo 9 La Circunferencia 9.1. Definición Se llama circunferencia al lugar geométrico de los puntos de un plano que equidistan de un punto fijo del mismo plano. Dicho punto fijo

Más detalles

1.1 Estructuras isostáticas e hiperestáticas; cálculo de los diagramas de características en vigas, momento flector y esfuerzo de corte

1.1 Estructuras isostáticas e hiperestáticas; cálculo de los diagramas de características en vigas, momento flector y esfuerzo de corte Trabajo Práctico Cálculo de Vigas. 1 Introducción 1.1 Estructuras isostáticas e hiperestáticas; cálculo de los diagramas de características en vigas, momento flector y esfuerzo de corte Como se explicó

Más detalles

CAPÍTULO. 1 Conceptos básicos

CAPÍTULO. 1 Conceptos básicos CAPÍTULO 1 Conceptos básicos 1.4.2 Curva solución de un PVI Como comentamos al hablar sobre las soluciones generales particulares de una ED, ocurre que las soluciones generales contienen una o más constantes

Más detalles

DOCUMENTO 3: DISTRIBUCIÓN DE PROBABILIDAD DE V. A. CONTINUA: LA DISTRIBUCIÓN NORMAL

DOCUMENTO 3: DISTRIBUCIÓN DE PROBABILIDAD DE V. A. CONTINUA: LA DISTRIBUCIÓN NORMAL DOCUMENTO 3: DISTRIBUCIÓN DE PROBABILIDAD DE V. A. CONTINUA: LA DISTRIBUCIÓN NORMAL 3.1 INTRODUCCIÓN Como ya sabes, una distribución de probabilidad es un modelo matemático que nos ayuda a explicar los

Más detalles

Ejemplo Traza la gráfica de los puntos: ( 5, 4), (3, 2), ( 2, 0), ( 1, 3), (0, 4) y (5, 1) en el plano cartesiano.

Ejemplo Traza la gráfica de los puntos: ( 5, 4), (3, 2), ( 2, 0), ( 1, 3), (0, 4) y (5, 1) en el plano cartesiano. Plano cartesiano El plano cartesiano se forma con dos rectas perpendiculares, cuyo punto de intersección se denomina origen. La recta horizontal recibe el nombre de eje X o eje de las abscisas y la recta

Más detalles

3.1 Representación gráfica de curvas bidimensionales.

3.1 Representación gráfica de curvas bidimensionales. Tema 3 Curvas y superficies Versión: 6 de febrero de 29 3. Representación gráfica de curvas bidimensionales. La representación gráfica de una curva en un ordenador es una linea poligonal construida uniendo

Más detalles

Estructuras de acero: Problemas Vigas

Estructuras de acero: Problemas Vigas Estructuras de acero: Problemas Vigas Dimensionar con un perfil IPE una viga biapoada de 5 m de luz que soporta una sobrecarga de 0 kn/m uniformemente repartida. El acero es S75. Solución: Se supone un

Más detalles

Tema 1: ESFUERZOS Y DEFORMACIONES

Tema 1: ESFUERZOS Y DEFORMACIONES Escuela Universitaria de Ingeniería Técnica grícola de Ciudad Real Tema 1: ESFUERZOS Y DEFORMCIONES Tipos de cargas. Tensiones: Clases. Tensiones reales, admisibles y coeficientes de seguridad. Elasticidad:

Más detalles

V. 2 DISCUSIÓN DE UNA CURVA

V. 2 DISCUSIÓN DE UNA CURVA DISCUSIÓN DE ECUACIONES ALGEBRAICAS UNIDAD V Eisten dos problemas fundamentales en la Geometría Analítica:. Dada una ecuación hallar el lugar geométrico que representa.. Dado un lugar geométrico definido

Más detalles

EI, A EI, A 2EI, A. 4.5 m. En primer lugar, definimos los nudos y los grados de libertad de la estructura.

EI, A EI, A 2EI, A. 4.5 m. En primer lugar, definimos los nudos y los grados de libertad de la estructura. 1. TEMA 5. MÉTODO MATRICIAL 1.1 Ejercicios resueltos 1. En la cubierta de la figura, determiar el valor de los momentos en los extremos de las barras, así como el momento máximo en ellas. (E=.1 1 11 N/m,

Más detalles

Actividad 12: Lectura Capítulo 7

Actividad 12: Lectura Capítulo 7 Actividad 12: Lectura Capítulo 7 Fecha de inicio Fecha de Cierre 17/OCT/13 00:00 09/NOV/13 23:55 La recta De las figuras geométricas la más sencilla es la recta, ya que los parámetros que la caracterizan

Más detalles

5.1. Recta tangente, normal e intersección de curvas. Recta tangente

5.1. Recta tangente, normal e intersección de curvas. Recta tangente 5. Aplicaciones de la Derivada 5.1. Recta tangente, normal e intersección de curvas Recta tangente Desde la escuela primaria se sabe que la recta tangente en un punto de una circunferencia es aquella recta

Más detalles

Expresiones de velocidad y aceleración en distintas coordenadas

Expresiones de velocidad y aceleración en distintas coordenadas Apéndice B Expresiones de velocidad y aceleración en distintas coordenadas Índice B.1. Coordenadas cartesianas............... B.1 B.2. Coordenadas cilíndricas y polares......... B.2 B.3. Coordenadas esféricas................

Más detalles

Tema 8. Geometría de la Circunferencia

Tema 8. Geometría de la Circunferencia Tema 8. Geometría de la Circunferencia 1. Definición la circunferencia. Ecuación de la circunferencia 1.1 Ecuación de la circunferencia centrada en el origen 1. Ecuación de la circunferencia con centro

Más detalles

Resolución. Resolución gráfica de problemas de optimización

Resolución. Resolución gráfica de problemas de optimización Resolución de problemas de optimización Para resolver mente un problema de optimización como éste empezamos representando sus restricciones con igualdad. (0, 4) (0, 4) (4, 0) Para resolver mente un problema

Más detalles

Declaración de variables (integer, single, double, boolean, etc.) en Visual Basic. Dim. Ejemplos. (CU00309A)

Declaración de variables (integer, single, double, boolean, etc.) en Visual Basic. Dim. Ejemplos. (CU00309A) aprenderaprogramar.com Declaración de variables (integer, single, double, boolean, etc.) en Visual Basic. Dim. Ejemplos. (CU00309A) Sección: Cursos Categoría: Curso Visual Basic Nivel I Fecha revisión:

Más detalles

4. Mecánica Rotacional

4. Mecánica Rotacional 4. Mecánica Rotacional Cinemática Rotacional: (Conceptos básicos) Radián Velocidad angular Aceleración angular Frecuencia y período Velocidad tangencial Aceleración tangencial Aceleración centrípeta Torca

Más detalles

Es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta llamada directriz.

Es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta llamada directriz. UNIDAD IV: LA PARABOLA. 4.1. Caracterización geométrica. 4.1.1. La parábola como lugar geométrico. Es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta

Más detalles

Modelo Académico de Calidad para la Competitividad AIND-01 92/98

Modelo Académico de Calidad para la Competitividad AIND-01 92/98 9. Matriz de Valoración ó Rúbrica MATRIZ DE VALORACIÓN O RÚBRICA Siglema: AIND-01 Nombre del Módulo: Nombre del Alumno: PSP evaluador: Grupo: Fecha: Resultado de Aprendizaje: 1.1 Determina la gráfica,

Más detalles

Con la ayuda de el dinamómetro implementamos el segundo método de aplicación y medición de fuerzas.

Con la ayuda de el dinamómetro implementamos el segundo método de aplicación y medición de fuerzas. EXPERIMENTO # 1: LEY DE HOOKE MEDICIÓN DE FUERZAS Objetivo: Estudios de las propiedades de un dinamómetro mediante la aplicación de fuerza conocidas. Fundamento Teórico: El concepto de fuerza es definido

Más detalles