Introducción a la Física Experimental Guía de la experiencia Gas ideal Ley de Boyle-Mariotte

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Introducción a la Física Experimental Guía de la experiencia Gas ideal Ley de Boyle-Mariotte"

Transcripción

1 Introducción a la Física Experimental Guía de la experiencia Gas ideal Ley de Boyle-Mariotte Departamento de Física Aplicada. Universidad de Cantabria. Febrero 28, 2005 Tenga en cuenta que la lectura previa de esta guía y la comprobación de las ecuaciones le llevará del orden de dos horas, incluyendo la consulta de las palabras clave, y que la lectura de la bibliografía específica en inglés le llevará entre una y dos horas. Resumen Se describe cómo llevar a cabo experiencias con aire, a temperatura ambiente, en las que se miden variaciones de volumen frente a variaciones de presión con objeto de comprobar si el comportamiento del gas puede ser descrito mediante la Ley de Boyle- Mariotte. Introducción La así denominada ley de Boyle los franceses la denominan ley de Mariotte, por Edme Mariotte que la descubrió antes que Boyle, pero sin publicar sus resultados establece que para un gas confinado en un recipiente el volumen que ocupa es inversamente proporcional a la presión que se ejerce sobre él. En la Fig. 1 se muestra un esquema del aparato utilizado por Robert Boyle, asistido en sus experimentos por Robert Hooke, para llevar a cabo medidas experimentales del volumen del gas contenido en un recodo de un tubo de vidrio en U, con uno de los lados cerrados y el otro abierto, y de la presión ejercida por una columna de mercurio. La presión atmosférica equivale a una cierta altura de columna de mercurio, por lo que estos investigadores ya tenían en cuenta que la presión total sobre el gas era la suma de la presión atmosférica más la diferencia de alturas de las dos columnas de mercurio. Se dice que un gas es un gas ideal 1 cuando su comportamiento puede ser texto 1 Consulte y escriba la definición de todos los conceptos que aparecen en letra cursiva en este 1

2 Figura 1: Retrato de Robert Boyle. Esquema del aparato utilizado por Boyle y Hooke para medir volúmenes midiendo longitudes de un tubo de vidrio y presiones midiendo diferencias de alturas de columnas de mercurio. La caja alrededor del tubo es para prevenir riesgos en caso de ruptura del vidrio. descrito mediante la ecuación térmica de estado P v = RT, (1) donde P es la presión, 2, v es el volumen molar, v = V/n, siendo V el volumen total ocupado por el gas y n el número de moles del mismo, T es la temperatura absoluta, en la escala Kelvin de temperaturas absolutas y R = 8, 314 J mol 1 K 1 (J significa joules), es la constante de los gases ideales. La temperatura en la escala Celsius es t = T 273, 15, siendo, por definición, t la temperatura en grados Celsius cuando T viene expresada en kelvin. La experiencia a realizar consiste en comprobar si el comportamiento del aire, a temperatura ambiente constante, puede describirse mediante la ley de Boyle-Mariotte, para lo que se van a medir variaciones de presión y de volumen sobre una masa escogida de gas. Descripción del material Para llevar a cabo este tipo de experiencias se utiliza el siguiente material: 1. Un termómetro digital 2. Un barómetro digital 3. Un aparato de la ley de Boyle-Mariotte completo (ver Fig. 3). La llave doble superior permite elegir el volumen de gas con el que se va a trabajar. 2 Cómo se puede medir la presión? Cón qué aparato se mide la presión atmosférica? 2

3 Figura 2: Resultados experimentales de Boyle. La columna C, altura de columna de mercurio que equilibra la presión atmosférica debe ser 29 inches y no 22. Consideraciones previas a la realización del experimento Antes de comenzar la toma de datos en la experiencia, considere las siguientes cuestiones: 1. Cómo se determina la diferencia de presión entre el gas y la presión atmosférica con la ayuda del tubo en U con mercurio y con la ayuda de una regla? 2. Cómo se determina la presión del gas una vez conocida su diferencia con la atmosférica? Necesitará un barómetro para ello o no será necesario? 3. Si el volumen del recipiente cilíndrio es de, 100 cm 3 y la regla está graduada con precisión de mm, qué magnitud, presión o volumen, se mide con mayor precisión? 4. En función de la respuesta a la pregunta anterior, qué magnitud deberá intentar medir con mayor exactitud, la presión o el volumen? 5. Considerando que el tubo de mercurio tiene una longitud de, aproximadamente, 500 mm, qué volumen inicial de aire interesa escoger, próximo a 100 cm 3 o próximo a 50 cm 3? 3

4 (a) (b) Figura 3: Aparato para la ley de Boyle-Mariotte. Consta de un recipiente cilíndrico de vidrio, graduado en cm 3, estrecho por ambos extremos, abierto por la parte inferior y dotado de una llave doble de vidrio en su parte superior. La parte inferior está conectada a un tubo flexible que, posterioremente, se llena de mercurio. El tubo está terminado en un recipiente de vidrio que sirve para ver dónde se encuentra el nivel exterior de mercurio. Una regla, graduada en mm, se encuentra pegada el soporte del aparato. (a) Disposición inicial, con la llave doble de vidrio abierta y el tubo con mercurio; (b) Llave doble cerrada. Aumento de la presión y reducción del volumen. Indicaciones Lleve a cabo las siguientes experiencias: 1. Con la llave doble de vidrio abierta, elija el volumen de aire con el que va a trabajar. 2. Obtenga y anote la presión externa. 3. Con la llave doble de vidrio cerrada, desplace la columna izquierda de mercurio para variar la presión ejercida sobre el gas. Mida tanto el volumen de gas como la diferencia entre la presión externa y la ejercida sobre el gas. Una vez llevadas a cabo las experiencias anteriores, considere las siguientes cuestiones: 4

5 1. Es posible disminuir la presión que se ejerce sobre el gas o con este dispositivo experimental sólo puede ser aumentada? 2. Es interesante disminuir la presión sobre el gas o sólo es interesante aumentarla? 3. Qué representación gráfica debe llevar a cabo para mostrar que el comportamiento del gas puede ser descrito mediante la ley de Boyle-Mariotte en las experiencias anteriores? 4. Cómo puede asegurarse de que no se ha perdido algo de aire durante la experiencia? 5. Puede estimar el número de moles de aire que ha utilizado en la experiencia? Preguntas adicionales relacionadas con la experiencia 1. Considere que la ley de Boyle-Mariotte se expresa como Si se toman logaritmos, P = C te V a con a = 1. (2) ln P = a ln V + b (3) Cómo podría demostrarse que las experiencias anteriores pueden explicarse utilizando la ley de Boyle-Mariotte? 2. Si en vez de mercurio se utiliza un líquido menos denso, por ejemplo agua, qué cambia en la experiencia? 3. Si en vez de aire se utiliza otro gas, por ejemplo hidrógeno, qué cambia en la experiencia? 4. Qué error se comete en la estimación del número de moles de aire empleado? Referencias [1] R. Boyle, Física, Química y Filosofía Mecánica, Alianza Editorial LB 1076, Madrid p. 84. Se describen los resultados experimentales obtenidos en los experimentos originales de Boyle sobre la fuerza elástica de los gases. [2] R. Hooke, Micrografía, Ed. Alfaguara, Madrid p Se presentan los resultados originales de Robert Hooke sobre experiencias de compresibilidad con el aire. 5

6 [3] E. C. Watson, Edme Mariotte (c ), Am. J. Phys. 7, (1939) [4] R. K. Buchner, R. A. Doyle, Apparatus to demonstrate Boyle s law, Am. J. Phys, Vol. 44, 493 (1976); I. M. Freeman, K. W. Meissner, A new Boyle s law apparatus, Am. J. Phys. 11, 132 (1943); D. L. Lewis, A simple Boyle s law experiment, J. Chem. Edu. 74, 209 (1997); [5] G. C. Towe et al., Apparatus for Boyle s law experiment, Am. J. Phys. 29, 705 (1961); [6] C. Wei, Improving the syringe method for demonstrating Boyle s law, The Physics Teacher 32, 446 (1994) [7] B. R. F. Kendall, Pumping speed and Boyle s law: two vacuum experiments, The Physics Teacher 34; T. B. Greenslade, Apparatus review: the EME Boyle s law and absolute zero apparatus, The Physics Teacher, Vol. 29, p (1991); F. W. Cagle, Boyle s law, Charles law, Rudberg s law, and the ideal gas, J. Chem. Edu. 50, 692 (1973). 6

Ley de Boyle P 1/V (T y n constante) Ley de Charles Gay-Lussac V T (P y n constante) Ley de Amonton P T (V y n constante)

Ley de Boyle P 1/V (T y n constante) Ley de Charles Gay-Lussac V T (P y n constante) Ley de Amonton P T (V y n constante) Práctica 6 Ecuación de los Gases Ideales 6.1 Objetivo El estado de un gas puede describirse en términos de cuatro variables (denominadas variables de estado): presión (P), volumen (V), temperatura (T)

Más detalles

ECUACIÓN DE ESTADO DE LOS GASES IDEALES

ECUACIÓN DE ESTADO DE LOS GASES IDEALES ECUACIÓN DE ESTADO DE LOS GASES IDEALES Laboratorio de Física 1. OBJETIVO Se estudiará, tomando como ejemplo el aire, el comportamiento de un gas ideal cuando varían sus variables de estado, y se comprobarán

Más detalles

ECUACIÓN DE ESTADO DE LOS GASES IDEALES

ECUACIÓN DE ESTADO DE LOS GASES IDEALES ECUACIÓN DE ESTADO DE LOS GASES IDEALES Laboratorio de Física 1. OBJETIVO Se estudiará, tomando como ejemplo el aire, el comportamiento de un gas ideal cuando varían sus variables de estado, y se comprobarán

Más detalles

AEROSTATICA La aerostática frente a la hidrostática La compresibilidad de los gases. Ley de Boyle. La presión atmosférica p = p0 + g h

AEROSTATICA La aerostática frente a la hidrostática La compresibilidad de los gases. Ley de Boyle. La presión atmosférica p = p0 + g h AEROSTATICA La aerostática frente a la hidrostática Desde un punto de vista mecánico, la diferencia fundamental entre líquidos y gases consiste en que estos últimos pueden ser comprimidos. Su volumen,

Más detalles

Experimento 12 LEY DE CHARLES. Objetivos. Teoría

Experimento 12 LEY DE CHARLES. Objetivos. Teoría Experimento 12 LEY DE CHARLES Objetivos 1. Montar un modelo de máquina térmica, 2. Poner a funcionar el modelo para verificar la ley de Charles, 3. Describir y explicar la ley de Charles a la luz de los

Más detalles

Ecuación de estado del gas ideal

Ecuación de estado del gas ideal Prácticas de laboratorio de Física I Ecuación de estado del gas ideal Curso 2010/11 1 Objetivos Comprobación de la ecuación de estado del gas ideal experimentalmente Construcción de curvas a presión, temperatura

Más detalles

Fundamentos Físicos de la Ingeniería (Ingeniería Industrial) Prácticas de Laboratorio Curso 2008-09

Fundamentos Físicos de la Ingeniería (Ingeniería Industrial) Prácticas de Laboratorio Curso 2008-09 Fundamentos Físicos de la Ingeniería Práctica 2: Estudio experimental de los gases ideales Objeto de la práctica El objetivo específico es estudiar el comportamiento experimental de los gases. Se supondrá

Más detalles

Ud 5: Cálculos en circuitos neumáticos.

Ud 5: Cálculos en circuitos neumáticos. 4 Ud 5: Cálculos en circuitos neumáticos. Presión absoluta y relativa. Presión relativa, es el valor de la presión indicado por un manómetro, tomando como referencia cero la presión atmosférica ( Pat )

Más detalles

PRÁCTICA 3: MEDIDAS DE LONGITUDES, PESOS Y TIEMPOS.

PRÁCTICA 3: MEDIDAS DE LONGITUDES, PESOS Y TIEMPOS. PRÁCTICA : MEDIDAS DE LONGITUDES, PESOS Y TIEMPOS. MEDIDA DE DIMENSIONES GEOMÉTRICAS CON EL PALMER Y EL CALIRADOR. Con esta práctica se pretende que el alumno se familiarice con el manejo de distintos

Más detalles

Interacción aire - agua. Termómetro húmedo

Interacción aire - agua. Termómetro húmedo Interacción aire - agua. Termómetro húmedo Objetivos de la práctica! Obtener experimentalmente la denominada temperatura húmeda.! Estudiar las magnitudes psicrométricas de dos corrientes de aire húmedo,

Más detalles

TEORICO-PRÁCTICO N 5: LEYES DE LOS GASES IDEALES

TEORICO-PRÁCTICO N 5: LEYES DE LOS GASES IDEALES TEORICO-PRÁCTICO N 5: LEYES DE LOS GASES IDEALES FUNDAMENTO TEÓRICO: La materia puede estar en tres estados: sólido, líquido y gaseoso. Los gases, no tienen forma ni volumen fijo, las fuerzas que mantienen

Más detalles

2ª PRUEBA 26 de febrero de 2016

2ª PRUEBA 26 de febrero de 2016 2ª PRUEB 26 de febrero de 216 Problema experimental. Calibrado de un termistor. Como bien sabes, un termómetro es un dispositivo que permite medir la temperatura. Los termómetros clásicos se basan en el

Más detalles

El resultado se expresa mediante una cantidad seguida de la unidad elegida. La cantidad representa el número de veces que se repite la unidad.

El resultado se expresa mediante una cantidad seguida de la unidad elegida. La cantidad representa el número de veces que se repite la unidad. LA MEDIDA Magnitudes físicas Todas las propiedades que podemos medir se denominan magnitudes. Para medir una magnitud hay que determinar previamente una cantidad de esta, llamada unidad. Al medir, se comparan

Más detalles

UNIVERSIDAD NACIONAL SANTIAGO ANTÚNEZ DE MAYOLO

UNIVERSIDAD NACIONAL SANTIAGO ANTÚNEZ DE MAYOLO UNIVERSIDAD NACIONAL SANTIAGO ANTÚNEZ DE MAYOLO DEPARTAMENTO ACADÉMICO CIENCIAS M. RAMÍREZ G. 1 Dr. Miguel RAMÍREZ GUZMÁN Teoría Cinética Molecular Ofrece un modelo para explicar las propiedades de los

Más detalles

PRÁCTICA 4: DETERMINACIÓN DE LA CONSTANTE UNIVERSAL DE LOS GASES

PRÁCTICA 4: DETERMINACIÓN DE LA CONSTANTE UNIVERSAL DE LOS GASES PRÁCTICA 4: DETERMINACIÓN DE LA CONSTANTE UNIVERSAL DE LOS GASES Prof. Elizabeth K. Galván Miranda Prof. Ximena Villegas Pañeda Facultad de Química, UNAM Departamento de Fisicoquímica Laboratorio de Termodinámica

Más detalles

Instructivo para la Elaboración de Informe

Instructivo para la Elaboración de Informe Instructivo para la Elaboración de Informe Objetivo: El informe final de una práctica tiene el objetivo de mostrar que los/las alumnos/as del equipo han desarrollado un conjunto coordinado de actividades

Más detalles

PRINCIPIOS FÍSICOS DE LA NEUMÁTICA

PRINCIPIOS FÍSICOS DE LA NEUMÁTICA . RINCIIOS FÍSICOS DE LA NEUMÁICA. - EL AIRE El aire es una mezcla de gases cuya composición volumétrica es aproximadamente la siguiente: 78% Nitrógeno 0% Oxígeno % Hidrógeno % Una mezcla de Dióxido de

Más detalles

- Determinar experimentalmente la relación entre la presión y el volumen. - Comprender la Ley de Boyle.

- Determinar experimentalmente la relación entre la presión y el volumen. - Comprender la Ley de Boyle. LEY DE BOYLE Objetivos: - Determinar experimentalmente la relación entre la presión y el volumen. - Comprender la Ley de Boyle. Equipo y materiales: - Aparato de la Ley de Gases (pasco TD 8572) - Sensor

Más detalles

LA MATERIA. PROPIEDADES. ESTADOS DE AGREGACIÓN. Física y Química 3º de E.S.O. IES Isidra de Guzmán

LA MATERIA. PROPIEDADES. ESTADOS DE AGREGACIÓN. Física y Química 3º de E.S.O. IES Isidra de Guzmán LA MATERIA. PROPIEDADES. ESTADOS DE AGREGACIÓN Física y Química 3º de E.S.O. IES Isidra de Guzmán Propiedades generales de la materia Materia es todo aquello que tiene masa y volumen. La masa (cantidad

Más detalles

Guía de repaso 5: Gases-Transformación isotérmica

Guía de repaso 5: Gases-Transformación isotérmica Guía de repaso 5: Gases-Transformación isotérmica 1- a) Cuáles son las cantidades que determinan el estado de un gas? b) Qué significa decir que un gas sufrió una transformación? 2- a) Qué son los gases

Más detalles

Guía de ejercicios de Gases Ideales

Guía de ejercicios de Gases Ideales Guía de ejercicios de Gases Ideales 1. Traducir los siguientes valores de temperatura entre escalas Celsius, Kelvin y Farenheit: Escala Celsius Escala Kelvin Escala Farenheit 22ºC 350 ºK 32 ºF 100ºC 2.

Más detalles

UNIVERSIDAD DE PUERTO RICO EN HUMACAO DEPARTAMENTO DE QUÍMICA (http://cuhwww.upr.clu.edu/~quimgen) QUIM Módulo de Gases

UNIVERSIDAD DE PUERTO RICO EN HUMACAO DEPARTAMENTO DE QUÍMICA (http://cuhwww.upr.clu.edu/~quimgen) QUIM Módulo de Gases Al finalizar este módulo usted podrá: UNIVERSIDAD DE PUERTO RICO EN HUMACAO DEPARTAMENTO DE QUÍMICA (http://cuhwww.upr.clu.edu/~quimgen) QUIM 3003 Módulo de Gases Enunciar las Leyes de: 1. Boyle 2. Charles

Más detalles

TEMA 12 EL ESTADO GASEOSO

TEMA 12 EL ESTADO GASEOSO TEMA 12 EL ESTADO GASEOSO Relación presión-volumen ley de Boyle A finales del siglo XVII boyle y Edme Mariotte, estudiaron independientemente la manera cómo cambia el volumen ocupado por un gas a una temperatura

Más detalles

GUÍA ACUMULATIVA/ 8º MEDIO ( Desarrollo de Ejercicios: Leyes de los Gases) Nombre del Alumno: Curso: Fecha:

GUÍA ACUMULATIVA/ 8º MEDIO ( Desarrollo de Ejercicios: Leyes de los Gases) Nombre del Alumno: Curso: Fecha: Sector: Naturaleza Nivel: 8 Básico Nombre Profesora: Nancy Erazo Rosa Unidad V : Leyes de los gases GUÍA ACUMULATIVA/ 8º MEDIO ( Desarrollo de Ejercicios: Leyes de los Gases) Nombre del Alumno: Curso:

Más detalles

Práctica No 2. Determinación experimental del factor de compresibilidad

Práctica No 2. Determinación experimental del factor de compresibilidad Práctica No 2 Determinación experimental del factor de compresibilidad 1. Objetivo general: Determinación del comportamiento de un gas a diferentes presiones, mediante el cálculo experimental del factor

Más detalles

LEY DE BOYLE: RELACIÓN DE PRESIÓN VOLUMEN EN GASES

LEY DE BOYLE: RELACIÓN DE PRESIÓN VOLUMEN EN GASES LEY DE BOYLE: RELACIÓN DE PRESIÓN VOLUMEN EN GASES OBJETIVOS: 1. Determinar la relación entre presión y el volumen de un gas confinado. 2. Calcular experimentalmente el trabajo realizado por un pistón

Más detalles

Prácticas Integrales I Año Lectivo 2007-2008 Modulo I Procedimientos e instrumentación Básica en el Laboratorio

Prácticas Integrales I Año Lectivo 2007-2008 Modulo I Procedimientos e instrumentación Básica en el Laboratorio Práctica N 2 Mediciones y Tipos de Errores 1.- Objetivos: Seleccionar el instrumento más apropiado para realizar una medición considerando su precisión y exactitud. Realizar transformaciones de unidades

Más detalles

UNIVERSIDAD TECNOLÓGICA DE PUEBLA

UNIVERSIDAD TECNOLÓGICA DE PUEBLA TÉRMICA. PRÁCTICA NÚMERO 5 Simulación de Ley de Boyle. OBJETIVO: Confirmar de manera experimental la ley de Boyle. Analizar con base en gráficos obtenidos a partir de los datos experimentales de presión

Más detalles

Departamento de Física Aplicada. Universidad de Cantabria. Mayo 14, 2008

Departamento de Física Aplicada. Universidad de Cantabria. Mayo 14, 2008 Introducción a la Física Experimental Guía de la experiencia Determinación de las densidades de un sólido y de un líquido, utilizando la balanza de Jolly. Departamento de Física Aplicada. Universidad de

Más detalles

TERMODINÁMICA. La TERMODINÁMICA estudia la energía y sus transformaciones

TERMODINÁMICA. La TERMODINÁMICA estudia la energía y sus transformaciones TERMODINÁMICA La TERMODINÁMICA estudia la energía y sus transformaciones SISTEMA Y AMBIENTE Denominamos SISTEMA a una porción del espacio que aislamos de su entorno para simplificar su estudio y denominamos

Más detalles

El agua calentada en microondas se enfría más rápido?

El agua calentada en microondas se enfría más rápido? El agua calentada en microondas se enfría más rápido? Primera parte Experiencia de Laboratorio, Física experimental II, 2009 Larregain, Pedro pedrolarregain@yahoo.com Machado, Alejandro machado.alejandro@yahoo.com

Más detalles

Fundamentos Físicos de la Ingeniería (Ingeniería Industrial) Prácticas de Laboratorio Curso 2005-06

Fundamentos Físicos de la Ingeniería (Ingeniería Industrial) Prácticas de Laboratorio Curso 2005-06 Fundamentos Físicos de la Ingeniería (Ingeniería Industrial) Prácticas de Laboratorio Curso 2005-06 Práctica 12: Estudio experimental de los gases ideales 1 Objeto de la práctica El objetivo específico

Más detalles

II. ESTADOS DE AGREGACIÓN. TEORÍA CINÉTICO-MOLECULAR

II. ESTADOS DE AGREGACIÓN. TEORÍA CINÉTICO-MOLECULAR II. ESTADOS DE AGREGACIÓN. TEORÍA CINÉTICO-MOLECULAR 1 Índice 1. Los estados de agregación de la materia 2. Los gases y la teoría cinética 3. Las leyes de los gases 4. La teoría cinético-molecular 2 1

Más detalles

Introducción a la Termodinámica. Conceptos generales

Introducción a la Termodinámica. Conceptos generales Introducción a la Termodinámica. Conceptos generales 1. Introducción: objetivos de la termodinámica. 2. Sistemas termodinámicos. 3. Propiedades termodinámicas. 4. Equilibrio térmico y Temperatura. a. Escalas

Más detalles

TRABAJO PRÁCTICO N 2 DETERMINACIÓN DE DENSIDADES

TRABAJO PRÁCTICO N 2 DETERMINACIÓN DE DENSIDADES 0 TRABAJO PRÁCTICO N 2 DETERMINACIÓN DE DENSIDADES a) Determinación de la densidad de hidrógeno Objetivos Determinar la densidad de un gas Conceptos Gases ideales, presión de vapor, rendimiento, pureza,

Más detalles

Tema 12. Gases. Química General e Inorgánica A ESTADOS DE AGREGACION DE LA MATERIA

Tema 12. Gases. Química General e Inorgánica A ESTADOS DE AGREGACION DE LA MATERIA Tema 12 Gases Química General e Inorgánica A ESTADOS DE AGREGACION DE LA MATERIA 2.1 2.1 Variables que determinan el estado de agregación Tipo de material o materia Temperatura Presión 2.2 Elementos que

Más detalles

10/4/2011. Objetivos. Marco teórico. Gases Experimento Ley de Boyle y Ley de Charles

10/4/2011. Objetivos. Marco teórico. Gases Experimento Ley de Boyle y Ley de Charles Gases Experimento Ley de Boyle y Ley de Charles Ileana Nieves Martínez QUIM 3003 1 Objetivos Determinar el comportamiento de los gases relacionado a: Temperatura Presión Volumen. Utilizar un sensor de

Más detalles

Leyes de los gases ideales

Leyes de los gases ideales QUIMICA GENERAL 1 Leyes de los gases ideales La mayoría de las sustancias pueden existir en los tres estados de la materia, dependiendo el estado del sistema de la presión y de la temperatura. En muchos

Más detalles

TEMA 4 EL ESTADO GASEOSO

TEMA 4 EL ESTADO GASEOSO TEMA 4 EL ESTADO GASEOSO INDICE 4.1 Conceptos preliminares. 4. - Gases ideales o perfectos. 4.3.- Teoría cinética. 4.4 Propiedades de los gases en la teoría Cinético-molecular. 4.5 - Gases reales. Ecuación

Más detalles

UNIDAD 2: ESTADO GASEOSO

UNIDAD 2: ESTADO GASEOSO UNIDAD 2: ESTADO GASEOSO 1 CARACTERISTICAS DE LOS GASES Los gases poseen masa y ocupan un determinado volumen en el espacio, este volumen queda determinado por el volumen del recipiente que los contiene.

Más detalles

8. DETERMINACIÓN DE LA DENSIDAD DE UN SÓLIDO

8. DETERMINACIÓN DE LA DENSIDAD DE UN SÓLIDO 8. DETERMINACIÓN DE LA DENSIDAD DE UN SÓLIDO OBJETIVO El objetivo de la práctica es determinar la densidad de un sólido. Para ello vamos a utilizar dos métodos: Método 1 : Cálculo de la densidad de un

Más detalles

Determinación de la Masa Molar del Magnesio

Determinación de la Masa Molar del Magnesio Determinación de la Masa Molar del Magnesio Introducción teórica Como en muchas reacciones químicas, los reactivos o sus productos o ambos son gases, es más común medir éstos en función del volumen usando

Más detalles

PRÁCTICA 1. Mediciones

PRÁCTICA 1. Mediciones PRÁCTICA 1 Mediciones Objetivo General El alumno determinará la incertidumbre de las mediciones. Objetivos particulares 1. El alumno determinará las incertidumbres a partir de los instrumentos de medición..

Más detalles

Leyes de los Gases. Prof. Sergio Casas-Cordero E.

Leyes de los Gases. Prof. Sergio Casas-Cordero E. Leyes de los Gases Prof. Sergio Casas-Cordero E. Sustancias gaseosas a 25 ºC y 1 atm Elemento H 2 (Hidrógeno) O 2 (Oxígeno) O 3 (Ozono) F 2 (Fluor) Cl 2 (Cloro) N 2 (Nitrógeno) He (Helio) Ne (neón) Ar

Más detalles

Gases...1. Características: Volumen:...1. Temperatura:

Gases...1. Características: Volumen:...1. Temperatura: Índice de contenido Gases......1 Características:......1 Volumen:......1 Temperatura:......1 Presión:......2 Medición de presiones:......2 Ley de Boyle (relación presión volumen):......2 Ley de Charles

Más detalles

RECOMENDACIÓN UIT-R P.836-1 VAPOR DE AGUA: DENSIDAD EN LA SUPERFICIE Y CONTENIDO DE COLUMNA TOTAL. (Cuestión UIT-R 201/3)

RECOMENDACIÓN UIT-R P.836-1 VAPOR DE AGUA: DENSIDAD EN LA SUPERFICIE Y CONTENIDO DE COLUMNA TOTAL. (Cuestión UIT-R 201/3) Rec. UIT-R P.836-1 1 RECOMENDACIÓN UIT-R P.836-1 VAPOR DE AGUA: DENSIDAD EN LA SUPERFICIE Y CONTENIDO DE COLUMNA TOTAL (Cuestión UIT-R 201/3) Rec. UIT-R P.836-1 (1992-1997) La Asamblea de Radiocomunicaciones

Más detalles

GASES IDEALES INTRODUCCION

GASES IDEALES INTRODUCCION GASES IDEALES INRODUCCION El punto de vista de la termodinámica clásica es enteramente macroscópico. Los sistemas se describen sobre la base de sus propiedades macroscópicas, tales como la presión, la

Más detalles

Cálculos aproximados y estimaciones. Logaritmos

Cálculos aproximados y estimaciones. Logaritmos Cálculos aproximados y estimaciones. Logaritmos J Güémez Facultad de Ciencias Universidad de Cantabria Enero 21, 2015 1 Estimaciones Cómo estimar la longitud de un objeto? Método de la media geométrica.

Más detalles

UNIDAD 9. ESTADO GASEOSO CÓMO SE COMPORTAN LOS GASES AL CAMBIAR LA PRESIÓN Y LA TEMPERATURA?

UNIDAD 9. ESTADO GASEOSO CÓMO SE COMPORTAN LOS GASES AL CAMBIAR LA PRESIÓN Y LA TEMPERATURA? UNIDAD 9. ESTADO GASEOSO ASPECTOS FISICOQUÍMICOS DE SUSTANCIAS CÓMO SE COMPORTAN LOS GASES AL CAMBIAR LA PRESIÓN Y LA TEMPERATURA? DESEMPEÑO ESPERADO: El estudiante reconoce las leyes de los gases, las

Más detalles

EL ESTADO GASEOSO. Los gases son fluidos y están compuestos de partículas en movimientos constante y al azar.

EL ESTADO GASEOSO. Los gases son fluidos y están compuestos de partículas en movimientos constante y al azar. GASES EL ESTADO GASEOSO Los gases son fluidos y están compuestos de partículas en movimientos constante y al azar. Los gases se expanden hasta llenar el recipiente que los contiene y también, se pueden

Más detalles

BLOQUE 1: ASPECTOS CUANTATIVOS DE LA QUÍMICA

BLOQUE 1: ASPECTOS CUANTATIVOS DE LA QUÍMICA BLOQUE 1: ASPECTOS CUANTATIVOS DE LA QUÍMICA Unidad 2: Los gases ideales Teresa Esparza araña 1 Índice 1. Los estados de agregación de la materia a. Los estados de la materia b. Explicación según la teoría

Más detalles

Gases Ideales. Mauricio A. Briones Bustamante SEMESTRE I Liceo de Hombres Manuel Montt Termodinámica - Cuarto Medio.

Gases Ideales. Mauricio A. Briones Bustamante SEMESTRE I Liceo de Hombres Manuel Montt Termodinámica - Cuarto Medio. Liceo de Hombres Manuel Montt Termodinámica - Cuarto Medio SEMESTRE I 2018 Gas ideal En las clases anteriores, cuando estudiamos el calor y la temperatura, no se hizo ninguna mención de la influencia de

Más detalles

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA CUARTA SESIÓN DE PRÁCTICAS

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA CUARTA SESIÓN DE PRÁCTICAS DEPARTAMENTO DE FÍSICA APLICADA ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AGRÓNOMOS Y DE MONTES UNIVERSIDAD DE CÓRDOBA FUNDAMENTOS FÍSICOS DE LA INGENIERÍA CUARTA SESIÓN DE PRÁCTICAS 6.- Principio de Arquímedes.

Más detalles

FUERZAS EN LOS FLUIDOS

FUERZAS EN LOS FLUIDOS FUERZAS EN LOS FLUIDOS 1.- Calcula la presión ejercida sobre la mesa por un bloque de 10 kg que apoya sobre una superficie de 60cm 2. 2.- Una botella cilíndrica de 18 cm de altura y 4 cm de radio está

Más detalles

INSTRUMENTOS DE MEDIDAS Y TEORÍA DEL ERROR

INSTRUMENTOS DE MEDIDAS Y TEORÍA DEL ERROR INSTRUMENTOS DE MEDIDAS Y TEORÍA DEL ERROR Adaptación del Experimento Nº1 de la Guía de Ensayos y Teoría del Error del profesor Ricardo Nitsche, página 36-42. Autorizado por el Autor. Materiales: Cilindros

Más detalles

Química 2º Bacharelato

Química 2º Bacharelato Química 2º Bacharelato DEPARTAMENTO DE FÍSICA E QUÍMICA Termodinámica química 13/12/07 Nombre: Problemas 1. a) Calcula qué calor se desprende en la combustión de 20,0 cm 3 de etanol líquido a presión atmosférica

Más detalles

Adjunto: Lic. Auliel María Inés

Adjunto: Lic. Auliel María Inés Ingeniería de Sonido Física 2 Titular: Ing. Daniel lomar Vldii Valdivia Adjunto: Lic. Auliel María Inés 1 Termodinámica i Temperatura La temperatura de un sistema es una medida de la energía cinética media

Más detalles

Calor específico de un metal

Calor específico de un metal Calor específico de un metal Objetivos Determinar el calor específico del Cobre (Cu). Comprobar experimentalmente la ley cero de la Termodinámica. Introducción Diferentes sustancias requieren diferentes

Más detalles

Determinación de entalpías de vaporización

Determinación de entalpías de vaporización Prácticas de Química. Determinación de entalpías de vaporización I. Introducción teórica y objetivos........................................ 2 II. Desarrollo experimental...............................................

Más detalles

FLUIDOS Profesor: Robinson Pino Hernández

FLUIDOS Profesor: Robinson Pino Hernández FLUIDOS Profesor: Robinson Pino Hernández 1 PRESIÓN Fuerza perpendicular que se ejerce por unidad de área. Presión = fuerza perpendicular Área Sus unidades Sistema Internacional: Pascal = N/m² CGS: baria

Más detalles

Actividades de consolidación

Actividades de consolidación Actividades de consolidación 1 Define los siguientes conceptos: Las definiciones de los distintos conceptos son: a) Magnitud: todo aquello que se puede medir. b) Propiedad intensiva: propiedad de la materia

Más detalles

Medidas y errores. Introducción teórica: Recordemos que medir es comparar una magnitud con otra de la misma especie que

Medidas y errores. Introducción teórica: Recordemos que medir es comparar una magnitud con otra de la misma especie que Medidas y errores. Introducción teórica: Recordemos que medir es comparar una magnitud con otra de la misma especie que se toma como unidad. El proceso de medida se puede realizar comparando directamente

Más detalles

De una sustancia uniforme corresponde a su masa dividida entre el volumen que ocupa

De una sustancia uniforme corresponde a su masa dividida entre el volumen que ocupa Pontificia Universidad Javeriana Laboratorio #2 LEY DE CHARLES Y GAY LUSSAC Presentación del laboratorio: 31 08 2001 Lugar donde se realizo practica: Laboratorio de Química de la Pontificia Universidad

Más detalles

Variables de los gases.

Variables de los gases. ANEXO 6B. Lectura sobre las Variables de los Gases. Variables de los gases. Para poder comprender las leyes que rigen los cambios en los gases es muy importante conocer las variables fundamentales en las

Más detalles

Contenidos 1.- Leyes de los gases: 1.1. Ley de Boyle-Mariotte Ley de Charles Gay.Lussac Ecuación general de un gas ideal

Contenidos 1.- Leyes de los gases: 1.1. Ley de Boyle-Mariotte Ley de Charles Gay.Lussac Ecuación general de un gas ideal Los gases 1 2 Contenidos 1.- Leyes de los gases: 1.1. Ley de Boyle-Mariotte. 1.2. Ley de Charles Gay.Lussac. 2.- Gases ideales. 3.- Teoría cinética de los gases. 4.- Ecuación general de un gas ideal. 5.-

Más detalles

Electricidad y calor. Webpage: 2007 Departamento de Física Universidad de Sonora

Electricidad y calor. Webpage:  2007 Departamento de Física Universidad de Sonora Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temas 3. Gases ideales y estados termodinámicos. i. Concepto y características del gas ideal.

Más detalles

Conceptos fundamentales en Termodinámica

Conceptos fundamentales en Termodinámica Conceptos fundamentales en Termodinámica Física II Grado en Ingeniería de Organización Industrial Primer Curso Joaquín Bernal Méndez Curso 2011-2012 Departamento de Física Aplicada III Universidad de Sevilla

Más detalles

Ejemplo. pie. lbf. pie = pie. Ejemplo

Ejemplo. pie. lbf. pie = pie. Ejemplo Calcular la densidad, peso específico, masa, y el peso de un cuerpo que ocupa un volumen de 00 (pie ) y su volumen específico es de 10 (pie /lb) La masa es: la densidad es: V 00 m = = = 0 v 10 ( lb) 1

Más detalles

GUÍA DE TRABAJO: MASA Y VOLUMEN

GUÍA DE TRABAJO: MASA Y VOLUMEN GUÍA DE TRABAJO: MASA Y VOLUMEN 1 1_ Qué harías para determinar la masa de agua que absorbe un trozo de papel secante? Con una balanza se mide la masa del trozo de papel secante. Se humedece el papel secante

Más detalles

Termodinámica: Gases Ideales y Sustancia Pura

Termodinámica: Gases Ideales y Sustancia Pura Termodinámica: Gases Ideales y Sustancia Pura Presenta: M. I. Ruiz Gasca Marco Antonio Instituto Tecnológico de Tláhuac II Septiembre, 2015 Marco Antonio (ITT II) México D.F., Tláhuac Agosto, 2015 1 /

Más detalles

UNIDAD DIDÁCTICA 2. EL MODELO DE PARTÍCULAS DE LA MATERIA PROPUESTA DIDÁCTICA. LA MATERIA Y EL MODELO DOCUMENTO PARA EL ALUMNO

UNIDAD DIDÁCTICA 2. EL MODELO DE PARTÍCULAS DE LA MATERIA PROPUESTA DIDÁCTICA. LA MATERIA Y EL MODELO DOCUMENTO PARA EL ALUMNO UNIDAD DIDÁCTICA 2. EL MODELO DE PARTÍCULAS DE LA MATERIA PROPUESTA DIDÁCTICA. LA MATERIA Y EL MODELO DOCUMENTO PARA EL ALUMNO 1. LOS ESTADOS DE AGREGACIÓN DE LA MATERIA. CAMBIOS DE ESTADO Una misma sustancia

Más detalles

Ejercicios Tema 2. Versión 16.1

Ejercicios Tema 2. Versión 16.1 Ejercicios Tema 2. Versión 16.1 Nombre: FICHA 1 DE REFUERZO 1. Justifica, aplicando la teoría cinética: «Los sólidos tienen forma propia, mientras que los líquidos adoptan la forma del recipiente que los

Más detalles

Lección 14: Volúmenes de algunos cuer pos

Lección 14: Volúmenes de algunos cuer pos LECCIÓN 14 Lección 14: Volúmenes de algunos cuer pos Concepto de volumen En un cuerpo sólido podemos medir su volumen, lo que, como en el caso de las longitudes y las áreas significa ver cuántas veces

Más detalles

Guía para el docente El aire Atmósfera y composición. Guía para el docente

Guía para el docente El aire Atmósfera y composición. Guía para el docente Guía para el docente Descripción curricular - Nivel: 1º Medio - Subsector: Ciencias químicas - Unidad temática: - Palabras claves: Aire, comportamiento del aire, leyes de los gases. - Contenidos curriculares:

Más detalles

TENSIÓN SUPERFICIAL RESUMEN

TENSIÓN SUPERFICIAL RESUMEN TENSIÓN SUPERFICIAL RESUMEN En esta práctica se trata de hallar la tensión de cinco distintos fluidos (agua, aceite de oliva y comestible, glicerina y shampoo) mediante el rompimiento de una película generada

Más detalles

Universidad Nacional Autónoma de México Facultad de Química

Universidad Nacional Autónoma de México Facultad de Química Universidad Nacional Autónoma de México Facultad de Química Departamento de Fisicoquímica Laboratorio de Termodinámica DETERMINACIÓN DE LA CONSTANTE UNIVERSAL DE LOS GASES Profesores: Gerardo Omar Hernández

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. PÁGINA EJERCICIOS Unidades de volumen Transforma en metros cúbicos: a) 50 dam b) 0,08 hm c) 0, km d) 5 80 dm e) 500 hl f) 0 000 l a) 50 dam = 50 000 m b) 0,08 hm = 8 000 m c) 0, km = 0 000 000 m d)

Más detalles

Tema10: Gas Ideal. Fátima Masot Conde. Ing. Industrial 2007/08. Fátima Masot Conde Dpto. Física Aplicada III Universidad de Sevilla

Tema10: Gas Ideal. Fátima Masot Conde. Ing. Industrial 2007/08. Fátima Masot Conde Dpto. Física Aplicada III Universidad de Sevilla 1/32 Tema 10: Gas Ideal Fátima Masot Conde Ing. Industrial 2007/08 Tema 10: Gas Ideal 2/32 Índice: 1. Introducción. 2. Algunas relaciones para gases ideales 3. Ecuación de estado del gas ideal 4. Energía

Más detalles

LOS GASES Y LAS DISOLUCIONES. Departamento de Física y Química 3º ESO

LOS GASES Y LAS DISOLUCIONES. Departamento de Física y Química 3º ESO LOS GASES Y LAS DISOLUCIONES Departamento de Física y Química 3º ESO 0. Mapa conceptual SÓLIDO ESTADOS DE LA MATERIA LÍQUIDO Presión atmosférica GAS Solubilidad Disolución saturada Disoluciones Soluto

Más detalles

La materia es todo aquello que nos rodea, ocupa un lugar en el espacio y tiene masa.

La materia es todo aquello que nos rodea, ocupa un lugar en el espacio y tiene masa. Todo es materia Cuando estudiamos el Universo describimos una serie de elementos que forman parte de él, como los cuerpos grandes y pequeños, las sustancias que lo componen, etcétera. Qué es? Todos ellos

Más detalles

Sustancia que se caracteriza porque sus moléculas. no tiene forma definida. adquiere la forma del recipiente que lo contiene.

Sustancia que se caracteriza porque sus moléculas. no tiene forma definida. adquiere la forma del recipiente que lo contiene. Qué es un gas? Sustancia que se caracteriza porque sus moléculas están en desorden. tienen gran energía. están muy separadas entre sí. prácticamente no se atraen entre sí. Una sustancia gaseosa no tiene

Más detalles

ONDAS ESTACIONARIAS FUNDAMENTO

ONDAS ESTACIONARIAS FUNDAMENTO ONDAS ESTACIONARIAS FUNDAMENTO Una onda estacionaria es el resultado de la superposición de dos movimientos ondulatorios armónicos de igual amplitud y frecuencia que se propagan en sentidos opuestos a

Más detalles

Fecha de realización:... Fecha de entrega:... Comisión:... Apellidos Nombres:...

Fecha de realización:... Fecha de entrega:... Comisión:... Apellidos Nombres:... ASIGNATURA: FÍSICA I TRABAJO PRÁCTICO Nº 1: GRÁFICOS Y ESCALAS Fecha de realización:... Fecha de entrega:... Comisión:... Apellidos Nombres:... y......... 1. Objetivo del trabajo: Construcción de gráficos,

Más detalles

Estrictamente hablando se entiende por TERMODINÁMICA la parte de la física que estudia los procesos en los cuales los sistemas intercambian energía o materia cuando están en equilibrio. El intercambio

Más detalles

EL ESTADO GASEOSO. Algunas características importantes de los gases son: la expansibilidad, capacidad de difusión, baja densidad y altas presiones.

EL ESTADO GASEOSO. Algunas características importantes de los gases son: la expansibilidad, capacidad de difusión, baja densidad y altas presiones. EL ESTADO GASEOSO El aire está compuesto, principalmente, de los elementos oxígeno y nitrógeno. Otros elementos no metálicos existen en la naturaleza como gases en condiciones ordinarias como hidrógeno

Más detalles

Introducción a la Física Experimental Guía de la experiencia. calor latente de fusión del hielo.

Introducción a la Física Experimental Guía de la experiencia. calor latente de fusión del hielo. Introducción a la Física Experimental Guía de la experiencia Calor latente de fusión del hielo Departamento de Física Aplicada. Universidad de Cantabria. Febrero 14, 2006 Tenga en cuenta que la lectura

Más detalles

El mol. Chema Martín, 3º ESO. 2016

El mol. Chema Martín, 3º ESO. 2016 El mol Chema Martín, 3º ESO. 2016 El mol Es el concepto fundamental de la química. Todos los cálculos que haremos a partir de ahora se basarán en él, por eso es muy importante entenderlo correctamente

Más detalles

JMLC - Chena IES Aguilar y Cano - Estepa

JMLC - Chena IES Aguilar y Cano - Estepa Termodinámica es la parte de la física que estudia los intercambios de calor y trabajo que acompañan a los procesos fisicoquímicos. Si estos son reacciones químicas, la parte de ciencia que los estudia

Más detalles

8/6/2014. Objetivos. Propiedad física. Marco teórico. Densidad de sólidos y tratamiento estadístico de los datos experimentales

8/6/2014. Objetivos. Propiedad física. Marco teórico. Densidad de sólidos y tratamiento estadístico de los datos experimentales 8/6/0 Densidad de sólidos y tratamiento estadístico de los datos experimentales Ileana Nieves Martínez QUIM 00 Obetivos Determinar la densidad de algunos sólidos usando diferentes métodos para: discernir

Más detalles

Descripción de los 3 estados de la materia. Química General II Estado Gaseoso

Descripción de los 3 estados de la materia. Química General II Estado Gaseoso Descripción de los 3 estados de la materia Química General II Estado Gaseoso Clasificación de los Estados de la Materia. Gases Líquidos Sólidos 1. Carecen de forma definida, llenan completamente el recipiente.

Más detalles

Práctica No.8 Ley de Charles

Práctica No.8 Ley de Charles Práctica No.8 Ley de Charles Grupo 07 Laboratorio de Termodinámica *Clasificación Gases Ideales Reales Leyes del gas ideal El gas ideal, también se conoce como gas perfecto, es una idealización del comportamiento

Más detalles

GASES. Contenidos. Leyes de los gases y su aplicación en la resolución de problemas numéricos.

GASES. Contenidos. Leyes de los gases y su aplicación en la resolución de problemas numéricos. GASES Contenidos Postulados de la teoría cinética de los gases y su relación con las características (expansión, comprensión y difusión) y las propiedades ( presión, volumen y temperatura) que los definen.

Más detalles

Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos:

Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: 1 CONOCIMIENTOS PREVIOS. 1 Logaritmos. 1. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Operaciones básicas con números reales. Propiedades de

Más detalles

OBJETIVOS: Que es una medición directa y una indirecta?

OBJETIVOS: Que es una medición directa y una indirecta? PRACTICA DE LABORATORIO No 1 SISTEMAS DE UNIDADES Y MEDICIÓN EN LA FÍSICA COMPETENCIAS DISCIPLINARES BASICAS EN EL AREA EXPERIMENTAL: Identifica problemas, formula preguntas de caracter cientifico y plantea

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA QUÍMICA GENERAL

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA QUÍMICA GENERAL UNIERSIDAD NACIONAL EXERIMENAL OLIECNICA ANONIO JOSÉ DE SUCRE ICERRECORADO BARQUISIMEO DEARAMENO DE INGENIERÍA QUÍMICA QUÍMICA GENERAL UNIDAD I CLASE Nº EL ESADO GASEOSO GAS REAL Gas erfecto: es aquel

Más detalles

Modelo de Gases. Modelo de Gases

Modelo de Gases. Modelo de Gases Q U Í M I C A Modelo de Gases Modelo de Gases Q U Í M I C A Todos conocemos este estado de agregación de la materia puesto que vivimos inmersos en un océano de gases que es la atmósfera, sentimos el viento

Más detalles

LEYES DE LOS GASES. El volumen es directamente proporcional a la cantidad de gas:

LEYES DE LOS GASES. El volumen es directamente proporcional a la cantidad de gas: LEYES DE LOS GASES LEY DE AVOGADRO: Esta ley, descubierta por Avogadro a principios del siglo XIX, establece la relación entre la cantidad de gas y su volumen cuando se mantienen constantes la temperatura

Más detalles

Mercedes López Quelle (Compañero: Luis García Pérez) (autores) 27 de Septiembre de 2010 (fecha)

Mercedes López Quelle (Compañero: Luis García Pérez) (autores) 27 de Septiembre de 2010 (fecha) Un título: El tiempo de reacción humano frente a un estímulo visual Otro título: Tiempo de reacción visual de una persona (título: palabras clave) Mercedes López Quelle (Compañero: Luis García Pérez) (autores)

Más detalles

y por lo tanto se tiene (5)

y por lo tanto se tiene (5) FISICA GENERAL II 2011 Guía de Trabajo Practico N o 1 MEDICIÓN DE VISCOSIDAD EN LÍQUIDOS Método 1: El viscosímetro de Ostwald Introducción: El fundamento de la mayor parte de los viscosímetros que se utilizan

Más detalles